
Design Lab 1 6.01 – Fall 2011
Object-Oriented Programming

Goals:
• Get familiar with the 6.01 environment and on-line Tutor
• Practice concepts of software engineering: Primitives, Combination,

Abstraction, Patterns
• Design and implement an abstract method to operate on polynomials

1 Introduction
Welcome to your first 6.01 design lab! These labs are generally intended to let you explore concepts
introduced in the lecture, working together with a lab partner. Each design lab consists of instruc­
tions for setup, and a set of problems, which are done with robots, instrumentation, computers,
and electronics components in the laboratory.

Each problem is specified by its objectives, the documentation of the resources provided, and
occasionally detailed guidance of the steps involved. Problem answers are generally entered into
the 6.01 Online Tutor. Some problem specifications will be provided entirely on the Tutor.

1.1 Setup

Due to the late start of classes this term, today’s design lab is a bit unusual. Design labs are gener­
ally done with partners, but this one should be done individually.

Laptops: Please use a lab laptop unless you have already installed Python 2.6.x on yours. If you
have not installed Python, please do so after .

Python: If you have already worked through the Python programming tutor and/or have had
other Python experience, then go ahead and do the problems below. If not, then please work
through the Python tutor.

1

class

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction; the
same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].

Design Lab 1	 6.01 Fall 2011

2 PCAP Exercises
The following are three problems covering concepts of Primitives, Combination, Abstraction, and
Patterns.

2.1 Fibonacci

Objective:	 Write the definition of a Python procedure fib, such that fib(n) returns
the nth Fibonacci number. Recall the definition of fib⎧ (n):

 ⎨ 0	 if n = 0
fib(n) = 1 if n = 1⎩

 fib(n−1) + fib(n−2) if n > 1

Resources:
• ~/Desktop/6.01/designLab01/designLab01Work.py: a template

for your fib procedure implementation
• Tutor problem Wk.1.3.1: where your answer should be entered

Detailed guidance : We recommend using idle, an integrated development enviroment for

Python. In the Terminal window, type

idle &

You can type Python expressions in idle’s Python Shell window.

You can write your programs in a file and test them using Run Module.

For example:

• Click idle’s File menu, select New Window, and write the following line in the window:

print ’Hello World’

• Click idle’s File menu, select Save as, and type ~/Desktop/6.01/designLab01/test.py in

the filename box.

2

https://sicp-s2.mit.edu/wiki/Assignments
http://en.wikipedia.org/wiki/IDLE_(Python)

Design Lab 1 6.01 Fall 2011

Click idle’s Run menu, then select Run Module. •
Look at the Python Shell window: you should see Hello World.•

Now look at problem Wk.1.3.1 on the Tutor.
Click Idle’s File menu, select Open, navigate to ~/Desktop/6.01/designLab01/ and choose •
the file name designLab01Work.py.

Complete the definition in this window. After the definition include some test cases (remember
•
to print the result). So, your file should look like:

def fib (n):
...

print fib(1)

print fib(6)

...

Click Idle’s File menu, select Save•
Click Idle’s Run, select Run Module (or use F5).•
Look at the Python Shell window for your results. •
Debug fib in idle until it is correct. When something goes wrong, read the error message •
carefully to what the problem was. If it doesn’t make sense to you, ask a staff member for help.

Wk.1.3.1 Check your results by copying the text of your procedure from idle and
pasting it into the tutor problem Wk.1.3.1. Submit your answer when it
passes all the tests.

2.2 Object-Oriented Practice

Wk.1.3.2 Get some practice with object-oriented concepts in this tutor problem.

Wk.1.3.3 Get some more practice with object-oriented concepts in this tutor prob­
lem.

2.3 Two-dimensional vectors

Objective: Define a Python class V2, which represents two-dimensional vectors and
supports the following operations:
• Create a new vector out of two real numbers: v = V2(1.1, 2.2)
• Convert a vector to a string (with the __str__ method)
• Access the components (with the getX and getY methods)
• Add two V2s to get a new V2 (with add and __add__ methods)
• Multiply a V2 by a scalar (real or int) and return a new V2 (with the mul

and __mul__ methods)

3

Design Lab 1	 6.01 Fall 2011

Resources:
• ~/Desktop/6.01/designLab01/designLab01Work.py: a template

for your V2 class implementation
• Tutor problem Wk.1.3.4: where your answer should be entered

Detailed guidance : Open file designLab01Work.py and do the following:

Step 1.	 Define the basic parts of your class, with an __init__ method and a __str__ method, so that if
you do

print V2(1.1, 2.2)

it prints

V2[1.1, 2.2]

Exactly what gets printed as a result of this statement depends on how you’ve defined your
__str__ procedure; this is just an example. Remember that str(x) turns x, whatever it is, into a
string. Don’t worry about making this beautiful!

Step 2.	 Write two accessor methods, getX and getY that return the x and y components of your vector,
respectively. For example,

>>> v = V2(1.0, 2.0)

>>> v.getX()

1.0

>>> v.getY()

2.0

Step 3.	 Define the add and mul methods, so that you get the following behavior:

>>> a = V2(1.0, 2.0)

>>> b = V2(2.2, 3.3)

>>> print a.add(b)

V2[3.2, 5.3]

>>> print a.mul(2)

V2[2.0, 4.0]

>>> print a.add(b).mul(-1)

V2[-3.2, -5.3]

Step 4.	 A cool thing about Python is that you can overload the arithmetic operators. So, for example, if
you add the following method to your V2 class

def __add__(self, v):

return self.add(v)

then you can do

>>> print V2(1.1, 2.2) + V2(3.3, 4.4)

V2[4.4,6.6]

4

Design Lab 1	 6.01 Fall 2011

Add to the class the __add__ method, which should call your add method to add vectors, and
the __mul__ method, which should call your mul method to multiply the vector by a scalar. The
scalar will always be the second argument.

Test your implementation in idle until it seems correct to you.

Wk.1.3.4	 Check your results by copying the text of your procedure from idle and
pasting it into the tutor problem Wk.1.3.4.

3 Polynomial Class

Objective:	 Define a Python class Polynomial which provides methods for perform­
ing algebraic operations on polynomials. Your class should behave as de­
scribed in the following sample transcript:

>>> p1 = Polynomial([1, 2, 3])
>>> p1
1.000 z**2 + 2.000 z + 3.000
>>> p2 = Polynomial([100, 200])
>>> p1.add(p2)
1.000 z**2 + 102.000 z + 203.000
>>> p1 + p2
1.000 z**2 + 102.000 z + 203.000
>>> p1(1)
6.0

>>> p1(-1)

2.0

>>> (p1 + p2)(10)

1323.0

>>> p1.mul(p1)

1.000 z**4 + 4.000 z**3 + 10.000 z**2 + 12.000 z + 9.000

>>> p1 * p1

1.000 z**4 + 4.000 z**3 + 10.000 z**2 + 12.000 z + 9.000

>>> p1 * p2 + p1

100.000 z**3 + 401.000 z**2 + 702.000 z + 603.000

>>> p1.roots()

[(-1+1.4142135623730947j), (-1-1.4142135623730947j)]

>>> p2.roots()

[-2.0]

>>> p3 = Polynomial([3, 2, -1])

>>> p3.roots()

[-1.0, 0.33333333333333331]

>>> (p1 * p1).roots()

Order too high to solve for roots.

5

Design Lab 1	 6.01 Fall 2011

Resources:
• ~/Desktop/6.01/designLab01/designLab01Work.py: contains a

template definition of the Polynomial class
• Tutor Problem Wk.1.3.5: exercise about representations of polynomials
• Tutor Problem Wk.1.3.6: where your answer should be entered

Detailed guidance : The following two subsections provide steps to follow for implementing the
Polynomial class.

3.1 Representation

We can represent a polynomial as a list of coefficients starting with the highest-order term. For
example, here are some polynomials and their representations as lists:

x4 − 7x3 + 10x2 − 4x + 6 [1, -7, 10, -4, 6]

3x3 [3, 0, 0, 0]

8 [8]

Wk.1.3.5	 It is a little bit tricky to implement addition and multiplication of poly­
nomials. Do tutor problem Wk.1.3.5 before you start programming, and
be sure you understand the results in the example transcript provided
above.

3.2 Operations

Edit the template definition of the Polynomial class in designLab01Work.py, and add the fol­
lowing:

An attribute called coeffs, which is the list of coefficients used to create the instance. It must •
have this name or the tests in the tutor will fail.

__init__(self, coefficients): initializes the coeffs attribute to be a list of floating-point
•
coefficient values.

coeff(self, i): returns the coefficient of the xi term of the polynomial. For example, if the
•
polynomial is x4 − 7x3 + 10x2 − 4x + 6, then coeff(self, 3) is -7.

add(self, other): returns a new Polynomial representing the sum of Polynomials self
•
and other. Be sure that performing any operation on polynomials, e.g. p1 + p2, does not
change the original value of p1 or p2.
mul(self, other): returns a new Polynomial representing the product of Polynomials•
self and other
__str__(self): converts a Polynomial into a string. Do the simplest thing that shows the •
coefficients; remember that str(x) turns x, whatever it is, into a string. After you’re done with
everything else, go back and change your __str__ method to print polynomials out as they
are shown in the transcript at the end. This is not required; do it only if you have time and
interest.

6

Design Lab 1	 6.01 Fall 2011

val(self, v): returns the numerical result of evaluating the polynomial when x equals v.•

roots(self): returns a list containing the root or roots of first or second order polynomials •
(for orders other than 1 and 2, just print an error message saying that you don’t handle them).
If the roots are real-valued, then return the roots as floats. If a root has a non-zero imaginary
part, then return it as a complex number. Python has built-in facilities for handling complex
numbers. For example, complex(3,2) represents a complex number whose real part is 3 and
whose imaginary part is 2. This same complex number could also be written as 3+2j. The
real part of a complex number z can be obtained with z.real. You can take square roots by
using a fractional exponent. For example 3**0.5 represents the square root of 3. Similarly
complex(3,2)**0.5 represents the square root of the complex number 3 + 2j. Python tries
to return a real-valued result when it raises a real number to a fractional power. It returns a
complex-valued result when it raises a complex number to a fractional power. Therefore (­
4)**0.5 generates an error, while complex(-4,0)**0.5 returns an answer that is close to
2j.

Try to do things as simply as possible. Don’t do anything twice. If you need some extra procedures
to help you do your work, you can put them in the same file as your class definition, but outside
the class (so, put them at the end of the file, with no indentation).

3.3 Operator overloading

In order to use expressions like p1 + p2, p1 * p2, and p1(3), for addition, multiplication, and
evaluation, respectively, define the specially-named methods __add__, __mul__, and __call__.
So for example, include

def __add__(self, other):

return self.add(other)

def __mul__(self, other):

return self.mul(other)

def __call__(self, x):

return self.val(x)

Also, in order to have your polynomials printed out nicely by the Python shell, you can add this
line to your class:

def __repr__(self):

return str(self)

which says that the the shell should print the string returned by the __str__ method.

Wk.1.3.6	 After you have debugged in idle, check and submit your results by copying
the text of your class and associated definitions from idle and pasting it into
the tutor problem Wk.1.3.6.

3.4 Optional
There’s a particularly elegant way to implement the val method, using Horner’s Rule. For com­
puting the value of a polynomial, it structures the computation of

7

Design Lab 1 6.01 Fall 2011

n n−1 2 anx + an−1x + + a2x + a1x + a0· · ·

as

((anx + an−1)x + + a1) x + a0· · · · · ·

In other words, we start with an, multiply the entire result by x, add an−1, multiply by x, and so
on, until we reach a0. For example, we’d evaluate 8x3 − 3x2 + 4x + 1 as

((8 x − 3) x + 4) x + 1· · ·

For fun, try implementing val with Horner’s rule. Think about how many multiplication opera­
tions it takes to evaluate a polynomial using Horner’s rule, compared to the usual way.

8

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

