6.01: Introduction to EECS 1

Primitives, Combination, Abstraction, and Patterns

February 8, 2011

PCAP Framework for Managing Complexity

Python has features that facilitate modular programming.

def combines operations into a procedure and binds a name to it
lists provide flexible and hierarchical structures for data
variables associate names with data

classes associate data (attributes) and procedures (methods)

procedures

data

Primitives
Combination
Abstraction
Patterns

+, *, ==, I=

if, while, £(g(x))
def

higher-order procedures

numbers, booleans, strings
lists, dictionaries, objects
classes

super-classes, sub-classes

PCAP Framework for Managing Complexity

We will build on these ideas to manage complexity at higher levels.

e Programming Styles for dealing with complexity
e PCAP in Higher-Level Abstractions: State Machines

Reading: Course notes, chapters 3—4

Programming Styles for Managing Complexity

Structure of program has significant effect on its modularity.

Imperative (procedural) programming

e focus on step-by-step instructions to accomplish task
e oOrganize program using structured conditionals and loops

Functional programming

e focus on procedures that mimic mathematical functions,
producing outputs from inputs without side effects

e functions are first-class objects used in data structures,
arguments to procedures, and can be returned by procedures

Object-oriented programming

e focus on collections of related procedures and data
e oOrganize programs as hierarchies of related classes and instances

Example Program

Task: Find a sequence of operations (either increment or square)
that transforms the integer ¢ (initial) to the integer g (goal).

Example: applying the sequence
increment increment increment square
to 1 yields 16

apply increment to 1 — 2
apply increment to 2 — 3
apply increment to 3 — 4
apply square to 4 — 16

Check Yourself

What is the minimum length sequence of increment and
square operations needed to transform 1 to 1007

Check Yourself

What is the minimum length sequence of increment and square
operations needed to transform 1 to 1007

Try to use as many squares (especially big ones) as possible.

apply increment to 1 — 2
apply increment to 2 — 3
apply square to 3 — 9
apply increment to 9 — 10
apply square to 10 — 100

Five operations.

Check Yourself

What is the minimum length sequence of increment and
square operations needed to transform 1 to 1007 dg 5

Imperative (Procedural) Programming

Solve the previous problem by writing an imperative program to step
through all possible sequences of length 1, 2, 3, ...

def

def

def

increment (n) :
return n+1
square(n) :
return n**2
findSequence(initial,goal):
construct list of "candidates" of form (’1 increment increment’,3)
candidates = [(str(initial),initial)]
loop over sequences of length "i" =1, 2, 3,
for i in range(l,goal-initial+l):
newCandidates = []
construct each new candidate by adding one operation to prev candidate
for (action,result) in candidates:
for (a,r) in [(’ increment’,increment), (’ square’,square)]:
newCandidates.append((action+a,r(result)))
print i,’: ’,newCandidates([-1]
if newCandidates[-1][1] == goal:
return newCandidates[-1]
candidates = newCandidates

answer = findSequence(1,100)
print ’answer =’,answer

Imperative (Procedural) Programming

(’1 increment’, 2)

(’1 square’, 1)

(’1 increment increment’, 3)

(’1 increment square’, 4)

(’1 square increment’, 2)

(’1 square square’, 1)

(’1 increment increment increment’, 4)

(°1 increment increment square’, 9)

(°1 increment square increment’, 5)

(’1 increment square square’, 16)

(’1 square increment increment’, 3)

(’1 square increment square’, 4)

(°1 square square increment’, 2)

(°1 square square square’, 1)

(’1 increment increment increment increment’, 5)
(°1 increment increment increment square’, 16)
(°1 increment increment square increment’, 10)
(’1 increment increment square square’, 81)
(’1 increment square increment increment’, 6)
(’1 increment square increment square’, 25)
(’1 increment square square increment’, 17)
(’1 increment square square square’, 256)

(’1 square increment increment increment’, 4)
(’1 square increment increment square’, 9)

R R R R R R R R WWWWW W W WNNNNRE

(1 square
(1 square
(’1 square
(’1 square
(’1 square
(’1 square
1
(

(SIS NS BN IS e I NN O N NN

increment

’1 increment
(’1 increment
(’1 increment
(’1 increment
(’1 increment

increment square increment’, 5)
increment square square’, 16)

square
square
square
square

increment increment’, 3)
increment square’, 4)
square increment’, 2)
square square’, 1)

increment increment increment increment’, 6)
increment increment increment square’, 25)
increment increment square increment’, 17)
increment increment square square’, 256)
increment square increment increment’, 11)
increment square increment square’, 100)

answer = (’1 increment increment square increment square’, 100)

Imperative (Procedural) Programming

This imperative version of the program has three levels of looping.

def findSequence(initial,goal):
construct list of "candidates" of form (’1 increment increment’,3)
candidates = [(str(initial),initial)]
loop over sequences of length "i" =1, 2, 3,
for i in range(l,goal-initial+1):
newCandidates = []
construct each new candidate by adding one operation to prev candidate
for (action,result) in candidates:
for (a,r) in [(’ increment’,increment),(’ square’,square)]:
newCandidates.append((action+ta,r(result)))
print i,’: ’,newCandidates[-1]
if newCandidates[-1][1] == goal:
return newCandidates[-1]
candidates = newCandidates

This approach is straightforward, but nested loops can be confusing.

Challenge is to get the indices right.

Functional Programming

This version focuses on functions as primitives.

def apply(opList,arg):
if len(opList)==0:
return arg
else:
return apply(opList[1:],opList[0] (arg))

def addLevel(opList,fctList):
return [x+[y] for y in fctlList for x in opList]

def findSequence(initial,goal):
opList = [[1]
for i in range(l,goal-initial+1):
opList = addLevel(opList, [increment,square])
for seq in opList:
if apply(seq,initial)==goal:
return seq

answer = findSequence(1,100)
print ’answer =’,answer

Functional Programming

The procedure apply is a “pure function.”

def apply(opList,arg):
if len(opList)==0:
return arg
else:
return apply(opList[1:],opList[0] (arg))

Its first argument is a list of functions. The procedure applies these
functions to the second argument arg and returns the result.

>>> apply([],7)

7

>>> apply([increment],7)

8

>>> apply([squarel,7)

49

>>> apply([increment,square],7)
64

This list of procedures uses functions as first-class objects.

Functional Programming

The procedure addLevel is also a pure function.

def addLevel(opList,fctList):
return [x+[y] for y in fctlist for x in opList]

The first input is a list of sequences-of-operations, each of which is
a list of functions.
The second input is a list of possible next-functions.

It returns a new list of sequences.

>>> addLevel([[increment]], [increment,square])
[[<function increment at 0xb7480aac>, <function increment at 0xb7480aac>],
[<function increment at 0xb7480aac>, <function square at 0xb747b25c>]]

Functional Programming

The answer is now a list of functions.

def apply(opList,arg):
if len(opList)==0:
return arg
else:
return apply(opList[1:],opList[0] (arg))

def addLevel(opList,fctList):
return [x+[y] for y in fctlList for x in opList]

def findSequence(initial,goal):
opList = [[1]
for i in range(l,goal-initial+1):
opList = addLevel(opList, [increment,square])
for seq in opList:
if apply(seq,initial)==goal:
return seq

answer = findSequence(1,100)
print ’answer =’,answer

answer = [<function increment at O0xb777ea74>, <function increment at
0xb777ea74>, <function square at O0xb7779224>, <function increment at
0xb777ea74>, <function square at 0xb7779224>]

Functional Programming

The functions apply and addLevel are easy to check.

def apply(oplList,arg):
if len(opList)==0:
return arg
else:
return apply(opList[1:],opList[0] (arg))

def addLevel(opList,fctList):
return [x+[y] for y in fctList for x in opList]

>>> apply([]1,7)

7

>>> apply([increment],7)

8

>>> apply([squarel,7)

49

>>> apply([increment,square],7)

64

>>> addLevel([[increment]], [increment,square])

[[<function increment at 0xb7480aac>, <function increment at 0xb7480aac>],
[<function increment at 0xb7480aac>, <function square at 0xb747b25c>]]

Greater modularity reduces complexity and simplifies debugging.

Functional Programming

Also notice that the definition of apply is recursive:
the definition of apply calls apply.

>>> def apply(oplist,arg):
if len (opList)==0:
return arg
else:
return apply (opList[1:],opList[0] (arg))

Recursion is

e an alternative way to implement iteration (looping)
e a natural generalization of functional programming
e powerful way to think about PCAP

Recursion

Express solution to problem in terms of simpler version of problem.

Example: raising a number to a non-negative integer power

b”—{l ifn=0
b-vv 1 ifn>0

functional notation:

1 ifn=0
f@J:{bﬂn—l) ifn>0

Python implementation:

def exponent(b,n):
if n==0:
return 1
else:
return bxexponent(b,n-1)

Recursive Exponentiation

Invoking exponent (2, 6) generates 6 more invocations of exponent.

def exponent(b,n):
if n==0:
return 1
else:
return b*exponent(b,n-1)

exponent (2,6)
calls exponent(2,5)
calls exponent(2,4)
calls exponent(2,3)
calls exponent(2,2)
calls exponent(2,1)
calls exponent(2,0)
returns 1
returns 2
returns 4
returns 8
returns 16
returns 32
returns 64
64

Number of invocations increases in proportion to n (i.e., linearly).

Fast Exponentiation

There is a straightforward way to speed this process:
If n is even, then square the result of raising b to the n/2 power.
1 ifn=20
pr—) b-b""1 if n odd
2
(b”/2> otherwise

functional notation:
1 ifn=0

f(n)=< bf(n—1) if n odd
(f(n/2))* otherwise

Fast Exponentiation

Implement in Python.

def fastExponent(b,n):
if n==0:
return 1
elif nj2==1:
return bxfastExponent(b,n-1)
else:
return fastExponent(b,n/2)**2

Check Yourself

def fastExponent(b,n):
if n==0:
return 1
elif nj2==1:
return b*fastExponent(b,n-1)
else:
return fastExponent(b,n/2)**2

How many invocations of fastExponent is generated by
fastExponent (2,10) 7

1. 10 2. 8 3. 7 4. 6 5.5

Recursive Exponentiation

Implement recursion in Python.

def fastExponent(b,n):
if n==0:
return 1
elif nj2==1:
return bxfastExponent(b,n-1)
else:
return fastExponent(b,n/2)**2

fastExponent (2,10)
calls fastExponent(2,5)
calls fastExponent(2,4)
calls fastExponent(2,2)
calls fastExponent(2,1)
calls fastExponent(2,0)
returns 1
returns 2
returns 4
returns 16
returns 32
returns 1024
1024

The number of calls increases in proportion to log n (for large n).

Check Yourself

def fastExponent(b,n):
if n==0:
return 1
elif nj2==1:
return b*fastExponent(b,n-1)
else:
return fastExponent(b,n/2)**2

How many invocations of fastExponent is generated by
fastExponent (2,10) 7 5

1. 10 2. 8 3.7 4. 6 5 5

Recursive Exponentiation

Functional approach makes this simplification easy to spot.

def fastExponent(b,n):
if n==0:
return 1
elif nj2==1:
return bxfastExponent(b,n-1)
else:
return fastExponent(b,n/2)**2

fastExponent (2,10)
calls fastExponent(2,5)
calls fastExponent(2,4)
calls fastExponent(2,2)
calls fastExponent(2,1)
calls fastExponent(2,0)
returns 1
returns 2
returns 4
returns 16
returns 32
returns 1024
1024

Functional approach is “expressive.”

Towers of Hanoi

Transfer a stack of disks from post A to post B by moving the disks
one-at-a-time, without placing any disk on a smaller disk.

post A post B post C

def Hanoi(n,A,B,C):
if n==1:
print ’move from ’ + A+’ to ’ + B
else:
Hanoi(n-1,A,C,B)
Hanoi(1,A,B,C)
Hanoi(n-1,C,B,A)

Towers of Hanoi

Towers of height 3 and 4.

> > > Hanoi(3,’a’,’b’,’c’)
move from a to b
move from a to c
move from b to c
move from a to b
move from c to a
move from c to b
move from a to b
> > > Hanoi(4,’a’,’b’,’c’)
move from a to c
move from a to b
move from c to b
move from a to c
move from b to a
move from b to c
move from a to c
move from a to b
move from c to b
move from c to a
move from b to a
move from c to b
move from a to c
move from a to b
move from c to b

Towers of Hanoi

Transfer a stack of disks from post A to post B by moving the disks
one-at-a-time, without placing any disk on a smaller disk.

post A post B post C

def Hanoi(n,A,B,C):
if n==1:
print ’move from ’ + A + ’ to ’ + B
else:
Hanoi(n-1,A,C,B)
Hanoi(1,A,B,C)
Hanoi(n-1,C,B,A)

Recursive solution is “expressive’” (also simple and elegant).

Back to the Earlier Example

Task: Find a sequence of operations (either increment or square)
that transforms the integer ¢ (initial) to the integer g (goal).

Imperative (procedural) approach v
Functional approach v

Object-oriented approach

OOP

Represent all possible sequences in a tree.

Define an object to repesent each of these “nodes’:

class Node:
def __init__(self,parent,action,answer):
self.parent = parent
self.action = action
self.answer = answer
def path(self):
if self.parent == None:
return [(self.action, self.answer)]
else:
return self.parent.path() + [(self.action,self.answer)]

OOP

Systematically create and search through all possible Nodes

def findSequence(initial,goal):
q = [Node(None,None,1)]
while q:
parent = q.pop(0)
for (a,r) in [(’increment’,increment), (’square’,square)]:
newNode = Node(parent,a,r(parent.answer))
if newNode.answer==goal:
return newNode.path()
else:
q.append (newNode)
return None

answer = findSequence(1,100)
print ’answer =’,answer

answer = [(None, 1), (’increment’, 2), (’increment’, 3), (’square’, 9), (’increment’,

10), (’square’, 100)]
Focus on constructing objects that represent pieces of the solution.

More later, when we focus on effective search strategies.

Programming Styles for Managing Complexity

Task: Find a sequence of operations (either increment or square)
that transforms the integer ¢ (initial) to the integer g (goal).

Imperative (procedural) approach

e structure of search was embedded in loops

Functional approach

e sStructure of search was constructed in lists of functions

Object-oriented approach

e structure of search was constructed from objects

Structure of program has significant effect on its modularity.

Now consider abstractions at even higher levels.

Controlling Processes

Programs that control the evolution of processes are different.

Examples:

e bank accounts
e graphical user interfaces
e controllers (robotic steering)

We need a different kind of abstraction.

State Machines

Organizing computations that evolve with time.

input output
P state p

in Sn On,

On the nth step, the system
e gets input i,

e generates output o, and

e moves to a new state s,

Output and next state depend on input and current state

Explicit representation of stepwise nature of required computation.

State Machines

Example: Turnstile

Inputs = {coin, turn, none}
Outputs = {enter, pay}
States = {locked, unlocked }

unlocked if ¢ = coin

nextState(s, Z) — locked If Z = turn © Source unknown. All rights reserved.‘ This content is
excluded from our Creative Commons license. For more
s OtherWise information, see http://ocw.mit.edu/fairuse.

enter if nextState(s,) = unlocked

output(s,i) = {)
pay otherwise

sg = locked

http://ocw.mit.edu/fairuse

State-transition Diagram

Graphical representation of process.

e Nodes represent states
e Arcs represent transitions: label is input / output

start

none/pay \ coin/enter none/enter
turn/pay coin/enter

turn/pay

Turn Table

Transition table.

start
none/pay \ coin/enter none/enter
turn/pay coin/enter
turn/pay
time 0 1 2 3 4 5 6
state locked locked unlocked unlocked locked locked unlocked
input none coin none turn turn coin coin

output pay enter enter pay pay enter enter

State Machines

The state machine representation for controlling processes

e is simple and concise
e Separates system specification from looping structures over time
e is modular

We will use this approach in controlling our robots.

Modular Design with State Machines

Break complicated problems into parts.

Example: consider exploration with mapping

Modular Design with State Machines

Break complicated problems into parts.

Map: black and red parts.
Plan: blue path, with heading determined by first line segment.

Sensor

input

map
maker

map

>

»
>

planner

heading

mover

[
>

action
output

State Machines in Python

Represent common features of all state machines in the SM class.
Represent kinds of state machines as subclasses of SM.
Represent particular state machines as instances.

Example of hierarchical structure

SM Class: All state machines share some methods:

e start (self) — initialize the instance
e step(self, input) — receive and process new input
e transduce (self, inputs) — make repeated calls to step

Turnstile Class: All turnstiles share some methods and attributes:
e startState — initial contents of state
e getNextValues (self, state, inp) — method to process input

Turnstile Instance: Attributes of this particular turnstile:
e state — current state of this turnstile

SM Class

The generic methods of the SM class use startState to initialize
the instance variable state. Then getNextValues is used to process

inputs, so that step can update state.

class SM:

def start(self):
self.state = self.startState

def step(self, inp):
(s, o) = self.getNextValues(self.state, inp)
self.state = s
return o

def transduce(self, inputs):
self.start()

return [self.step(inp) for inp in inputs]

Note that getNextvalues should not change state.
The state is managed by start and step.

Turnstile Class

All turnstiles share the same startState and getNextValues.

class Turnstile(SM):
startState = ’locked’

def getNextValues(self, state, inp):

if inp == ’coin’:
return (’unlocked’, ’enter’)
elif inp == ’turn’:

return (’locked’, ’pay’)
elif state == ’locked’:

return (’locked’, ’pay’)
else:

return (Punlocked’, ’enter’)

Turn, Turn, Turn

A particular turnstyle ts is represented by an instance.

testInput = [None, ’coin’, None, ’turn’, ’turn’, ’coin’,
ts = Turnstile()

ts.transduce(testInput)

Start state: locked

In: None Out: pay Next State: locked
In: coin Out: enter Next State: unlocked
In: None Out: enter Next State: unlocked
In: turn Out: pay Next State: locked
In: turn Out: pay Next State: locked
In: coin Out: enter Next State: unlocked
In: coin (Out: enter Next State: unlocked

[’pay’, ’enter’, ’enter’, ’pay’, ’pay’, ’enter’, ’enter’]

’coin’]

Accumulator

class Accumulator (SM):
startState = 0

def getNextValues(self, state, inp):

return (state + inp, state + inp)

Check Yourself

>>> a = Accumulator ()
>>> a.start()
>>> a.step(7)
>>> b = Accumulator ()
>>> b.start()
>>> b.step(10)
>>> a.step(-2)

>>> print a.state,a.getNextValues(8,13),b.getNextValues(8,13)

[What will be printed?

1: 5 (18, 18) (23, 23)
2: 5 (21, 21) (21, 21)
3: 15 (18, 18) (23, 23)
4: 15 (21, 21) (21, 21)
5. none of the above

Classes and Instances for Accumulator

a = Accumulator()
a.start()
a.step(7)
b = Accumulator()
b.start ()
b.step(10)
a.step(-2)
start °
y step °
,I’ transduce °
global V run .
SM P H
Accumulator :
a [startState
b * \ getNextValues
N ; ®
state | 10 | state

Check Yourself

>>>
>>>
>>>
>>>
>>>
>>>
>>>
>>>

a = Accumulator()
a.start ()
a.step(7)
b = Accumulator ()
b.start ()
b.step(10)
a.step(-2)
print a.state,a.getNextValues(8,13),b.getNextValues(8,13)

What will be printed? 2

1: 5 (18, 18) (23, 23)
2: 5 (21, 21) (21, 21)
3: 15 (18, 18) (23, 23)
4: 15 (21, 21) (21, 21)
5. none of the above

State Machine Combinators

State machines can be combined for more complicated tasks.

input

Cascade (M1, M2)

il

M1

ol=i2
> M2

Parallel (M1,M2)

02

» output

. il ol
input > M1 >
i2 02
> M2 >
Feedback (M1)
il ol
> M1 >

output [0] input[0]

(tuple)

output [1] input[1]

output

Parallel (M1,M2)

(tuple)

input

0w b2 > output [0]
(tuple)
N VP > output [1]
Feedback2 (M1)
il[o]
il[1] Ml ol » output

[—— |

Check Yourself

>>> a = Accumulator()
>>> b = Accumulator()
>>> ¢ = Cascade(a,b)
>>> print c.transduce([7,3,4])

[What will be printed?

[7, 3, 4]

[7, 10, 14]

[7, 17, 31]

[0, 7, 17]

none of the above

S G

Check Yourself

>>> a = Accumulator()
>>> b = Accumulator ()
>>> ¢ = Cascade(a,b)

>>> print c.transduce([7,3,4])

[7, 3, 4]

[7,

10,

14]

\4

[7,

17,

31]

Check Yourself

>>> a = Accumulator()
>>> b = Accumulator()
>>> ¢ = Cascade(a,b)
>>> print c.transduce([7,3,4])

[What will be printed? 3

[7, 3, 4]

[7, 10, 14]

[7, 17, 31]

[0, 7, 17]

none of the above

9o W N E

This Week

Software lab: Practice with simple state machines
Design lab: Controlling robots with state machines

Homework 1: Symbolic calculator

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .

http://ocw.mit.edu
http://ocw.mit.edu/terms

