
Design Lab 5	 6.01 – Fall 2011
 
Staggering Proportions 

Goals:	 In this lab, we will program the robot to move along a wall to its side, main­
taining a constant, desired distance from the wall. We will use a simple pro­
portional controller, and model it as a system with the same structure that 
we used for the wall finder system of Design Lab 4. 
This will be studied in three steps: 
•	 Build a proportional controller for a robot and test it in simulation with 

different gains. 
•	 Build an analytical model of the controller-plant-sensor system, both 

by hand and using the SystemFunction class. 
•	 Use the model to gain understanding about the best gain to use for the 

controller and what kind of behavior to expect from the system. 

1 Introduction
 

Resources:	 This lab should be done with a partner. Each partnership should have 
a lab laptop or a personal laptop that reliably runs soar. 

•	 propWallFollowBrainSkeleton.py: Template brain with a place for 

you to write the proportional controller. 
•	 designLab05Work.py: Template python script with appropriate im­

ports for making system functions and finding their properties. 
•	 Chapter 5 of the course notes. 

Be sure to mail all of your code and plots to your partner. Each of you will need to bring 
copies with you to your first interview. 

We have been studying a basic feedback system, composed of three parts: a controller, a plant, and 
a sensor. In last week’s lab, this system was modeled as a difference equation, in which the input 
was the desired distance to the wall, the output was the actual distance to the wall, and the sonars 
provided feedback on the sensed distance to the wall. 

This week, we generalize from the simple one-dimensional model, to a two-dimensional world, 
and seek to guide a robot such that it moves parallel to a wall, staying a specific distance away. In 

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].



1



Design Lab 5 6.01 Fall 2011
 

addition, we generalize from difference equations to a model using abstract signals, and system 
equations. 

The basic structure of the system we build will remain the same: 

controller plant

sensor

+Di Do
error command

−

However, the symbols attached to the diagram are now signals, and not just samples. Specifically, 
here are definitions of various symbols to be used in this lab: 
• k : gain of the controller, a constant number 

• V : forward velocity of the robot, a constant number 

• T : the amount of time between discrete samples of the signals, a constant number 

• Di : desired distance of the robot to the wall, a signal whose samples are di[n] 

• Do : actual distance of the robot to the wall, a signal whose samples are do[n] 

• E: error, equal to Di − Do, a signal whose samples are e[n] 

• Θ : robot’s angle with respect to the wall, a signal whose samples are θ[n] 

• Ω : robot’s angular velocity, a signal whose samples are ω[n] 

2 Proportional wall-follower 

Objective: Build a proportional controller for a robot and test it in simulation with 
different gains . 

do[n−1]

do[n]

V
T

θ[n−1]

di[n] = 0.5 m

w
a
ll

d
e
si
re
d

p
a
th

The figure to the right illustrates a robot in a hallway, with its de-

0.5 m 

sired path a fixed distance from the right wall. We can build a con­
troller with a fixed forward velocity of V = 0.1 m/s, and adjust the 
rotational velocity ω[n] (not shown) to be proportional to the error, 
which is the difference between the desired distance di[n] = 
to the right wall and the actual distance do[n]. The constant of pro­
portionality between the error and the rotational velocity is called the 
gain, and we will write it as k. Notice that when the rotational veloc­
ity ω[n] of the robot is positive the robot turns towards the left, thus 
increasing its angle θ[n]. 

Look in the file propWallFollowBrainSkeleton.py. The brain has two state machines con­
nected in cascade. The first component is an instance of the Sensor class, which implements a 
state machine whose input is of type io.SensorInput and whose output is the perpendicular 
distance to the wall on the right. The perpendicular distance is calculated by getDistanceRight 
in the sonarDist module by using triangulation (assuming the wall is locally straight). All of the 
code for the Sensor class is provided. 

The second component of the brain is an instance of the WallFollower class. Your job is to provide 
code so that the WallFollower class implements a proportional controller. 

2
 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/io.SensorInput-class.html


Design Lab 5	 6.01 Fall 2011
 

Check Yourself 1. What should be the types of the input to and the output from a state ma­
chine of the WallFollower class? What should be the sign of k? 

Detailed guidance: 

Step 1.	 Implement the proportional controller by editing the brain. Then use soar to run your brain in the 
world wallTestWorld.py. The brain is set up to issue a command during the setup to rotate the 
robot, so it starts at a small angle with respect to the wall. 

Step 2.	 Experiment with a few values of the gain k to determine how k affects the resulting behavior. 

Generate plots to illustrate the trends that you found. 

Save screen shots of your plots and email them to your partner. 

Checkoff 1. Wk.5.3.1: Show your plots to a staff member. 
Describe how the gain k affects behavior of the wall-follower. 
For what value of k (if any) does the distance to the wall converge most 
rapidly to the desired value of 0.5 m?
 

Compare the effect of k in this lab and in the lab 4 (wall finder).
 

3 Mathematical model 

Objective: Construct an analytical, mathematical model of the proportional wall-
follower system. 

We will now construct a model of the system so that we can determine analytically how the perfor­
mance of the system depends on gain. The analytic approach is less tedious and more insightful 
than trying to exhaustively search the parameter space using soar. 

You may find it helpful to read Section 5.8.3 of the readings, which illustrates a similar modeling 
effort for the wall-finder system. 

Step 3.	 Controller model: Assume that the controller can instantly set the rotational velocity ω[n] to be 
proportional to the error e[n]. Express this relation as a difference equation. 

3
 



Design Lab 5	 6.01 Fall 2011
 

Step 4.	 Plant model: Write difference equations describing the “plant,” which relates the input (angular 
velocity) to the output (distance to the wall). It is useful to break this problem into two parts: 

•	 Plant 1: Write an expression for θ[n], the robot’s angular orientation with respect to the wall, 
that depends on its rotational velocity. Assume that the rotational velocity at time n − 1 is 
ω[n − 1], and that this rotational velocity is constant until time n. 

•	 Plant 2: Write an expression for do[n], that depends on angular displacement. Assume that the 
angular displacement at time n − 1 is θ[n − 1], and that this angular displacement is constant 
until time n. 

Linearize the resulting difference equation using the small angle approximation (i.e., if θ is 
small, then sin θ ≈ θ). This approximation makes our model linear, allowing us to analyze it 
easily. It may be useful, however, to think about the consequences of this approximation when 
trying to account for behaviors in subsequent sections. 

Sensor model: To keep things simple, we will model the sensor as a wire: that is, assume it intro­
duces no delay. 

The subsystems represented by the three difference equations above connect together to form a 
system of the following form. Label each wire in the block diagram with the name of the cor­
responding signal. You may also find it useful to label each of the boxes in this diagram with 
the element of the model (controller, plant1, plant2) corresponding to each of the three difference 
equations you derived. 

+
−

4
 



Design Lab 5 6.01 Fall 2011
 

Step 5. Convert your difference equations into operator (R) equations, and find the system function.
 

Do
H = = 

Di 

Wk.5.3.2 Enter the system function into the tutor by entering the numerator and 
denominator polynomials. 

5
 



Design Lab 5 6.01 Fall 2011
 

Step 6. Find an algebraic expression for the poles p of the system. 

p = 

Step 7. Choose one of the poles p, and make two sketches (on the same axis) of the real and imaginary 
parts of pn when k = 1, T = 0.1 second, and V = 0.1 m/s. What does this plot tell you about the 
response of the system? 

n

Checkoff 2. Wk.5.3.3: Describe the locations of the poles in Step 6. What are the im­
plications of those locations for system behavior? Compare your plot in 
Step 7 with the results from Checkoff 1. Explain similarities and differ­
ences. Are the periods the same? 

4 Software model 

Objective: Construct a model of the proportional wall-follower system using the 
SystemFunction class. 

We now develop a software representation of system functions to automate much of the preceding 
algebra. The software solution allows analysis of large systems that would be difficult to analyze 
by hand. However, our software solution requires numerical values of parameters such as k and 
T . (You can learn about systems for symbolic manipulation of such parameters in more advanced 
programming subjects. Also compare and contrast with the software representation for signals.) 

The SystemFunction class provides two primitive kinds of system functions: gain (sf.Gain) and 
delay (sf.R). They are implemented as Python procedures, but named with uppercase variables 
by analogy with the sm.Gain and sm.R state machines. 

def Gain(k):
 
return sf.SystemFunction(poly.Polynomial([k]), poly.Polynomial([1]))
 

def R():
 
return sf.SystemFunction(poly.Polynomial([1, 0]), poly.Polynomial([1]))
 

These can be combined, using sf.Cascade, sf.FeedbackSubtract, and sf.FeedbackAdd to 
make any possible system function; and the structure of the combination will be the same as it 
would have been to build up the analogous state machine. 

6
 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sf-module.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sf-module.html


Design Lab 5	 6.01 Fall 2011
 

Note that while the internal definitions of Gain and R use polynomials to construct them, by 
abstraction you can use these system functions, together with our means of combination without 
ever having to utilize these internal details. 

Check Yourself 2. Use gains, delays, and adders to draw system diagrams representing the 
controller, plant 1, and plant 2 from the previous section. 

Controller: 

Plant 1:
 

Plant 2:
 

Step 8.	 Edit the designLab05Work.py file to implement Python procedures called controller, 
plant1, and plant2 that use sf.Gain, sf.R, sf.Cascade, sf.FeedbackSubtract, and 
sf.FeedbackAdd to construct and return instances of the SystemFunction class that represent 
the three blocks in the mathematical model. Pass the important parameters for each block (e.g., 
k) as inputs to the corresponding procedure. 

Step 9.	 Write a Python procedure wallFollowerModel(k, T, V) that calls the previous Python proce­
dures to make system functions for the components and composes them into a single System-
Function that describes the system with desiredRight as input and distanceRight as output. 

Wk.5.3.4 Enter the definition for wallFollowerModel and any procedures it calls 
into the tutor. Do not enter any import statements. 

7
 

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/poly.Polynomial-class.html


Design Lab 5 6.01 Fall 2011
 

Step 10. Use the dominantPole method of your system model to determine the period that will result for 
T = 0.1 seconds, V = 0.1 m/s, and the values of k you used in Checkoff 1. 

k period 

Checkoff 3. Wk.5.3.5: Show your results to a staff member. Explain similarities and 
differences between your results in this part and your results in Checkoff 1. 

8
 



MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

