
6.01: Introduction to EECS I

6.01: Introduction to EECS I

Welcome to 6.01

Lecture 1 February 1, 2011

6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in EECS:

• design of complex systems

• modeling and controlling physical systems

• augmenting physical systems with computation

• building systems that are robust to uncertainty

Intellectual themes are developed in context of a mobile robot.

February 1, 2011

6.01 Content and Pedagogy

6.01 is organized in four modules (each rep. broad area of interest): 6.01 is organized in four modules:

• Software Engineering • Software Engineering

• Signals and Systems • Signals and Systems

• Circuits • Circuits

• Probability and Planning • Probability and Planning

Approach: focus on key concepts to pursue in depth Pedagogy: practice — theory — practice

EECS

universe

*

*

*
*

*

Module 1: Software Engineering

Focus on abstraction and modularity.

Topics: procedures, data structures, objects, state machines

Lab Exercises: implementing robot controllers as state machines

BrainSensorInput Action

Abstraction and Modularity: Combinators

Cascade: make new SM by cascading two SM’s

Parallel: make new SM by running two SM’s in parallel

Select: combine two inputs to get one output

Themes: PCAP

Primitives – Combination – Abstraction – Patterns

Goal is to convey a distinct perspective about engineering.

6.01 Content and Pedagogy

Intellectual themes are developed in context of a mobile robot.

Not a course about robots — robots provide versatile platform.

Module 2: Signals and Systems

Focus on discrete-time feedback and control.

Topics: difference equations, system functions, controllers.

Lab exercises: robotic steering

straight ahead?

steer right

steer right

steer right

straight ahead?

steer left

steer left

Themes: modeling complex systems, analyzing behaviors

1

6.01: Introduction to EECS I	 Lecture 1 February 1, 2011

Focus on resistive networks and op amps.

Topics: KVL, KCL, Op-Amps, Thevenin equivalents.

Lab Exercises: build robot “head”:

•	 motor servo controller (rotating “neck”)

•	 phototransistor (robot “eyes”)

•	 integrate to make a light tracking system

Module 3: Circuits

Themes: design and analysis of physical systems

6.01 Content and Pedagogy

6.01 is organized in four modules:

•	 Software Engineering

•	 Signals and Systems

•	 Circuits

• Probability and Planning

Approach: focus on key concepts to pursue in depth

EECS

universe

*

*

*
*

*

Module 4: Probability and Planning

Modeling uncertainty and making robust plans.

Topics: Bayes’ theorem, search strategies

Lab exercises:

• Mapping: drive robot around unknown space and make map.
• Localization: give robot map and ask it to find where it is.
• Planning: plot a route to a goal in a maze

Themes: Robust design in the face of uncertainty

Course Mechanics

•	 Lecture: Tue 9:30AM 10-250
•	 Reading (assigned on calendar web page)
•	 On-line tutor problems (register via 6.01 web page)
− practice concepts from lectures and readings
− prepare for software and design labs

•	 Software Lab: 1.5 hours in 34-501
− individual exercises, on-line checking and submission
− some problems due in lab, some due (a few days) later

•	 Design lab: 3 hours in 34-501
− lab work done with partner (new partner each week)
− some check-offs due in lab, some due (a week) later

•	 Written homework problems (4 total)
•	 Nano-quiz (15 minutes at the beginning of design lab)
− help keep on pace; open book; don’t be late

•	 Two interviews (individual)
•	 Two midterms and a final exam
•	 Advanced Lab Assistant Option

Pedagogy: practice — theory — practice

Module 1: Software Engineering Special Note to First-Time Programmers

6.01 makes use of programming both as a tool and as a way to Exercises in weeks one and two are intended to ensure that everyone

express and explore important ideas. reaches a minimum level of familiarity with Python.

If you have little or no Python programming experience
Today’s agenda •	 work through the Python tutor problems; these take priority
• Python interpreter over other assignments in software and design labs
• hierarchical programming constructs •	 attend Python help session Sunday Feb 6 (where you can sign
• hierarchical data constructs up for a free “new programmer” extension on work due this week).
• object-oriented programming (OOP)

If at end of week 2, you do not feel prepared to continue 6.01, you

can switch registration from 6.01 to 6.00 (offer expires Feb 14).
Reading: Course notes, chapters 1–3

2

� �� �

� �� �

� �� �

5

6.01: Introduction to EECS I Lecture 1 February 1, 2011

Python Interpreter Python Interpreter

After initializing, Python executes its interpreter loop.

initialization

prompt user for input

read what user types

interpret as expression

print result

repeat

Python Expressions

Expressions are interpreted as combinations of primitives.

>>> 2+3

>>> 5.7+3

8.6999999999999993

>>> ’Hello’ + ’ ’ + ’World’

’Hello World’

Not all combinations make sense.

>>> ’Hello’ + 3

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: cannot concatenate ’str’ and ’int’ objects

>>>

Compositional Systems

Compositional systems are familiar in many contexts.

Example 1: arithmetic expressions

(3 ∗ 8) − 2
���� ����

integer integer

integer

Example 2: natural language

Apples are good as snacks.

noun

Apples and oranges are good as snacks.
� �� � � �� �
noun noun

noun

Numbers and strings are interpreted as data primitives.

Example (user input in red)

> python

>>> 2

2

>>> 5.7

5.7000000000000002

>>> ’Hello’

’Hello’

>>>

Python Expressions

Python expressions can be used in the same ways that primitives are

used.

>>> (3 * 8) - 2

22

>>> 24 - 2

22

We refer to such systems as compositional.

Design Principle

We would like to take advantage of composition to reduce the

conceptual complexity of systems that we build.

→ make the composition explicit

3

6.01: Introduction to EECS I Lecture 1 February 1, 2011

Capturing Common Patterns Capturing Common Patterns

Procedures can be defined to make important patterns explicit.

>>> 2*2

4

>>> 3*3

9

>>> (8+4)*(8+4)

144

Define a new operation that captures this pattern.

>>> def square(x):

... return x*x

...

>>> square(6)

36

Procedures provide a mechanism for defining new operators.

>>> square(2)+square(4)

20

>>> square(3)+square(4)

25

Define a new operation that captures this pattern.

>>> def sumOfSquares(x,y):

... return square(x)+square(y)

...

>>> sumOfSquares(3,4)

25

Composition allows hierarchical construction of complex operations.

Hierarchical construction reduces conceptual complexity and facili­

tates design of complicated systems.

Composition of Data Structures Variables

Lists provide a mechanism to compose complicated data structures.

Lists of primitives (integers, floats, booleans, strings):

>>> [1, 2, 3, 4, 5]

Heterogeneous lists:

>>> [1, ’start’, 2, ’stop’]

List of lists:

>>> [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Lists are compositional.

A variable associates a name with an expression

(much as def associates a name with a procedure).

Examples:

>>> b = 3

>>> x = 5 * 2.2

>>> y = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

>>> y[0]

[1, 2, 3]

>>> y[-1]

[7, 8, 9]

>>> y[-1][1]

8

Check Yourself Object-Oriented Programming (OOP)

The list

[a,[b,[c,[d,e]]]]

is best represented by which of the following figures?

a

b c

d e

1.

a b c d e

2.

a

b
c

d e

3.

a

b

c

d e

4.

5. none of the above

Classes provide a convenient way to aggregate procedures and data

in a single structure.

>>> class Student:

... school = ’MIT’

... def calculateFinalGrade(self):

... ...

... return theFinalGrade

Classes can include attributes (data) and methods (procedures).

4

3

6.01: Introduction to EECS I

Instances

Classes can be used to define instances.

>>> class Student:

... school = ’MIT’

... def calculateFinalGrade(self):

... ...

... return theFinalGrade

>>> mary = Student()

>>> mary.section = 3

>>> john = Student()

>>> john.section = 4

Instances

– inherit the methods and attributes of their class

– can also contain new attributes and/or methods

john and mary share the same school but have a different section.

Environments

Python associates names with values in binding environments.

>>> b = 3

>>> x = 2.2

>>> foo = -506 * 2

binding environment

b 3

x 2.2

foo -1012

>>> b

>>> a

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’a’ is not defined

Lecture 1 February 1, 2011

Classes, Sub-Classes, and Instances

Classes can be used to define sub-classes.

>>> class Student601(Student):

... lectureDay = ’Tuesday’

... lectureTime = ’9:30-11’

... def calculateTutorScores(self):

... ...

... return theScores

Sub-classes

– inherit the methods and attributes of their class

– can also contain new attributes and/or methods

Environments

A similar binding occurs when a procedure is defined.

>>> a = 2

>>> def square(x):

... return x*x

...

The procedure name (square) is bound to a procedure that has an

argument (x) and a body (return x*x).

The procedure (procedure1) contains a pointer to the environment

(E1) in which it was defined.

2a

square

Procedure1

(x)

return x*x

E1

Environments

Calling a procedure creates a new environment.

2a

square

Procedure1

(x)

return x*x

E1

x 5E2

Evaluating an expression of the form square(a+3):

– evaluate the name (square) in the calling environment (E1)

to determine the procedure to execute (Procedure1)

– evaluate argument (a+3) in calling environment to get value (5)

– create a new environment (E2, whose parent is E1)

– bind parameter (x) to previously evaluated argument value (5)

– evaluate procedure body (return x*x) in E2

Environments

Using environments to resolve non-local references.

>>> def biz(a):

... return a+b

...

>>> b = 6

>>> biz(2)

8

b 6

biz

Procedure4

(a)

return a+b

E1

a 2E2

5

6.01: Introduction to EECS I

Environments in OOP

When Python evaluates the definition of a class, it creates an

environment.

>>> class Staff601:

... course = ’6.01’

... building = 34

... room = 501

...

E1 E2

Staff601

501room

34building

'6.01'course

Environments in OOP

Creating an instance of a class creates another new environment.

>>> pat = Staff601()

E1

pat

Staff601	

E2

501room

34building

'6.01'course

E3

The parent of the new environment is the environment associated

with the class.

>>> pat.course

’6.01’

>>> Staff601.course

’6.01’

Environments in OOP

Methods that are added to a class are accessible to all instances.

>>> class Staff601:

... def salutation(self):

... return self.role + ’ ’ + self.name

... course = ’6.01’

... building = 34

... room = 501

>>> pat.name = ’Pat’

>>> pat.age = 60

>>> pat.role = ’Professor’

>>> pat.building = 32

>>> pat.office = ’G492’

Lecture 1	 February 1, 2011

Environments in OOP

Attributes are set/accessed using dot notation.

>>> Staff601.room

501

>>> Staff601.coolness = 11

Rules of evaluation:

•	 First variable name is evaluated, points to an environment

•	 Second variable name is evaluated with respect to that environ­

ment, leading to binding of name and value; value is returned,

or value is bound

Environments in OOP

New attributes can be added to pat without changing Staff601.

>>> pat.name = ’Pat’

>>> pat.age = 60

>>> pat.role = ’Professor’

>>> pat.building = 32

>>> pat.office = ’G492’

E1	 E2
course '6.01'

pat

Staff601

501room

34building

'G492'room

32building

'Professor'role

60age

'Pat'name

E3

Environments in OOP

Methods that are added to a class are accessible to all instances.

Procedure9

(self)

return self.role + ' ' \

 + self.name

E1	 E2 salutation

501room

34building

'6.01'course

pat

Staff601

'G492'room

32building

'Professor'role

60age

'Pat'name

E3

6

6.01: Introduction to EECS I Lecture 1 February 1, 2011

Environments in OOP Environments in OOP

>>> Staff601.salutation(pat)

pat

Staff601

E1 salutation

501room

34building

'6.01'course

E2

E3

Procedure9

(self)

return self.role + ' ' \

 + self.name

self

E4

>>> pat.salutation()

'G492'room

32building

'Professor'role

60age

'Pat'name

We can streamline creation of instances by specifying init .

class Staff601:

def __init__(self, name, role, salary):

self.name = name

self.role = role

self.salary = salary

def salutation(self):

return self.role + ’ ’ + self.name

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

To create an instance

>>> pat = Staff601(’Pat’, ’Professor’, 100000)

Compositional Systems — Summary

Composition is a powerful way to build complex systems.

PCAP framework to manage complexity.

procedures data

Primitives +, *, ==, != numbers, booleans, strings

Combination if, while, f(g(x)) lists, dictionaries, objects

Abstraction def classes

Patterns higher-order procedures super-classes, sub-classes

We will develop compositional representations throughout 6.01.

• software systems

• signals and systems

• circuits

• probability and planning

7

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

