
State Machines


The Big 
The structure of a program has a significant effect on its modularity 

Recursion is expressive 

State machines are computation with memory 

Output and next state depend on input and current state 

A particular kind of state machine is a subclass of SM 

A particular state machine is an instance of that subclass 

State machines can be used to represent the controls for a system 

State machines can be used in analysis and prediction of behaviors for a 

system 

Ideas: 

Introduction 

Last week, we introduced you to some of the core concepts of 6.01. Our four units are Programming and 

State Machines, Signals and Systems, Circuits, and Probability and Planning. We focused on 

programming, in particular the Object Oriented Programming paradigm in Python. 

This week, we expand on programming, introducing other programming paradigms and indicating 

features of Python that tie in to notable programming concepts. 

This week, we also introduce state machines. State machines model systems that are functional, but also 

have memory. State machines are incredibly general, but incredibly powerful, and can be used to model 

all kinds of systems, as you'll see in future weeks. You can use state machines to control, model, and 

predict behaviors in systems. 

Vocabulary 

In order to engage the material, be able to communicate about the topic with others, and in particular ask 

questions, we encourage familiarity with the following terms: 

Theory 

Imperative Programming 

Functional Programming 

Functions as First-Class Objects 

Recursion 

Object Oriented Programming 

Abstraction and Modularity 

State Machine 

State Transition Diagram 

Transition Table 

Cascade, Parallel, Select, Feedback 

Controller 

Plant 



Practice 

class SM 

o start 

o step 

o transduce 

o startState 

o getNextValues 

Soar 

o Brain 

o Simulator/Pioneer 

o Sonars 
o rvel/fvel 

o io.SensorInput 

Check Yourself 

After this week in 6.01, you should be familiar with the following: 

Theory: you should understand: 

OOP and different paradigms 

State Machines: State transition diagrams, transition tables, expression as math equations 

Simple block diagrams 

Practice: you should be able to: 

Locate the 6.01 Software Documentation, and use it effectively

Run a robot using Soar, both in Simulation and Pioneer modes 

Implement a state machine to control robot behavior using a custom SM. 




MIT OpenCourseWare 
http://ocw.mit.edu 

6.01SC Introduction to Electrical Engineering and Computer Science 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

