6.01: Introduction to EECS I

Primitives, Combination, Abstraction, and Patterns

PCAP Framework for Managing Complexity

Python has features that facilitate modular programming.

- def combines operations into a procedure and binds a name to it
- lists provide flexible and hierarchical structures for data
- variables associate names with data
- classes associate data (attributes) and procedures (methods)

	procedures	data		
Primitives	+, *, ==, !=	numbers, booleans, strings		
Combination	if, while, $f(g(x))$	lists, dictionaries, objects		
Abstraction	def	classes		
Patterns	higher-order procedures	super-classes, sub-classes		

February 8, 2011

PCAP Framework for Managing Complexity

We will build on these ideas to manage complexity at higher levels.

- Programming Styles for dealing with complexity
- PCAP in Higher-Level Abstractions: State Machines

Reading: Course notes, chapters 3-4

Programming Styles for Managing Complexity

Structure of program has significant effect on its modularity.

Imperative (procedural) programming

- focus on step-by-step instructions to accomplish task
- organize program using structured conditionals and loops

Functional programming

- focus on procedures that mimic mathematical functions, producing outputs from inputs without side effects
- functions are first-class objects used in data structures, arguments to procedures, and can be returned by procedures

Object-oriented programming

- focus on collections of related procedures and data
- organize programs as hierarchies of related classes and instances

Example Program

Task: Find a sequence of operations (either increment or square) that transforms the integer i (initial) to the integer g (goal).

Example: applying the sequence

increment increment square to 1 yields 16

apply increment to $\textbf{1}\,\rightarrow\,\textbf{2}$ apply increment to $2 \rightarrow 3$

apply increment to $3 \rightarrow 4$ apply square to $\mathbf{4} \to \mathbf{16}$

Check Yourself

What is the minimum length sequence of increment and square operations needed to transform 1 to 100?

1 · <4

2. 4

3 5

4. 6 5 > 6

Imperative (Procedural) Programming

Solve the previous problem by writing an imperative program to step through all possible sequences of length 1, 2, 3, ...

```
def increment(n):
    return n+1
def square(n):
    return n**2
def findSequence(initial,goal):
    # construct list of "candidates" of form ('1 increment increment'.3)
    candidates = [(str(initial),initial)]
    # loop over sequences of length "i" = 1, 2, 3, ...
    for i in range(1,goal-initial+1):
        newCandidates = []
        \ensuremath{\text{\#}} construct each new candidate by adding one operation to prev candidate
        for (action, result) in candidates:
             for (a,r) in [('increment',increment),('square',square)]:
                 {\tt newCandidates.append((action+a,r(result)))}
                 print i,': ',newCandidates[-1]
                 if newCandidates[-1][1] == goal:
    return newCandidates[-1]
        candidates = newCandidates
answer = findSequence(1,100)
print 'answer =',answer
```

```
Imperative (Procedural) Programming
     ('1 increment', 2)
     ('1 square', 1)
2 :
     ('1 increment increment', 3)
2:
     ('1 increment square', 4)
2:
     ('1 square increment', 2)
    ('1 square square', 1)
2 :
    ('1 increment increment increment', 4)
3 :
     ('1 increment increment square', 9)
     ('1 increment square increment', 5)
3 :
3 :
     ('1 increment square square', 16)
     ('1 square increment increment', 3)
3 :
     ('1 square increment square', 4)
3 :
     ('1 square square increment', 2)
     ('1 square square', 1)
3 :
4 :
     ('1 increment increment increment', 5)
    ('1 increment increment increment square', 16)
('1 increment increment square increment', 10)
     ('1 increment increment square square', 81)
     ('1 increment square increment increment', 6)
4 :
     ('1 increment square increment square', 25)
    ('1 increment square square increment', 17)
4 :
4 : ('1 increment square square', 256)
     ('1 square increment increment', 4)
4 : ('1 square increment increment square', 9)
```

```
('1 square increment square increment', 5)
4 :
    ('1 square increment square square', 16)
4 : ('1 square square increment increment', 3)
4 : ('1 square square increment square', 4)
4 : ('1 square square increment', 2)
    ('1 square square square', 1)
    ('1 increment increment increment increment', 6)
    ('1 increment increment increment square', 25)
5 : ('1 increment increment square increment', 17)
5 : ('1 increment increment square square', 256)
5 : ('1 increment increment square increment increment', 11)
5: \ \ ('1\ increment\ increment\ square\ increment\ square',\ 100)
answer = ('1 increment increment square increment square', 100)
```

Imperative (Procedural) Programming

This imperative version of the program has three levels of looping.

```
def findSequence(initial,goal):
    # construct list of "candidates" of form ('1 increment increment',3)
    candidates = [(str(initial),initial)]
    # loop over sequences of length "i" = 1, 2, 3, \dots
    for i in range(1,goal-initial+1):
        newCandidates = []
        # construct each new candidate by adding one operation to prev candidate
        for (action, result) in candidates:
            for (a,r) in [(' increment',increment),(' square',square)]:
                 {\tt newCandidates.append((action+a,r(result)))}
                 print i,': ',newCandidates[-1]
                 if newCandidates[-1][1] == goal:
                     return newCandidates[-1]
        candidates = newCandidates
```

This approach is straightforward, but nested loops can be confusing.

Challenge is to get the indices right.

Functional Programming

This version focuses on functions as primitives.

```
def apply(opList,arg):
   if len(opList) == 0:
       return arg
       return apply(opList[1:],opList[0](arg))
def addLevel(opList,fctList):
   return [x+[y] for y in fctList for x in opList]
def findSequence(initial,goal):
    opList = [[]]
    for i in range(1,goal-initial+1):
        opList = addLevel(opList,[increment,square])
        for seq in opList:
           if apply(seq,initial)==goal:
                return seq
answer = findSequence(1,100)
print 'answer =',answer
```

Functional Programming

0xb777ea74>, <function square at 0xb7779224>

```
The answer is now a list of functions
def apply(opList,arg):
    if len(opList) == 0:
        return arg
         return apply(opList[1:],opList[0](arg))
def addLevel(opList,fctList):
    return [x+[y] for y in fctList for x in opList]
def findSequence(initial,goal):
    opList = [[]]
    for i in range(1,goal-initial+1):
         opList = addLevel(opList,[increment,square])
         for seq in opList:
            if apply(seq,initial) == goal:
                 return seq
answer = findSequence(1,100)
print 'answer =', answer
answer = [<function increment at 0xb777ea74>, <function increment at 0xb777ea74>, <function square at 0xb777924>, <function increment at
```

Functional Programming

```
The functions apply and addLevel are easy to check.

def apply(opList,arg):
    if len(opList)==0:
        return arg
    else:
        return apply(opList[1:],opList[0](arg))

def addLevel(opList,fctList):
    return [x+[y] for y in fctList for x in opList]

>>> apply([],7)

7

>>> apply([],7)

8

>>> apply([square],7)

49

>>> apply([square],7)

64

>>> addLevel([[increment],[increment,square])
[[<function increment at Oxb748Oaac>, <function square at Oxb748Oaac>],
[<function increment at Oxb748Oaac>, <function square at Oxb747b25c>]]
```

Functional Programming

Recursion is

• an alternative way to implement iteration (looping)

Also notice that the definition of apply is recursive:

- a natural generalization of functional programming
- powerful way to think about PCAP

Recursion

Express solution to problem in terms of simpler version of problem.

Greater modularity reduces complexity and simplifies debugging.

Example: raising a number to a non-negative integer power

$$b^n = \begin{cases} 1 & \text{if } n = 0 \\ b \cdot b^{n-1} & \text{if } n > 0 \end{cases}$$

functional notation:

$$f(n) = \begin{cases} 1 & \text{if } n = 0 \\ b f(n-1) & \text{if } n > 0 \end{cases}$$

Python implementation:

```
def exponent(b,n):
    if n==0:
        return 1
else:
        return b*exponent(b,n-1)
```

Recursive Exponentiation

Invoking exponent (2,6) generates 6 more invocations of exponent.

def exponent(b,n):
 if n==0:
 return 1

```
else:
        return b*exponent(b,n-1)
exponent(2,6)
   calls exponent(2,5)
       calls exponent(2,4)
           calls exponent(2,3)
               calls exponent(2,2)
                   calls exponent(2,1)
                       calls exponent(2,0)
                       returns 1
                   returns 2
               returns 4
           returns 8
       returns 16
   returns 32
returns 64
```

Number of invocations increases in proportion to n (i.e., linearly).

Fast Exponentiation

There is a straightforward way to speed this process:

If n is even, then square the result of raising \boldsymbol{b} to the n/2 power.

$$b^n = \begin{cases} 1 & \text{if } n = 0 \\ b \cdot b^{n-1} & \text{if } n \text{ odd} \\ \left(b^{n/2}\right)^2 & \text{otherwise} \end{cases}$$

functional notation:

$$f(n) = \begin{cases} 1 & \text{if } n = 0 \\ bf(n-1) & \text{if } n \text{ odd} \\ \left(f(n/2)\right)^2 & \text{otherwise} \end{cases}$$

Fast Exponentiation

```
Implement in Python.
```

```
def fastExponent(b,n):
    if n==0:
        return 1
    elif n%2==1:
        return b*fastExponent(b,n-1)
    else:
        return fastExponent(b,n/2)**2
```

Check Yourself

```
def fastExponent(b,n):
    if n==0:
        return 1
    elif n½==1:
        return b*fastExponent(b,n-1)
    else:
        return fastExponent(b,n/2)**2
How many invocations of fastExponent is generated by fastExponent (2,10)?

1. 10 2. 8 3. 7 4. 6 5. 5
```

Functional approach is "expressive."

Towers of Hanoi

Transfer a stack of disks from post A to post B by moving the disks one-at-a-time, without placing any disk on a smaller disk.


```
def Hanoi(n,A,B,C):
    if n==1:
        print 'move from ' + A + ' to ' + B
    else:
        Hanoi(n-1,A,C,B)
        Hanoi(1,A,B,C)
        Hanoi(n-1,C,B,A)
```

Recursive solution is "expressive" (also simple and elegant).

Back to the Earlier Example

Task: Find a sequence of operations (either increment or square) that transforms the integer i (initial) to the integer g (goal).

Imperative (procedural) approach v

Functional approach √

Object-oriented approach

OOP

Represent all possible sequences in a tree.

Define an object to repesent each of these "nodes":

```
class Node:
    def __init__(self,parent,action,answer):
        self.parent = parent
        self.action = action
        self.answer = answer
    def path(self):
        if self.parent == None:
            return [(self.action, self.answer)]
        else:
```

OOP

Systematically create and search through all possible ${f Nodes}$

```
def findSequence(initial,goal):
    q = [Node(None,None,1)]
    while q:
        parent = q.pop(0)
        for (a,r) in [('increment',increment),('square',square)]:
            newNode = Node(parent,a,r(parent.answer))
            if newNode.answer==goal:
                return newNode.path()
            else:
                q.append(newNode)
    return None

answer = findSequence(1,100)
print 'answer =',answer

answer = [(None, 1), ('increment', 2), ('increment', 3), ('square', 9), ('increment', 10), ('square', 100)]
```

Focus on constructing objects that represent pieces of the solution.

More later, when we focus on effective search strategies.

Programming Styles for Managing Complexity

Task: Find a sequence of operations (either increment or square) that transforms the integer i (initial) to the integer g (goal).

return self.parent.path() + [(self.action,self.answer)]

Imperative (procedural) approach

• structure of search was embedded in loops

Functional approach

• structure of search was constructed in lists of functions

Object-oriented approach

structure of search was constructed from objects

Structure of program has significant effect on its modularity.

Now consider abstractions at even higher levels.

Controlling Processes

Programs that control the evolution of processes are different.

Examples:

- bank accounts
- graphical user interfaces
- controllers (robotic steering)

We need a different kind of abstraction.

State Machines

Organizing computations that evolve with time.

On the $n^{\rm th}$ step, the system

- gets input in
- generates output o_n and
- moves to a new **state** s_{n+1}

Output and next state depend on input and current state

Explicit representation of stepwise nature of required computation.

State Machines

Example: Turnstile

 $Inputs = \{coin, turn, none\}$

 $Outputs = \{enter, pay\}$

 $States = \{locked, unlocked\}$

(unlocked if $i=\mathrm{coin}$ © Source unknown. All rights reserved. $\mathrm{nextState}(s,i) = \left\{ \begin{array}{ll} \mathrm{locked} & \quad \mathrm{if} \ i = \mathrm{turn} & \\ \mathrm{Creative} \ \mathrm{Commons} \ \mathrm{license}. \ \mathrm{For} \ \mathrm{more} \end{array} \right.$ otherwise information, see http://ocw.mit.edu/fair

 $\mathrm{output}(s,i) = \begin{cases} \mathrm{enter} & \text{if } \mathrm{nextState}(s,i) = \mathrm{unlocked} \\ \mathrm{pay} & \text{otherwise} \end{cases}$

 $s_0 = locked$

State-transition Diagram

Graphical representation of process.

- Nodes represent states
- Arcs represent transitions: label is input / output

Turn Table

Transition table.

time	0	1	2	3	4	5	6
state	locked	locked	unlocked	unlocked	locked	locked	unlocked
input	none	coin	none	turn	turn	coin	coin
output	pay	enter	enter	pay	pay	enter	enter

State Machines

The state machine representation for controlling processes

- is simple and concise
- separates system specification from looping structures over time
- is modular

We will use this approach in controlling our robots.

Modular Design with State Machines Break complicated problems into parts. Map: black and red parts. Plan: blue path, with heading determined by first line segment. sensor map map map maker planner heading output

State Machines in Python

Represent common features of all state machines in the **SM** class. Represent kinds of state machines as subclasses of **SM**. Represent particular state machines as instances.

Example of hierarchical structure

SM Class: All state machines share some methods:

- start(self) initialize the instance
- step(self, input) receive and process new input
- transduce(self, inputs) make repeated calls to step

Turnstile Class: All turnstiles share some methods and attributes:

- startState initial contents of state
- getNextValues(self, state, inp) method to process input

Turnstile Instance: Attributes of this particular turnstile:

• state - current state of this turnstile

SM Class

The generic methods of the **SM** class use **startState** to initialize the instance variable **state**. Then **getNextValues** is used to process inputs, so that **step** can update **state**.

```
class SM:
    def start(self):
        self.state = self.startState
    def step(self, inp):
        (s, o) = self.getNextValues(self.state, inp)
        self.state = s
        return o
    def transduce(self, inputs):
        self.start()
        return [self.step(inp) for inp in inputs]
```

Note that ${\tt getNextValues}$ should not change ${\tt state}.$

The state is managed by start and step.

Turnstile Class

class Turnstile(SM):

All turnstiles share the same ${\tt startState}$ and ${\tt getNextValues}.$

```
startState = 'locked'

def getNextValues(self, state, inp):
    if inp == 'coin':
        return ('unlocked', 'enter')
    elif inp == 'turn':
        return ('locked', 'pay')
    elif state == 'locked':
        return ('locked', 'pay')
    else:
        return ('unlocked', 'enter')
```

```
Turn, Turn, Turn
```

```
A particular turnstyle ts is represented by an instance.
```

```
testInput = [None, 'coin', None, 'turn', 'turn', 'coin', 'coin']

ts = Turnstile()

ts.transduce(testInput)

Start state: locked

In: None Out: pay Next State: locked

In: coin Out: enter Next State: unlocked

In: None Out: enter Next State: unlocked

In: turn Out: pay Next State: locked

In: turn Out: pay Next State: locked

In: turn Out: pay Next State: locked

In: coin Out: enter Next State: unlocked

In: coin Out: enter Next State: unlocked

In: coin Out: enter Next State: unlocked

['pay', 'enter', 'enter', 'pay', 'pay', 'enter', 'enter']
```

```
Accumulator
```

```
class Accumulator(SM):
    startState = 0

def getNextValues(self, state, inp):
    return (state + inp, state + inp)
```

Check Yourself >>> a = Accumulator() >>> a.start() >>> b = Accumulator() >>> b.start() >>> b.start() >>> b.step(10) >>> a.step(-2) >>> print a.state,a.getNextValues(8,13),b.getNextValues(8,13) What will be printed? 1: 5 (18, 18) (23, 23) 2: 5 (21, 21) (21, 21) 3: 15 (18, 18) (23, 23) 4: 15 (21, 21) (21, 21) 5: none of the above

This Week Software lab: Practice with simple state machines Design lab: Controlling robots with state machines Homework 1: Symbolic calculator

MIT OpenCourseWar	re
http://ocw.mit.edu	

6.01SC Introduction to Electrical Engineering and Computer Science Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.