
Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 46

Chapter 3
Programs and Data

Object-oriented programming is a popular way of organizing programs, which groups together
data with the procedures that operate on them, thus facilitating some kinds of modularity and
abstraction. In the context of our PCAP framework, object-oriented programming will give us
methods for capturing common patterns in data and the procedures that operate on that data, via
classes, generic functions, and inheritance.

In this chapter, we will try to develop a deep understanding of object-oriented programming by
working through the mechanism by which an interpreter evaluates a computer program. The first
part of the chapter will focus on interpretation of typical expxressions, starting from the simplest
single-statement programs and working up through list structures and procedures. Many of the
observations made through this process apply to styles of program organization as well as object-
oriented programming. Once we understand how an interpreter evaluates standard expressions,
we will move to objects and classes. Although we use Python as an example, the discussion in
this chapter is intended to be illustrative of principles of computer languages, more generally.

In many computer languages, including Python, programs are understood and executed by a
computer program called an interpreter. Interpreters are surprisingly simple: the rules defining
the meaning or semantics of a programming language are typically short and compact; and the in­
terpreter basically encodes these rules and applies them to any legal expressionn in the language.
The enormous richness and complexity of computer programs comes from the composition of
primitive elements with simple rules. The interpreter, in essence, defines the semantics of the
language by capturing the rules governing the value or behavior of program primitives, and of
what it means to combine the primitives in various ways. We will study the meaning of computer
programs by understanding how the interpreter operates on them.

An interpreter is made up of four pieces:
•	 The reader or tokenizer takes as input a string of characters and divides them into tokens,

which are numbers (like -3.42), words (like while or a), and special characters (like :).
•	 The parser takes as input the string of tokens and understands them as constructs in the pro­

gramming language, such as while loops, procedure definitions, or return statements.
•	 The evaluator (which is also sometimes called the interpreter, as well) has the really interesting

job of determining the value and effects of the program that you ask it to interpret.
• The printer takes the value returned by the evaluator and prints it out for the user to see.

Programs should never be a mystery to you: you can learn the simple semantic rules of the lan­
guage and, if necessary, simulate what the interpreter would do, in order to understand any com­
puter program which you are facing. Of course, in general, one does not want to work through

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 47

the tedious process of simulating the interpreter, but this foundation of understanding the inter­
preter’s process enables you to reason about the evaluation of any program.

3.1 Primitives, Composition, Abstraction, and Patterns
We will start by thinking about how the PCAP framework applies to computer programs, in
general. We can do this by filling in table 3.1, exploring the PCAP ideas in data, procedures, and
objects.

Data
The primitive data items in most programming languages are things like integers, floating point
numbers, and strings. We can combine these into data structures (we discuss some basic Python
data structures in section 3.3) such as lists, arrays, dictionaries and records. Making a data struc­
ture allows us, at the most basic level, to think of a collection of primitive data elements as if
it were one thing, freeing us from details. Sometimes, we just want to think of a collection of
data, not in terms of its underlying representation, but in terms of what it represents. So, we
might want to think of a set of objects, or a family tree, without worrying whether it is an array
or a list in its basic representation. Abstract data types provide a way of abstracting away from
representational details and allowing us to focus on what the data really means.

Procedures
The primitive procedures of a language are things like built-in numeric operations and basic list
operations. We can combine these using the facilities of the language, such as if and while, or
by using function composition (f(g(x))). If we want to abstract away from the details of how
a particular computation is done, we can define a new function; defining a function allows us
to use it for computational jobs without thinking about the details of how those computational
jobs get done. You can think of this process as essentially creating a new primitive, which we
can then use while ignoring the details of how it is constructed. One way to capture common
patterns of abstraction in procedures is to abstract over procedures themselves, with higher-order
procedures, which we discuss in detail in section 3.4.6.

Objects
Object-oriented programming provides a number of methods of abstraction and pattern capture
in both data and procedures. At the most basic level, objects can be used as records, combining
together primitive data elements. More generally, they provide strategies for jointly abstracting a
data representation and the procedures that work on it. The features of inheritance and polymor­
phism are particularly important, and we will discuss them in detail later in this chapter.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 48

Procedures Data

Primitives
Means of combination
Means of abstraction
Means of capturing patterns

+, *, ==

if, while, f(g(x))

def

higher-order procedures

numbers, strings
lists, dictionaries, objects
ADTS, classes
generic functions, inheritance

Table 3.1 Primitives, combination, abstraction, patterns framework for computer programs

3.2 Expressions and assignment
We can think of most computer programs as performing some sort of transformation on data. Our
program might take as input the exam scores of everyone in the class and generate the average
score as output. Or, in a transducer model, we can think about writing the program that takes
the current memory state of the transducer and an input, and computes a new memory state and
output.

To represent data in a computer, we have to encode it, ultimately as sequences of binary digits (0s
and 1s). The memory of a computer is divided into ’words’, which typically hold 32 or 64 bits;
a word can be used to store a number, one or several characters, or a pointer to (the address of)
another memory location.

A computer program, at the lowest level, is a set of primitive instructions, also encoded into
bits and stored in the words of the computer’s memory. These instructions specify operations to
be performed on the data (and sometimes the program itself) that are stored in the computer’s
memory. In this class, we will not work at the level of these low-level instructions: a high-level
programming language such as Python lets us abstract away from these details. But it is important
to have an abstract mental model of what is going on within the computer.

3.2.1 Simple expressions
A cornerstone of a programming language is the ability to evaluate expressions. We will start
here with arithmetic expressions, just to get the idea. An expression consists of a sequence of
’tokens’ (words, special symbols, or numerals) that represent the application of operators to data
elements. Each expression has a value, which can be computed recursively by evaluating primi­
tive expressions, and then using standard rules to combine their values to get new values.

Numerals, such as 6 or -3.7 are primitive expressions, whose values are numeric constants.
Their values can be integers, within some fixed range dictated by the programming language,
or floating point numbers. Floating point numbers are used to represent non-integer values, but
they are different, in many important ways, from the real numbers. There are infinitely many
real numbers within a finite interval, but only finitely many floating-point numbers exist at all
(because they all must be representable in a fixed number of bits). In fact, the usual laws of real
arithmetic (transitivity, associativity, etc.) are violated in floating-point arithmetic, because the
results of any given sub-computation may not be representable in the given number of bits.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 49

We will illustrate the evaluation of expressions in Python by showing short transcripts of interac­
tive sessions with the Python shell : the shell is a computer program that
• Prompts the user for an expression, by typing »>,
• Reads what the user types in, and converts it into a set of tokens,
• Parses the tokens into a data structure representing the syntax of the expression,
• Evaluates the parsed expression using an interpreter, and
• Prints out the resulting value

So, for example, we might have this interaction with Python:

>>> 2 + 3

5

>>> (3 * 8) - 2

22

>>> ((3 * 8) - 2) / 11

2

>>> 2.0

2.0

>>> 0.1

0.10000000000000001

>>> 1.0 / 3.0

0.33333333333333331

>>> 1 / 3

0

There are a couple of things to observe here. First, we can see how floating point numbers only
approximately represent real numbers: when we type in 0.1, the closest Python can come to it in
floating point is 0.10000000000000001. The last interaction is particularly troubling: it seems
like the value of the expression 1 / 3 should be something like 0.33333. However, in Python, if
both operands to the / operator are integers, then it will perform an integer division, truncating
any remainder.12

These expressions can be arbitrarily deeply nested combinations of primitives. The rules used for
evaluation are essentially the same as the ones you learned in school; the interpreter proceeds by
applying the operations in precedence order13, evaluating sub-expressions to get new values, and
then evaluating the expressions those values participate in, until a single value results.

3.2.2 Variables
We cannot go very far without variables. A variable is a name that we can bind to have a partic­
ular value and then later use in an expression. When a variable is encountered in an expression,
it is evaluated by looking to see to what value it is bound.

An interpreter keeps track of which variables are bound to what values in binding environments.
An environment specifies a mapping between variable names and values. The values can be inte­
gers, floating-point numbers, characters, or pointers to more complex entities such as procedures
or larger collections of data.

Here is an example binding environment:

12 This behavior will no longer be the default in Python 3.0.

13 Please Excuse My Dear Aunt Sally (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction)

50 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

-1012

2.2

3

foo

x

b

Each row represents a binding: the entry in the first column is the variable name and the entry in
the second column is the value it to which it is bound.

When you start up the Python shell, you immediately start interacting with a local binding en­
vironment. You can add a binding or change an existing binding by evaluating an assignment
statement of the form:

<var> = <expr>

where <var> is a variable name (a string of letters or digits or the character _, not starting with a
digit) and <expr> is a Python expression.14

Expressions are always evaluated in some environment.

We might have the following interaction in a fresh Python shell:

>>> a = 3

>>> a

3

>>> b

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’b’ is not defined

>>>

We started by assigning the variable a to have the value 3. That added a binding for a to the local
environment.

Next, we evaluated the expression a. The value of an expression with one or more variable names
in it cannot be determined unless we know with respect to what environment it is being evaluated.
Thus, we will always speak of evaluating expressions in an environment. During the process of
evaluating an expression in some environment E, if the interpreter comes to a variable, it looks up
that variable in E: if E contains a binding for the variable, then the associated value is returned;
if it does not, then an error is generated. In the Python shell interaction above, we can see that
the interpreter was able to find a binding for a and return a value, but it was not able to find a
binding for b.

Why do we bother defining values for variables? They allow us to re-use an intermediate value
in a computation. We might want to compute a formula in two steps, as in:

>>> c = 952**4

>>> c**2 + c / 2.0

6.7467650588636822e+23

14	 When we want to talk about the abstract form or syntax of a programming language construct, we will often use meta­
variables, written with angle brackets, like <var>. This is meant to signify that <var> could be any Python variable
name, for example.

51 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

They will also play a crucial role in abstraction and the definition of procedures. By giving a
name to a value, we can isolate the use of that value in other computations, so that if we decide
to change the value, we only have to change the definition (and not change a value several places
in the code).

It is fine to reassign the value of a variable; although we use the equality symbol = to stand for
assignment, we are not making a mathematical statement of equality. So, for example, we can
write:

>>> a = 3
>>> a = a + 1
>>> a
4

Exercise 3.1. What is the result of evaluating this sequence of assignment statements
and the last expression? Determine this by hand-simulating the Python
interpreter. Draw an environment and update the stored values as you
work through this example.

>>> a = 3
>>> b = a
>>> a = 4
>>> b

3.3 Structured data
We will often want to work with large collections of data. Rather than giving each number its
own name, we want to organize the data into natural structures: grocery lists, matrices, sets of
employee medical records. In this section, we will explore a simple but enormously useful and
flexible data structure, which is conveniently built into Python: the list. The precise details of how
lists are represented inside a computer vary from language to language. We will adopt an abstract
model in which we think of a list as an ordered sequence of memory locations that contain values.
So, for example, in Python, we can express a list of three integers as:

>>> [1, 7, -2]

[1, 7, -2]

which we will draw in an abstract memory diagram as:

-271

We can assign a list to a variable:

>>> a = [2, 4, 9]

52 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

A binding environment associates a name with a single fixed-size data item. So, if we want to
associate a name with a complex structure, we associate the name directly with a ’pointer’ to
(actually, the memory address of) the structure. So we can think of a as being bound to a ’pointer’
to the list:

a 942

Now that we have lists, we have some new kinds of expressions, which let us extract components
of a list by specifying their indices. An index of 0 corresponds to the first element of a list. An
index of -1 corresponds to the last element (no matter how many elements there are).15 So, if a is
bound as above, then we would have:

>>> a[0]

2

>>> a[2]

9

>>> a[-1]

9

>>> a[3]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

Note that if we attempt to access an element of the list that is not present (in this case, the fourth

element of a three-element list), then an error is generated.

Lists can be nested inside one another. The Python expression:

>>> c = [3, [1], [2, 1], [[4]]]

creates a list that looks, in memory, like this:

c 3

1 12 4

It is also possible to have an empty list, which is written in Python as []. We will draw it in our
memory diagrams as a small black box. So, for example, this list

>>> z = [3, [], [[]]]

looks like this in memory:

15 See the Python tutorial for much more on list indexing.

53 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

z 3

Python has a useful function, len, which takes a list as an argument and returns its length. It does
not look inside the elements of the list—it just returns the number of elements at the top level of
structure. So, we have

>>> len([1, 2, 3])

3

>>> len([[1, 2, 3]])

1

Exercise 3.2.	 Draw a diagram of the binding environment and memory structure after
the following statement has been evaluated:

a = [[1], 2, [3, 4]]

Exercise 3.3. Draw a diagram of the binding environment and memory structure after
the following statement has been evaluated:

a = [[[]]]

Exercise 3.4. Give a Python statement which, when evaluated, would give rise to this
memory structure:

c -2

1 2

4 -5

What is the value, in this environment, of the following expressions:
• c[1]
• c[-1]
• c[2][1]

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 54

3.3.1 List mutation and shared structure
Lists are mutable data structures, which means that we can actually change the values stored in
their elements. We do this by using element-selection expressions, like a[1] on the left-hand side
of an assignment statement. So, the assignment

a[1] = -3

assigns the second element of a to be -3. In more detail, the left-hand side of this expression
evaluates to a pointer to a specific location in memory (just as a’s value is a pointer to a location
in memory); then the assignment statement changes the value stored there by inserting the value
of the right-hand side of the expression. If that statement were evaluated in this environment,

a 942

then the resulting environment would be:

a 9-32

We have permanently changed the list named a.

In this section, we will explore the consequences of the mutability of lists; programs that change
list structure can become very confusing, but you can always work your way through what is
happening by drawing out the memory diagrams.

Continuing the previous example, let us remember that a is bound directly to a pointer to a list
(or a sequence of memory cells), and think about what happens if we do:

>>> b = a

Now, a and b are both names for the same list structure, resulting in a memory diagram like this:

b
a 9-32

Now, we can reference parts of the list through b, and even change the list structure that way:

>>> b[0]
2
>>> b[2] = 1

55 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Notice that, because a and b point to the same list, changing b changes a!

>>> a
[2, -3, 1]

Here is the memory picture now:

b
a 1-32

This situation is called aliasing : the name b has become an alias for a. Aliasing can be useful,
but it can also cause problems, because you might inadvertently change b (by passing it into a
procedure that changes one of its structured arguments, for example) when it is important to you
to keep a unmodified.

Another important way to change a list is to add or delete elements. We will demonstrate adding
elements to the end of a list, but see the Python documentation for more operations on lists. This
statement

>>> a.append(9)

causes a new element to be added to the end of the list name a. The resulting memory state is:

b
a 91-32

As before, because a and b are names for the same list (i.e., they point to the same memory
sequence), b is changed too. This is a side effect of the aliasing between a and b:

>>> b
[2, -3, 1, 9]

Often, it will be important to make a fresh copy of a list so that you can change it without affecting
the original one. Here are two equivalent ways to make a copy (use whichever one you can
remember):

>>> c = list(a)
>>> c = a[:]

Here is a picture of the memory at this point:

56 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

c
b
a 91-32

91-32

Now, if we change an element of c, it does not affect a (or b!):

>>> c[0] = 100
>>> c
[100, -3, 1, 9]
>>> a
[2, -3, 1, 9]

We can make crazy lists that share structure within a single list:

>>> f = [1, 2, 3]

>>> g = [1, f, [f]]

>>> g

[1, [1, 2, 3], [[1, 2, 3]]]

which results in this memory structure:

g
f 2 31

1

If you want to add an element to a list and get a new copy at the same time, you can do

>>> a + [1]

The + operator makes a new list that contains the elements of both of its arguments, but does not
share any top-level structure. All of our methods of copying only work reliably if your lists do
not contain other lists, because it only copies one level of list structure. So, for example, if we did:

>>> h = list(g)

we would end up with this picture:

h
g
f 2 31

1

1

57 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

It is clear that if we were to change f, it would change h, so this is not a completely new copy. If
you need to copy deep structures, that is, to make a copy not only of the top level list structure,
but of the structures of any lists that list contains, and the lists those lists contain, etc., you will
need to use the Python copy.deepcopy procedure.

Exercise 3.5. Give a sequence of Python statements which, when evaluated, would give
rise to this memory structure:

a
b

321

Exercise 3.6. Give a sequence of Python statements which, when evaluated, would give
rise to this memory structure:

a
b

3

21

Exercise 3.7. Show the memory structure after this sequence of expressions.

>>> a = [1, 2, 3]
>>> b = [a, a]
>>> a.append(100)

What will be the value of b at this point?

Exercise 3.8. Show the memory structure after this sequence of expressions.

>>> a = [5, 6]
>>> b = [1, 2]
>>> c = b + a

We will use this “curvy road” symbol to indicate sections of the notes or exercises that are some­
what more difficult and not crucial to understanding the rest of the notes. Feel free to skip them
on first reading; but, of course, we think they are cool.16

16 Thanks to Don Knuth’s Art of Computer Programming for the idea of the curvy road sign.

58 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Exercise 3.9.
Show the memory structure after this sequence of expressions.

>>> a = [1, 2, 3]
>>> a[1] = a

What will be the value of a at this point?

3.3.2 Tuples and strings
Python has two more list-like data types that are important to understand.

A tuple is a structure that is like a list, but is not mutable. You can make new tuples, but you
cannot change the contents of a tuple or add elements to it. A tuple is typically written like a list,
but with round parentheses instead of square ones:

>>> a = (1, 2, 3)

In fact, it is the commas and not the parentheses that matter here. So, you can write

>>> a = 1, 2, 3

>>> a

(1, 2, 3)

and still get a tuple. The only tricky thing about tuples is making a tuple with a single element.
We could try

>>> a = (1)

>>> a

1

but it does not work, because in the expression (1) the parentheses are playing the standard
grouping role (and, in fact, because parentheses do not make tuples). So, to make a tuple with a
single element, we have to use a comma:

>>> a = 1,

>>> a

(1,)

This is a little inelegant, but so it goes.

Tuples will be important in contexts where we are using structured objects as ’keys’, that is, to
index into another data structure, and where inconsistencies would occur if those keys could be
changed.

An important special kind of tuple is a string. A string can almost be thought of as a tuple of
characters. The details of what constitutes a character and how they are encoded is complicated,
because modern character sets include characters from nearly all the world’s languages. We will
stick to the characters we can type easily on our keyboards. In Python, you can write a string with
either single or double quotes: ’abc’ or "abc". You can select parts of it as you would a list:

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 59

>>> s = ’abc’

>>> s[0]

’a’

>>> s[-1]

’c’

The strange thing about this is that s is a string, and because Python has no special data type to

represent a single character, s[0] is also a string.

We will frequently use + to concatenate two existing strings to make a new one:

>>> to = ’Jody’

>>> fromP = ’Robin’

>>> letter = ’Dear ’ + to + ",\n It’s over.\n" + fromP

>>> print letter

Dear Jody,

It’s over.

Robin

As well as using + to concatenate strings, this example illustrates several other small but impor­
tant points:

•	 You can put a single quote inside a string that is delimited by double-quote characters (and vice
versa).
If you want a new line in your string, you can write \n. Or, if you delimit your string with a •
triple quote, it can go over multiple lines.

The print statement can be used to print out results in your program.
•

•	 Python, like most other programming languages, has some reserved words that have special
meaning and cannot be used as variables. In this case, we wanted to use from, but that has a
special meaning to Python, so we used fromP instead.

Structured assignment
Once we have lists and tuples, we can use a nice trick in assignment statements, based on the
packing and unpacking of tuples.

>>> a, b, c = 1, 2, 3
>>> a
1
>>> b
2
>>> c
3

Or, with lists,

>>> [a, b, c] = [1, 2, 3]
>>> a
1
>>> b
2
>>> c
3

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 60

When you have a list (or a tuple) on the left-hand side of an assignment statement, you have to
have a list (or tuple) of matching structure on the right-hand side. Then Python will “unpack”
them both, and assign to the individual components of the structure on the left hand side. You
can get fancier with this method:

>>> thing = [8, 9, [1, 2], ’John’, [33.3, 44.4]]

>>> [a, b, c, d, [e1, e2]] = thing

>>> c

[1, 2]

>>> e1

33.299999999999997

3.4 Procedures
Procedures are computer-program constructs that let us capture common patterns of computation
by:

•	 Gathering together sequences of statements

•	 Abstracting away from particular data items on which they operate.

Here is a procedure definition,17 and then its use:

def square(x):

return x * x

>>> square(6)

36

>>> square(2 - square(2))

4

We will work through, in detail, what happens when the interpreter evaluates a procedure defin­
ition, and then the application of that procedure.

3.4.1 Definition
A procedure definition has the abstract form:

def <name>(<fp1>, ..., <fpn>):

<statement1>

...

<statementk>

There are essentially three parts:

17	 In the code displayed in these notes, we will show procedures being defined and then used, as if the definitions were
happening in the Python shell (but without the prompts). In fact, you should not type procedure definitions into the
shell, because if you make a mistake, you will have to re-type the whole thing, and because multi-line objects are not
handled very well. Instead, type your procedure definitions into a file in Idle, and then test them by ’running’ the file in
Idle (which will actually evaluate all of the expressions in your file) and then evaluating test expressions in Idle’s shell.

61 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

•	 <name> is a name for the procedure, with the same restrictions as a variable name;

<fp1>, ..., <fpn> is a list of formal parameters, which will stand for the data items on •
which this procedure will operate; and

<statement1>, ..., <statementk>, known as the body of the procedure, is a list of Python •
statements (right now, we know about assignment statements, print statements, and basic ex­
pressions, but there will be more.)

When we evaluate a procedure definition in an environment,18 E, Python does two things:

1. Makes a procedure object19 that contains the formal parameters, the body of the procedure, and
a pointer to E; and then

2. Binds the name to have this procedure as its value.

Here is an example of an environment after we have evaluated

def square(x):
return x * x

2a
square

Procedure1
(x)
return x*x

E1

Note how the construct to which square points is a procedure object, with a list of formal para­
meters, a body, and a pointer to its environment.

3.4.2 Procedure calls
When you evaluate an expression of the form

<expr0>(<expr1>, ..., <exprn>)

the Python interpreter treats this as a procedure call. It will be easier to talk about a specific case
of calling a procedure, so we will illustrate with the example

>>> square(a + 3)

evaluated in environment E1. Here are the steps:

1.	 The expression that determines the procedure (<expr0>) is evaluated. In this case, we evaluate
square in E1 and get Procedure1.

2.	 The expressions that determine the arguments (<expr1>, ..., <exprn>) are evaluated. In
this case, we evaluate a + 3 in E1 and get 5.

18 Remember that every expression is always evaluated with respect to some environment.
19	 In our memory diagrams, we will show the procedure object as a box with the word Procedure<N>, where N is some

integer, at the top; we give the procedure objects these numbers so we can refer to them easily in the text.

62 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

3.	 A new environment (in this case E2) is created, which:

− binds the formal parameters of the procedure (in this case x) to the values of its arguments
(in this case, 5); and

− has as its parent the environment in which the procedure was defined (we find a pointer
to this environment stored in the procedure; in this case E1 is its parent).

At this point, our memory looks like this:

2a
square

Procedure1
(x)
return x*x

E1

x 5E2

The dotted line between E2 and E1 is intended to indicate that E1 is the parent environment
of E2.

4.	 The statements of the procedure body are evaluated in the new environment until either a
return statement or the end of the list of statements is reached. If a return statement is eval­
uated, the expression after the return is evaluated and its value is returned as the value of the
procedure-call expression. Otherwise, the procedure has no return value, and the expression
has the special Python value None.

In our example, the only statement in the body is a return statement. So, we evaluate the
expression x * x in E2, obtaining a value of 25. That value is returned as the value of the
entire procedure-call expression square(a + 3).

This basic mechanism can generate behavior of arbitrary complexity, when coupled with recur­
sion or other control structures, discussed in section 2.3.

Worked example 1
Let’s examine what happens when we evaluate the following Python code:

def p(x, y):
z = x*x - y
return z + 1/z

>>> p(1.0, 2.0)

Here is a picture of the calling environment (E1) and the procedure-call environment (E2) just
before the body of the procedure is evaluated:

-2.0

63 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

p
Procedure2
(x, y)
z = x*x-y
return z

E1

y 2.0
x 1.0E2

After evaluating z = x*x - y in E2, we have:

p

Procedure2
(x, y)
z = x*x-y
return z+1/z

E1

-1.0z
y 2.0
x 1.0E2

Finally, we evaluate z + 1/z in E2 and get -2.0, which we return.

Worked example 2
Here is another example:

def silly(a):
a = a + 1
return a

>>> b = 6
>>> silly(b)
7

Here is a picture of the calling environment (E1) and the procedure-call environment (E2) just
before the body of the procedure is evaluated:

6b
silly

Procedure3
(a)
a=a+1
return a

E1

a 6E2

After evaluating a = a + 1 in E2, we have:

64 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

b 6
silly

Procedure3
(a)
a=a+1
return a

E1

a 7E2

Finally, we evaluate a in E2 and get 7, which we return.

Convince yourself that the execution below works fine, and notice that having a binding for a in

E2 means that we leave the binding for a in E1 unmolested:

>>> a = 2
>>> silly(a)
3
>>> a
2

Exercise 3.10.	 Draw the environment diagram at the time the statement with the arrow
is being executed:

def fizz(x, y):
p = x + y
q = p*p
return q + x # <----------­

>>> fizz(2, 3)

Exercise 3.11. Draw the environment diagram at the time the statement with the arrow
is being executed:

def fuzz(a, b):
return a + b # <---------­

def buzz(a):
return fuzz(a, square(a))

>>> buzz(2)

3.4.3 Non-local references
So far, whenever we needed to evaluate a variable, there was a binding for that variable in the
’local’ environment (the environment in which we were evaluating the expression). But consider
this example:

def biz(a):

return a + b

65 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

>>> b = 6
>>> biz(2)

This actually works fine, and returns 8. Let’s see why. Here is the environment, E1, in which the
Python shell is working, after we execute the b = 6 statement:

b 6
biz

Procedure4
(a)
return a+b

E1

Now, when we evaluate biz(2) in E1, we make a new environment, E2, which binds a to 2 and
points to E1 as its parent environment.

b 6
biz

Procedure4
(a)
return a+b

E1

a 2E2

We need to elaborate, slightly, how it is that a variable v is evaluated in an environment E:

• We look to see if there is a binding for v in E; if so, we stop and return it.

• If not, we evaluate v in the parent environment of E. If E has no parent, we generate an error.

It is important to appreciate that this process will continue up an arbitrarily long chain of environ­
ments and their parents until either a binding for v is found or there are no more environments to
examine.

So, in our case, we will evaluate the expression a + b in environment E2. We start by evaluating
a and finding value 2 in E2. Then, we evaluate b and cannot find it in E2...but we don’t panic! We
follow the parent pointer to E1 and try again. We find a binding for b in E1 and get the value 6.
So, the value of a + b in E2 is 8.

Exercise 3.12.	 Draw a picture of the relevant binding environments when the statement
with the arrow is being executed. What value does the procedure return?

def f(a):

return a + g(a)

def g(b):
return a + b # <------------­

>>> f(3)

66 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Exercise 3.13. Draw a picture of the relevant binding environments when the statement
with the arrow is being executed. What value does the procedure return?

def f(a):
def g(b):

return a + b # <------------­
return a + g(a)

>>> f(3)

Exercise 3.14.	 Draw a picture of the relevant binding environments when the statement
with the arrow is being executed. What value does the procedure return?
Does it cause an error?

def a(a):

return a * a

>>> a(2)

3.4.4 Environments in Python
Generally, Python establishes the following binding environments:

1.	 __builtin__: the mother of all environments: it contains the definitions of all sorts of basic
symbols, like list and sum. It is the parent of all module environments.

2.	 Module: each separate file that contains Python code is called a module and establishes its
own environment, whose parent is __builtin__.

3.	 Procedure calls: as described in this section. A procedure that is defined at the ’top level’ of a
module (that is, not nested in the definition of another procedure) has the module’s environ­
ment as its parent, and has its name defined in the module’s environment. Procedures that
are defined inside other procedures have the procedure-call environment of the containing
procedure as their parent.

We have seen two operations that cause bindings to be created: assignments and procedure calls.
Bindings are also created when you evaluate an import statement. If you evaluate

import math

then a file associated with the math module is evaluated and the name math is bound, in the
current environment, to the math module, which is an environment. No other names are added
to the current environment, and if you want to refer to names in that module, you have to qualify
them, as in math.sqrt. (As we will see in a subsequent section, the evaluation of this expression
first evaluates math, which returns an environment. We can then evaluate sqrt with respect to
that environment, thus returning a pointer to the procedure stored there.) If you execute

from math import sqrt

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 67

then the math file is evaluated, and the name sqrt is bound, in the current environment, to
whatever the name sqrt is bound in the math module. But note that if you do this, the name
math is not bound to anything, and you cannot access any other procedures in the math module
unless you import them explicitly, as well.

3.4.5 Non-local references in procedures
There is an important subtlety in the way names are handled in the environment created by a
procedure call. When a name that is not bound in the local environment is referenced, then it is
looked up in the chain of parent environments. So, as we have seen, it is fine to have

a = 2
def b():

return a

When a name is assigned inside a procedure, a new binding is created for it in the environment
associated with the current call of that procedure. So, it is fine to have

a = 2
def b():

a = 3

c = 4

return a + c

Both assignments cause new bindings to be made in the local environment, and it is those bind­
ings that are used to supply values in the return expression. It will not change a in the global
environment.

But here is a code fragment that causes trouble:

a = 3
def b():

a = a + 1

print a

It seems completely reasonable, and you might expect b() to return 4. But, instead, it generates
an error. What is going on?? It all has to do with when Python decides to add a binding to the
local environment. When it sees this procedure definition, it sees that the name a occurs on the
left-hand-side of an assignment statement, and so, at the very beginning, it puts a new entry for a
in the local environment, but without any value bound to it. Now, when it is time to evaluate the
statement

a = a + 1

Python starts by evaluating the expression on the right hand side: a + 1. When it tries to look up
the name a in the procedure-call environment, it finds that a has been added to the environment,
but has not yet had a value specified. So it generates an error.

In Python, we can write code to increment a number named in the global environment, by using
the global declaration:

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 68

a = 3
def b():

global a

a = a + 1

print a

>>> b()

4

>>> b()

5

>>> a

5

The statement global a asks that a new binding for a not be made in the procedure-call envi­
ronment. Now, all references to a are to the binding in the module’s environment, and so this
procedure actually changes a.

In Python, we can only make assignments to names in the procedure-call environment or to the
module environment, but not to names in intermediate environments. So, for example,

def outer():

def inner():

a = a + 1

a = 0

inner()

In this example, we get an error, because Python has made a new binding for a in the environment
for the call to inner. We would really like inner to be able to see and modify the a that belongs
to the environment for outer, but there is no way to arrange this. Some other programming
languages, such as Scheme, offer more fine-grained control over how the scoping of variables is
handled.

3.4.6 Procedures as first-class objects
In Python, unlike many other languages, procedures are treated in much the same way as num­
bers: they can be stored as values of variables, can be passed as arguments to procedures, and
can be returned as results of procedure calls. Because of this, we say that procedures are treated
as “first-class” objects. We will explore this treatment of “higher-order” procedures (procedures
that manipulated procedures) throughout this section.

First of all, it is useful to see that we can construct (some) procedures without naming them using
the lambda constructor:

lambda <var1>, ..., <varn> : <expr>

The formal parameters are <var1>, ..., <varn> and the body is <expr>. There is no need for
an explicit return statement; the value of the expression is always returned. A single expression
can only be one line of Python, such as you could put on the right hand side of an assignment
statement. Here are some examples:

>>> f = lambda x: x*x

>>> f

<function <lambda> at 0x4ecf0>

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 69

>>> f(4)

16

Here is a procedure of two arguments defined with lambda:

>>> g = lambda x,y : x * y

>>> g(3, 4)

12

Using the expression-evaluation rules we have already established, we can do some fancy things
with procedures, which we will illustrate throughout the rest of this section.

>>> procs = [lambda x: x, lambda x: x + 1, lambda x: x + 2]

>>> procs[0]

<function <lambda> at 0x83d70>

>>> procs[1](6)

7

Here, we have defined a list of three procedures. We can see that an individual element of the list
(e.g., procs[0]) is a procedure.20 So, then procs[1](6) applies the second procedure in the list
to the argument 6. Since the second procedure returns its argument plus 1, the result is 7.

Here is a demonstration that procedures can be assigned to names in just the way other values
can.

>>> fuzz = procs[2]

>>> fuzz(3)

5

def thing(a):

return a * a

>>> thing(3)

9

>>> thang = thing

>>> thang(3)

9

Passing procedures as arguments
Just as we can pass numbers or lists into procedures as arguments, we can pass in procedures as
arguments, as well.

What if we find that we are often wanting to perform the same procedure twice on an argument?
That is, we seem to keep writing square(square(x)). If it were always the same procedure we
were applying twice, we could just write a new procedure

def squaretwice(x):

return square(square(x))

20	 In the programming world, people often use the words “function” and “procedure” either interchangeable or with
minor subtle distinctions. The Python interpreter refers to the objects we are calling procedures as “functions.”

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 70

But what if it is different procedures? We can write a new procedure that takes a procedure f as
an argument and applies it twice:

def doTwice(f, x):
return f(f(x))

So, if we wanted to square twice, we could do:

>>> doTwice(square,2)
16

Here is a picture of the environment structure in place when we are evaluating the return
f(f(x)) statement in doTwice:

doTwice

square

E1

2x
f

E2

Procedure5
(x)
return x * x

Procedure6
(f, x)
return f(f(x))

Environment E1 is the module environment, where procedures square and doTwice were de­
fined and where the expression doTwice(square, 2) is being evaluated. The interpreter:

Evaluates doTwice in E1 and gets Procedure6.•

Evaluates square in E1 and gets Procedure5.•

Evaluates 2 in E1 and gets 2. •

Makes the new binding environment E2, binding the formal parameters, f and x, of Procedure•
6, to actual arguments Procedure5 and 2.

Evaluates the body of Procedure6 in E2.
•

Now, let’s peek one level deeper into the process. To evaluate f(f(x)) in E2, the interpreter starts
by evaluating the inner f(x) expression. It

Evaluates f in E2 and gets Procedure5.•

•	 Evaluates x in E2 and gets 2.

Makes the new binding environment E3, binding the formal parameter x, of Procedure5, to 2. •
(Remember that the parent of E3 is E1 because Procedure5 has E1 as a parent.)

Evaluates the body of Procedure5 in E3, getting 4.
•

The environments at the time of this last evaluation step are:

71 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

doTwice

square

E1

2x
f

E2

Procedure5
(x)
return x * x

Procedure6
(f, x)
return f(f(x))

2xE3

A similar thing happens when we evaluate the outer application of f, but now with argument 4,
and a return value of 16.

Exercise 3.15. Here is the definition of a procedure sumOfProcs that takes two proce­
dures, f and g, as well as another value x, as arguments, and returns f(x)
+ g(x). The sumOfProcs procedure is then applied to two little test pro­
cedures:

def sumOfProcs(f, g, x):
return f(x) + g(x)

def thing1(a):
return a*a*a

def thing2(b):
return b+1 # <-------------------­

>>> sumOfProcs(thing1, thing2, 2)

Draw a picture of all of the relevant environments at the moment the state­
ment with the arrow is being evaluated. What is the return value of the
call to sumOfProcs?

Returning procedures as values
Another way to apply a procedure multiple times is this:

def doTwiceMaker(f):
return lambda x: f(f(x))

This is a procedure that returns a procedure! If you would rather not use lambda, you could write
it this way:

def doTwiceMaker(f):
def twoF(x):

return f(f(x))
return twoF

72 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Now, to use doTwiceMaker, we might start by calling it with a procedure, such as square, as an
argument and naming the resulting procedure.

>>> twoSquare = doTwiceMaker(square)

Here is a picture of the environments just before the return twoF statement in doTwiceMaker
is evaluated.

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

Here is a picture of the environments after the doTwiceMaker returns its value and it is assigned
to twoSquare in E1. It is important to see that Procedure8 is the return value of the call to
doTwiceMaker and that, because Procedure8 retains a pointer to the environment in which it
was defined, we need to keep E2 around. And it is E2 that remembers which procedure (via its
binding for f) is going to be applied twice.

twoSquare

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

Now, when we evaluate this expression in E1

>>> twoSquare(2)

we start by making a new binding environment, E3, for the procedure call. Note that, because the
procedure we are calling, Procedure8, has E2 stored in it, we set the parent of E3 to be E2.

73 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

twoSquare

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

2xE3

Next, we evaluate the body of Procedure8, which is return f(f(x)) in E3. Let’s just consider
evaluating the inner expression f(x) in E3. We evaluate f in E3 and get Procedure5, and eval­
uate x and get 2. Now, we make a new binding environment, E4, to bind the formal parameter
of Procedure5 to 2. Because Procedure5 has a stored pointer to E1, E4’s parent is E1, as shown
here:

twoSquare

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

2xE3

2xE4

Evaluating the body of Procedure5 in E4 yields 4. We will repeat this process to evaluate the
outer application of f, in f(f(x)), now with argument 4, and end with result 16.

Essentially the same process would happen when we evaluate

>>> doTwiceMaker(square)(2)

16

except the procedure that is created by the expression doTwiceMaker(square) is not assigned a
name; it is simply used as an intermediate result in the expression evaluation.

3.5 Object-oriented programming
We have seen structured data and interesting procedures that can operate on that data. It will of­
ten be useful to make a close association between collections of data and the operations that apply

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 74

to them. The style of programming that takes this point of view is object-oriented programming
(OOP). It requires adding some simple mechanisms to our interpreter, but is not a big conceptual
departure from the things we have already seen. It is, however, a different style of organizing
large programs.

3.5.1 Classes and instances
In OOP, we introduce the idea of classes and instances. An instance is a collection of data that
describe a single entity in our domain of interest, such as a person or a car or a point in 3D space.
If we have many instances that share some data values, or upon which we would want to perform
similar operations, then we can represent them as being members of a class and store the shared
information once with the class, rather than replicating it in the instances.

Consider the following staff database for a large undergraduate course:

name role age building room course

Pat Prof 60 34 501 6.01

Kelly TA 31 34 501 6.01

Lynn TA 29 34 501 6.01

Dana LA 19 34 501 6.01

Chris LA 20 34 501 6.01

There are lots of shared values here, so we might want to define a class. A class definition has the
form:

class <name>:

<statement1>

...

<statementn>

Here is the definition of simple class in our example domain:

class Staff601:

course = ’6.01’

building = 34

room = 501

From the implementation perspective, the most important thing to know is that classes and in­
stances are environments.

When we define a new class, we make a new environment. In this case, the act of defining class
Staff601 in an environment E1 results in a binding from Staff601 to E2, an empty environment
whose parent is E1, the environment in which the class definition was evaluated. Now, the state­
ments inside the class definition are evaluated in the new environment, resulting in a memory
state like this:21

21	 In fact, the string ’6.01’ should be shown as an external memory structure, with a pointer stored in the binding
environment; for compactness in the following diagrams we will sometimes show the strings themselves as if they
were stored directly in the environment.

75 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Staff601

E1

501room
34building

'6.01'course
E2

Note how the common values and names have been captured in a separate environment.

Caveat: when we discuss methods in section 3.5.2, we will see that the rules for evaluating proce­
dure definitions inside a class definition are slightly different from those for evaluating procedure
definitions that are not embedded in a class definition.

We will often call names that are bound in a class’s environment attributes of the class. We can
access these attributes of the class after we have defined them, using the dot notation:

<envExpr>.<var>

When the interpreter evaluates such an expression, it first evaluates <envExpr>; if the result is
not an environment, then an error is signaled. If it is an environment, E, then the name <var> is
looked up in E (using the general process of looking in the parent environment if it is not found
directly in E) and the associated value returned.

So, for example, we could do:

>>> Staff601.room

501

We can also use the dot notation on the left-hand side of an assignment statement, if we wish to

modify an environment. An assignment statement of the form

<envExpr>.<var> = <valExpr>

causes the name <var> in the environment that is the result of evaluating <envExpr> to be bound

to the result of evaluating <valExpr>.

So, we might change the room in which 6.01 meets with:

Staff601.room = Staff601.room - 100

or add a new attribute with

Staff601.coolness = 11 # out of 10, of course...

Now, we can make an instance of a class with an expression of the form:

<classExpr>()

This expression has as its value a new empty environment whose parent pointer is the environ­
ment obtained as a result of evaluating <classExpr>. 22

So, if we do:

>>> pat = Staff601()

we will end up with an environment state like this:

22	 Another way of thinking of this is that whenever you define a class, Python defines a procedure with the same name,
which is used to create a instance of that class.

76 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1

501room
34building

'6.01'course
E2

E3

At this point, given our standard rules of evaluation and the dot notation, we can say:

>>> pat.course
’6.01’

The interpreter evaluates pat in E1 to get the environment E3 and then looks up the name course.
It does not find it in E3, so it follows the parent pointer to E2, and finds there that it is bound to
’6.01’.

Similarly, we can set attribute values in the instance. So, if we were to do:

pat.name = ’Pat’

pat.age = 60

pat.role = ’Professor’

we would get this environment structure.

pat
Staff601

E1

501room
34building

'6.01'course
E2

'Professor'role
60age

'Pat'name
E3

Note that these names are bound in the instance environment, not the class.

These structures are quite flexible. If we wanted to say that Professor Pat is an exception, holding
office hours in a different place from the rest of the 6.01 staff, we could say:

pat.building = 32
pat.office = ’G492’

Here is the new environment state. Nothing is changed in the Staff601 class: these assignments
just make new bindings in pat’s environment, which ’shadow’ the bindings in the class, so that
when we ask for pat’s building, we get 32.

77 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1

501room
34building

'6.01'course
E2

'G492'room
32building

'Professor'role
60age

'Pat'name
E3

3.5.2 Methods
Objects and classes are a good way to organize procedures, as well as data. When we define a
procedure that is associated with a particular class, we call it a method of that class. Method
definition requires only a small variation on our existing evaluation rules.

So, imagine we want to be able to greet 6.01 staff members appropriately on the staff web site. We
might add the definition of a salutation method:

class Staff601:

course = ’6.01’

building = 34

room = 501

def salutation(self):

return self.role + ’ ’ + self.name

This procedure definition, made inside the class definition, is evaluated in almost the standard
way, resulting in a binding of the name salutation in the class environment to the new proce­
dure. The way in which this process deviates from the standard procedure evaluation process
is that the environment stored in the procedure is the module (file) environment, no matter how
deeply nested the class and method definitions are:

78 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1 salutation

501room
34building

'6.01'course
E2

'G492'room
32building

'Professor'role
60age

'Pat'name
E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

Now, for example, we could do:

Staff601.saluation(pat)

The interpreter finds that Staff601 is an environment, in which it looks up the name saluation
and finds Procedure9. To call that procedure we follow the same steps as in section 3.4.2 :

•	 Evaluate pat to get the instance E3.

Make a new environment, E4, binding self to E3. The parent of E4 is E1, because we are •
evaluating this procedure call in E1.

Evaluate self.role + ’ ’ + self.name in E4.•

In E4, we look up self and get E3, look up role in E3 and get ’Professor’, etc. •

Ultimately, we return ’Professor Pat’.•

Here is a picture of the binding environments while we are evaluating self.role + ’ ’ +
self.name.

79 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1 salutation

501room
34building

'6.01'course
E2

'G492'room
32building

'Professor'role
60age

'Pat'name
E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

self
E4

Note (especially for Java programmers!) that the way the body of salutation has access to the
attributes of the instance on which it is operating and to attributes of the class is via the instance
we passed to it as the parameter self. The parent environment is E1, which means that methods
cannot simply use the names of class attributes without accessing them through the instance.

The notation

Staff601.salutation(pat)

is a little clumsy; it requires that we remember to what class pat belongs, in order to get the
appropriate salutation method. We ought, instead, to be able to write

pat.salutation(pat) #### Danger: not legal Python

This should have exactly the same result. (Verify this for yourself if you do not see it, by tracing
through the environment diagrams. Even though the pat object has no binding for saluation,
the environment-lookup process will proceed to its parent environment and find a binding in the
class environment.)

But this is a bit redundant, having to mention pat twice. So, Python added a special rule that
says: If you access a class method by looking in an instance, then that instance is automatically
passed in as the first argument of the method.

So, we can write

pat.salutation()

This is exactly equivalent to

Staff601.salutation(pat)

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 80

A consequence of this decision is that every method must have an initial argument that is an
instance of the class to which the method belongs. That initial argument is traditionally called
self, but it is not necessary to do so.

Here is a new method. Imagine that Staff601 instances have a numeric salary attribute. So,
we might say

pat.salary = 100000

Now, we want to write a method that will give a 6.01 staff member a k-percent raise:

class Staff601:

course = ’6.01’

building = 34

room = 501

def salutation(self):

return self.role + ’ ’ + self.name

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

As before, we could call this method as

Staff601.giveRaise(pat, 0.5)

or we could use the short-cut notation and write:

pat.giveRaise(0.5)

This will change the salary attribute of the pat instance to 150000.23

3.5.3 Initialization
When we made the pat instance, we first made an empty instance, and then added attribute
values to it. Repeating this process for every new instance can get tedious, and we might wish
to guarantee that every new instance we create has some set of attributes defined. Python has a
mechanism to streamline the process of initializing new instances. If we define a class method
with the special name __init__, Python promises to call that method whenever a new instance
of that class is created.

We might add an initialization method to our Staff601 class:

class Staff601:

course = ’6.01’

building = 34

room = 501

23	 Something to watch out for!!! A common debugging error happens when you: make an instance of a class (such as
our pat above); then change the class definition and re-evaluate the file; then try to test your changes using your old
instance, pat. Instances remember the definitions of all the methods in their class when they were created. So if you
change the class definition, you need to make a new instance (it could still be called pat) in order to get the new
definitions.

81 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

def __init__(self, name, role, years, salary):

self.name = name

self.role = role

self.age = years

self.salary = salary

def salutation(self):

return self.role + ’ ’ + self.name

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

Now, to create an instance, we would do:24

pat = Staff601(’Pat’, ’Professor’, 60, 100000)

Here is a diagram of the environments when the body of the __init__ procedure is about to be
executed:

pat
Staff601

E1

__init__
giveRaise
salutation

501room
34building

'6.01'course
E2

E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

salary 100000
60years

role 'Professor'

name 'Pat'
self

E4

Procedure11
(self, name, role years, salary)
self.name = name
...

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

Note that the formal parameter self has been bound to the newly-created instance. Here is the
situation after the initialization method has finished executing:

24 We called the fourth formal parameter years, when age would have been clearer, just to illustrate that the names of
formal parameters do not have to match the attributes to which they are bound inside the object.

82 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1

__init__
giveRaise
salutation

501room
34building

'6.01'course
E2

salary 100000
age 60
role 'Professor'

'Pat'name
E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

Procedure11
(self, name, role years, salary)
self.name = name
...

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

This method seems very formulaic, but it is frequently all we need to do. To see how initialization
methods may vary, we might instead do something like this, which sets the salary attribute based
on the role and age arguments passed into the initializer.

class Staff601:
def __init__(self, name, role, age):

self.name = name

self.role = role

if self.role == ’Professor’:

self.salary = 100000

elif self.role = ’TA’:

self.salary = 30000

else:

self.salary = 10000

self.salary = self.giveRaise((age - 18) * 0.03)

3.5.4 Inheritance
We see that we are differentiating among different groups of 6.01 staff members. We can gain
clarity in our code by building that differentiation into our object-oriented representation using
subclasses and inheritance.

At the mechanism level, the notion of a subclass is very simple: if we define a class in the following
way:

def class <className>(<superclassName):

<body>

then, when the interpreter makes the environment for this new class, it sets the parent pointer of
the class environment to be the environment named by <superclassName>.

This mechanism allows us to factor class definitions into related, interdependent aspects. For
example, in the 6.01 staff case, we might have a base class where aspects that are common to all
kinds of staff are stored, and then subclasses for different roles, such as professors:

83 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

class Staff601:
course = ’6.01’
building = 34
room = 501

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

class Prof601(Staff601):
salary = 100000

def __init__(self, name, age):

self.name = name

self.giveRaise((age - 18) * 0.03)

def salutation(self):

return ’Professor’ + self.name

Let’s trace what happens when we make a new instance of Prof601 with the expression

Prof601(’Pat’, 60)

First a new environment, E4, is constructed, with E3 (the environment associated with the class
Prof601 as its parent). Here is the memory picture now:

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'courseE2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

E4

As soon as it is created, the __init__ method is called, with the new environment E4 as its
first parameter and the rest of its parameters obtained by evaluating the expressions that were
passed into to Prof601, in this case, ’Pat’ and 60. Now, we need to make the procedure-call
environment, binding the formal parameters of Procedure11; it is E5 in this figure:

84 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'course

E2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

E4
60age

name 'Pat'
self

E5

We evaluate the body of Procedure11 in E5. It starts straightforwardly by evaluating

self.name = name

which creates a binding from name to ’Pat’ in the object named self, which is E4. Now, it
evaluates

self.giveRaise((age - 18) * 0.03)

in E5. It starts by evaluating self.giveRaise. self is E4, so we look for a binding of
giveRaise. It is not bound in E4, so we look in the parent E3; it is not bound in E3 so we
look in E2 and find that it is bound to Procedure10. We are taking advantage of the fact that
raises are not handled specially for this individual or for the subclass of 6.01 professors, and
use the definition in the general class of 6.01 staff. The interpreter evaluates the argument to
Procedure10, (60 - 18) * 0.03, getting 1.26.

It is time, now, to call Procedure10. We have to remember that the first argument will be the
object through which the method was accessed: E4. So, we make a binding environment for the
parameters of Procedure10, called E6:

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'course

E2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

'Pat'nameE4
60age

name 'Pat'
self

E5

percentage 1.26
self

E6

85 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Now the fun really starts! We evaluate self.salary = self.salary + self.salary *
percentage in E6. We start by evaluating the right hand side: self is E4, self.salary is
100000, and percentage is 1.26, so the right-hand side is 226000. Now, we assign self.salary,
which means we make a binding in E4 for salary, to 22600. It is important to see that, within a
method call, all access to attributes of the object, class, or superclass goes through self. It is not
possible to ’see’ the definition of the building attribute directly from the giveRaise method:
if giveRaise needed to depend on the building attribute, it would need to access it via the
object, with self.building. This guarantees that we always get the definition of any attribute
or method that is appropriate for that particular object, which may have overridden its definition
in the class.

When the procedure calls are all done, the environments are finally like this:

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'course

E2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

'Pat'
salary 226000
nameE4

It is useful to back up and see the structure here:

•	 The instance pat is an environment, E4.

The parent of the instance is an environment,E3, which is the class Prof601.
•

The parent of the class is an environment, E2, which the superclass Staff601.•

3.5.5 Using Inheritance
Frequently when we’re using inheritance, we override some methods of a parent class, and use
some of its methods unchanged. Occasionally, we will want to modify or augment an existing
method from the parent class. In such a situation, we can ’wrap’ that method by writing our
own version of that method in the child class, but calling the method of the parent to do some of
the work. To call a method bar from a parent class named Foo, you can do something like the
following.

def SubclassOfFoo(Foo):

def bar(self, arg):

Foo.bar(self, arg)

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 86

When you call a method using the class name, rather than an object name, you need to pass the
object in explicitly to the method call.

Here is a concrete example. Imagine that you have a class for managing calendars. It has these
methods, plus possibly some others.

class Calendar:

def __init__(self):

self.appointments = []

def makeAppointment(self, name, dateTime):

self.appointments.append((name, dateTime))

def printCalendar(self, start, end):

complicated stuff

Now, you’d like to make a calendar that can handle appointments that are made in different time
zones. It should store all of the appointments in a single time zone, so that it can sort and display
appropriately.

class CalendarTimeZone(Calendar):
def __init__(self, zone):

Calendar.__init__(self)

self.zone = zone

def makeAppointment(self, name, dateTime):

Calendar.makeAppointment(self, name, dateTime + zone)

We make a subclass of Calendar which takes a time zone zone as an argument to its initialization
method. It starts by calling the Calendar initialization method, to set up whatever internal data
structures are necessary, and then sets the zone attribute of the new object. Now, when it’s time
to make an appointment, we add the time zone offset to the appointed time, and then call the
makeAppointment method of Calendar.

What is nice about this example is that we were able to take advantage of the Calendar class, and
even add to some of its methods, without knowing anything about its internal representation of
calendars.

3.6 Recursion
There are many control structures in Python, and other modern languages, which allow you write
short programs that do a lot of work. In this section, we discuss recursion, which is also a way to
write programs of arbitrary complexity. It is of particular importance here, because the structure
of a language interpreter is recursive, and in the next section we will explore, in detail, how to
construct an interpreter.

We have seen how we can define a procedure, and then can use it without remembering or caring
about the details of how it is implemented. We sometimes say that we can treat it as a black box,
meaning that it is unnecessary to look inside it to use it. This is crucial for maintaining sanity
when building complex pieces of software. An even more interesting case is when we can think
of the procedure that we are in the middle of defining as a black box. That is what we do when
we write a recursive procedure.

87 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Recursive procedures are ways of doing a lot of work. The amount of work to be done is con­
trolled by one or more arguments to the procedure. The way we are going to do a lot of work
is by calling the procedure, over and over again, from inside itself! The way we make sure this
process actually terminates is by being sure that the argument that controls how much work we
do gets smaller every time we call the procedure again. The argument might be a number that
counts down to zero, or a string or list that gets shorter.

There are two parts to writing a recursive procedure: the base case(s) and the recursive case.
The base case happens when the thing that is controlling how much work you do has gotten to
its smallest value; usually this is 0 or the empty string or list, but it can be anything, as long as
you know it is sure to happen. In the base case, you just compute the answer directly (no more
calls to the recursive procedure!) and return it. Otherwise, you are in the recursive case. In the
recursive case, you try to be as lazy as possible, and foist most of the work off on another call to
this procedure, but with one of its arguments getting smaller. Then, when you get the answer
back from the recursive call, you do some additional work and return the result.

Another way to think about it is this: when you are given a problem of size n, assume someone
already gave you a way to solve problems of size n − 1. So, now, your job is only to figure out

•	 To which problem of size n − 1 you would like to know the answer, and

•	 How to do some simple operations to make that answer into the answer to your problem of
size n.

What if you wanted to add two positive numbers, but your computer only had the ability to
increment and decrement (add and subtract 1)? You could do this recursively, by thinking about
it like this. I need to add m and n:

•	 Presupposing the ability to solve simpler problems, I could get the answer to the problem m
plus n-1.

•	 Now, I just need to add 1 to that answer, to get the answer to my problem.

We further need to reason that when n is 0, then the answer is just m. This leads to the following
Python definition:

def slowAdd(m, n):
if n == 0:

return m
else:

return 1 + slowAdd(m, n-1)

Note how in the final return expression, we have reduced the answer to a problem of size n to a
simpler version of the same problem (of size n-1 plus some simple operations.

Here is an example recursive procedure that returns a string of n 1’s:

def bunchaOnes(n):
if n == 0:

return ’’
else:

return bunchaOnes(n-1) + ’1’

88 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

The thing that is getting smaller is n. In the base case, we just return the empty string. In the
recursive case, we get someone else to figure out the answer to the question of n-1 ones, and then
we just do a little additional work (adding one more ’1’ to the end of the string) and return it.

Exercise 3.16. What is the result of evaluating

bunchaOnes(-5)

Here is another example. It is kind of a crazy way to do multiplication, but logicians love it.

def mult(a,b):
if a==0:

return 0
else:

return b + mult(a-1,b)

Trace through an example of what happens when you call mult(3, 4), by adding a print state­
ment that prints arguments a and b as the first line of the procedure, and seeing what happens.

Here is a more interesting example of recursion. Imagine we wanted to compute the binary repre­
sentation of an integer. For example, the binary representation of 145 is ’10010001’. Our procedure
will take an integer as input, and return a string of 1’s and 0’s.

def bin(n):
if n == 0:

return ’0’
elif n == 1:

return ’1’
else:

return bin(n/2) + bin(n%2)

The easy cases (base cases) are when we are down to a 1 or a 0, in which case the answer is
obvious. If we do not have an easy case, we divide up our problem into two that are easier.
So, if we convert n/2 (the integer result of dividing n by 2, which by Python’s definition will be
a smaller number since it truncates the result, throwing away any remainder), into a string of
digits, we will have all but the last digit. And n%2 (n modulo 2) is 1 or 0 depending on whether
the number is even or odd, so one more call of bin will return a string of ’0’ or ’1’. The other thing
that is important to remember is that the + operation here is being used for string concatenation,
not addition of numbers.

How do we know that this procedure is going to terminate? We know that the number on which
it is operating is a positive integer that is getting smaller and smaller, and will eventually be either
a 1 or a 0, which can be handled by the base case.

You can also do recursion on lists. Here a way to add up the values of a list of numbers:

def addList(elts):
if elts == []:

return 0
else:

return elts[0] + addList(elts[1:])

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 89

The addList procedure consumed a list and produced a number. The incrementElements
procedure below shows how to use recursion to do something to every element of a list and make
a new list containing the results.

def incrementElements(elts):

if elts == []:

return []

else:

return [elts[0]+1] + incrementElements(elts[1:])

If the list of elements is empty, then there is no work to be done, and the result is just the empty
list. Otherwise, the result is a new list: the first element of the new list is the first element of the
old list, plus 1; the rest of the new list is the result of calling incrementElement recursively on
the rest of the input list. Because the list we are operating on is getting shorter on every recursive
call, we know we will reach the base case, and all will be well.

3.7 Implementing an interpreter
This section can be skipped unless you are interested. It’s very cool but a bit tricky.

From the preceding sections, you should have an informal understanding of what happens
when a Python program is evaluated. Now, we want to understand it formally enough to actually
implement an interpreter in Python.

3.7.1 Spy
We will study a simplified language, which we call Spy, because it is a mixture of Scheme and
Python. From Scheme, an elegant interpreted programming language with very simple syntax
and semantics, we take the syntax of the language, and from Python, we take the basic object-
oriented programming system. Spy has a small subset of the features of these languages, but it
is powerful enough to implement any computer program that can be implemented in any other
language (though it could be mighty tedious).

To learn more: Interestingly, very minimal versions of several different models of com­
putation (imperative, functional/recursive, rewrite systems) have been
shown to be formally equivalent. Some have theorized them to be com­
plete in the sense that there are no computations that cannot be expressed
this way. For more information, see:
http://plato.stanford.edu/entries/church-turing/

The syntax of Spy, like Scheme, is fully-parenthesized prefix syntax. Prefix means that the name
of the function or operation comes before its arguments, and fully-parenthesized means that there
are parentheses around every sub-expression. So, to write 1 + num * 4, we would write

(+ 1 (* num 4)) .

http://plato.stanford.edu/entries/church-turing/

90 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

The reason for adopting this syntax is that it is very easy to manipulate with a computer program
(although some humans find it hard to read). In the following, we will assume that someone
has already written a tokenizer, which is a program that can consume a stream of characters and
break it into “words” for us. In particular, we will assume that the tokenizer can break an input
Spy program down into a list of lists (of lists...of elements that are strings or integers). So the
expression (+ 1 (* num 4)) would be converted by the tokenizer into a representation such as:
(’+’, 1, (’*’, ’num’, 4)).

Spy has the following features:

• Integer constants:

0, 1, -1, 2, -2, ...

Basic built-in functions: •

+, -, *, /, =, with meanings you would expect; note that in this language = is a test for equality
on two integers, which returns a Boolean.

• Assignment:

(set a 7) will set (or assign) the value of variable a to be 7

• Function application:

A list of expressions, the first of which is not a special word in Spy, is treated as function
application, or function call. So, (+ 3 a) would return 3 plus the value of variable a, and
(f) is a call of a function f with no arguments. Note that the first element can, itself, be an
expression, so

((myFunctionMaker 3) (+ 4 5))

is also a valid expression, as long as the value of (myFunctionMaker 3) is a function that will
consume a single argument (which, in this case, will be the value of the function application
(+ 4 5)).
Function definition: •

New functions can be defined, much as in Python or Scheme. So,

(def myFun (x y) (* (+ x y) y))

defines a new function named myFun of two arguments, which can be applied with an expres­
sion like (myFun 4 9).
If:•

(if a b c) will evaluate and return the value of expression b if the value of expression a is
equal to True, and otherwise will evaluate and return the value of expression c.

• Compound expression:

In Spy, the body of a function definition, and the branches of an if expression, are expected to
be a single expression; in order to evaluate multiple expressions in one of those locations, we
need to group them together with begin, like this:

91 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

(begin (set a 7) (set b 8) (+ a b)) .

(The reason we need begin to be a special word is so that we can distinguish this list of
expressions from a function application, which is also, syntactically, a list of expressions.) The
value of a compound expression is the value of its last component. So, in our example, the
value of the whole expression would be 15.

Note that the names begin, set, def, and if have special meaning in Spy and cannot be used as
the names of user-defined functions.

Spy also has some object-oriented features, but we will introduce those in section 3.7.3.

Exercise 3.17.	 Write a Spy procedure that takes two positive integers as input and returns
True if the first is greater than the second. Use only the primitive functions
= and + and recursion.

Exercise 3.18. Write a Spy procedure that takes n as input and returns the nth number in
the Fibonacci series.

3.7.2 Evaluating Spy expressions
In this section, we will describe, in complete detail, how it is that a program in Spy can be ex­
ecuted. The basic operations are evaluating expressions, and assigning values to names. In the
following sections, we will develop a recursive definition that allows us to compute the value
resulting from any Spy program. We will start with simple expressions, and work up to complex
ones.

The spyEval function will consume an expression and some additional information, and return
the value of the expression. It will have the structure of a long set of if-elif-else clauses, each of
which tests to see whether the expression has a particular form and performs the appropriate
evaluation.

To learn more: An interpreter is a program that takes in the text of a computer program
and executes it directly. We are going to build an interpreter for Spy in this
section, and when we use Python, we use an interpreter. A compiler is a
program that takes in the text of a computer program and turns it into low-
level instructions for a particular computer, which can later be executed.
A gross characterization of the difference is that it is easier to debug when
working with an interpreter, but that your program runs faster when com­
piled. For more information start with Wikipedia articles on Compiler and
Interpreter_(computing).

92 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

3.7.2.1 Numbers
What is the value of the program ’7’? It’s 7, of course. So, we can begin defining a function that
will consume a Spy expression (described as a list of lists of strings) and return a value.

Spy Eval def spyEval(form, env):
if isinstance(form, int):

return form

Here, we need to be able to examine an expression to see if it is an integer (the isinstance
procedure in Python takes any Python object and a type or class, and returns True if the object
is of that type or class, and False otherwise). If it is an integer, then we just return that integer
value. (You might have imagined that form would be a string, and that we’d have to convert that
string to an integer; in fact, the tokenizer, when it finds a token that is a number, converts it for us
in advance.)

For now, ignore the env argument; we’ll explain it soon.

3.7.2.2 Compound expressions
As we discussed above, a list of expressions, where the first one is the word ’begin’ is a com­
pound expression, whose value is the value of the last component. But, for reasons we will see in
section 3.7.2.3, it is important to evaluate all of the expressions, not just the last one. So, we can
extend our definition of spyEval by adding another clause (the ellipsis below is meant to include
the text from the previous spyEval code):

Spy Eval ...
elif form[0] == ’begin’:

val = None
for entry in form[1:]:

val = spyEval(entry, env)
return val

3.7.2.3 Symbols
We’ll use the term symbol to refer to any syntactic item that isn’t a number or parenthesis.

What is the value of the program ’a’? All by itself, it is an error, because ’a’ is undefined. So,
let’s consider a more complicated program:

(begin (set a 6)

a)

Why would we ever want to evaluate expressions and throw their values away? In a pure func­
tional language, the answer is that we wouldn’t. But in Spy, we have assignment expressions.

93 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

They don’t even have a value, but they make a change to the environment in which they are eval­
uated. Before we go any further, we’ll have to take a slight detour, in order to understand the idea
of environments.

Environments
An environment consists of two parts:
•	 a dictionary

a parent environment (can be None)•

The dictionary is a data structure that lets us associate values (numbers, functions, objects, etc.)
with symbols; a Python dictionary works perfectly for this purpose.

We will say that a symbol is bound in an environment if it exists as a key in the environment’s
dictionary. We’ll sometimes call the relationship between a key and a value in an environment’s
dictionary a binding.

There are three operations we can do on an environment: look up a symbol, add a binding, and
extend an environment. We’ll define the first two here, and return to environment extension later.

The lookup operation takes a symbol and an environment, and performs a slightly generalized
version of a dictionary lookup, looking in a parent environment if the symbol is not in the dictio­
nary:
•	 If the symbol is a key in the environment’s dictionary, then it returns the associated value;
•	 Otherwise, if this environment has a parent, then it returns the result of looking the symbol

up in the parent environment;
•	 Otherwise, it generates an error.

The add binding operation takes a symbol, an environment, and a value; it adds the value to the
dictionary associated with the environment, using the symbol as the key. If there was already a
value associated with that symbol in the dictionary, the old value is overwritten by the new value.

’a’ 9

’c’ 12

’a’ 6

’b’ 7

Figure 3.1 A simple environment.

Exercise 3.19. If e is the environment in Figure 3.1, what are the results of:
• e.lookup(’a’)
• e.lookup(’c’)
• e.lookup(’d’)
• e.add(’f’, 1)
• e.add(’c’, 2)
• e.add(’a’, 2)

94 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Where do environments come from? There is one environment that is made by the interpreter,
called global. It contains bindings for the primitive procedures, and is the environment in which
our main program is evaluated.

Assigning values
So, let’s go back to the expression

(set a 6)

We’ll refer to the second and third elements of this expression (the ’a’ and the 6) as the left-hand­
side (lhs) and right-hand-side (rhs) respectively.25 For now, the lhs will always be a symbol. Now,
to evaluate this expression in an environment, we evaluate the expression that is the rhs to get a
value, and then bind the symbol that is the lhs to that value in the environment.

So, here’s our augmented definition of eval. Note that it we have added the env argument, which
is the environment in which we’re evaluating the expression:

Spy Eval elif form[0] == ’set’:
(tag, lhs, rhs) = form
env.add(lhs, spyEval(rhs, env))

So, in our simple example, lhs is the symbol ’a’; expr is 6, which does not need further eval­
uation (the tokenizer has already turned the string ’6’) into an internal Python integer 6. More
generally, though, the expr can be an arbitrarily complicated expression which might take a great
deal of work to evaluate.

Now, finally, we can evaluate the expression ’a’. All we do to evaluate a symbol is look it up in
the environment. So, the return value of this whole program

(begin (set a 6)

a)

is the value 6.

25 That usage comes because a typical assignment statement has the form lhs = rhs.

After we have evaluated that expression, our global environment will look like this:

’a’ 6

’+’ <func>
...

global

Evaluating symbols

95 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

So, now, we can add another clause to spyEval:

Spy Eval ...

elif isinstance(form, str):

return env.lookup(form)

3.7.2.4 Functions
In the Spy language, any list of expressions, the first element of which is not a special symbol is
treated as a function call.26 Each of the expressions in the list is evaluated, yielding a function and
some number of values.

Before we go any further, we have to talk about functions in some detail. There are two types
of functions: primitive functions and user defined functions. Primitive functions come built into
the interpreter and are, ultimately, implemented as part of the interpreter. Spy provides several
primitive functions that are bound to names in the global environment. So, to call a primitive
function, all we have to do is pass the values we obtained by evaluating the rest of the expressions
in the function call into the primitive function.

Function definitions
Before we can talk about calling user-defined functions, we have to talk about how to define them.
Here is an example definition:

(def fizz (x y)

(+ x y))

It is a list of four elements:

1.	 def, which is a special symbol, indicating that this expression is not a function call, and there­
fore requires special handling;

2.	 the name of the function being defined (’fizz’ in this case);

3.	 a list of symbols, called the formal parameters (in this example, (’x’, ’y’); and

4.	 a function body, which is a Spy expression, in this case, ’(+ x y)’

Not very much happens at function definition time. We construct a data structure (typically an
instance of a Function class) that simply stores three components:

•	 the formal parameters

•	 the function body

the environment in which the function definition was evaluated •

Then, we add a binding in the environment in which the function was defined from the func­
tion name to this function structure. With this understanding of function definition, we can add
another clause to spyEval:

26 So far, our special symbols are begin and set, and we’ll add def and if.

96 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Spy Eval ...
elif form[0] == ’def’:

(tag, name, params, body) = form
env.add(name, Function(params, body, env))

Here is a picture of the global environment after the definition of fizz is made. Note the binding
from the name ’fizz’ to a Function instance which, itself, contains a reference to the environ­
ment.

fizz

global Procedure1
(x, y)
(+ x y)

Function calls
Now, we can see what happens when we actually call a function. Let’s assume that the function
fizz from the previous section has been defined, and now we want to evaluate

(fizz 6 8)

in the environment env. This is the trickiest part of the whole interpreter. First, we evaluate each
of these expressions, getting: a Function instance (which we created when we defined the fizz
function), the number 6 and the number 8.

Now, we make a new environment. Let’s call it (imaginatively) newEnv. The dictionary part of
newEnv is used to associate the symbols that are the formal parameters of the function (in the
case of the fizz function, ’x’ and ’y’) with the actual values being passed into the function (in
this case, the numbers 6 and 8). The parent environment of newEnv is the environment that we
stored with the function when it was defined (not the environment in which the function is being
called!!). In this case, fizz was defined in the global environment. And so, the parent pointer is
also the global environment. (Later, we may see some examples where this pointer is different, in
a way that matters.)

Here is a diagram of the entire environment, at this point:

97 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

fizz

global Procedure1
(x, y)
(+ x y)

y 8
x 6

Now that we have this new environment, we evaluate the expression that is the body of the
function, in this case, ’(+ x y)’ in newEnv. This will all work out roughly as you would expect:
during the process of evaluating the body, we will have to evaluate the symbols ’+’, ’x’ and
’y’. We will find ’x’ and ’y’ in the dictionary of newEnv; and we will find ’+’ in its parent
environment, which is global. So, we’ll have the function object that is bound to ’+’, and the
number 6 and the number 8; then, we’ll call the primitive function on these values, and end up
with the result 14.

Here is our augmented definition of spyEval:

Spy Eval ...
elif isinstance(form, list):

f = spyEval(form[0], env)
return spyEval(f.body,

Environment(f.formal,
[spyEval(x, env) for x in form[1:]],
f.environment))

As required, this process evaluates the first expression in the list to get a function. Then it evalu­
ates the body of that function in a new environment that maps the function’s formal parameters
to the results of evaluating all the rest of the expressions in the list, and whose parent is the envi­
ronment stored in the function.

A good way to understand what is going on with spyEval is to show a trace of its behavior. So,
when we evaluate the following expression:

(begin (def fizz (a b)
(+ a b))

(fizz 3 4))

we can print out the arguments that are passed into spyEval (though we have left out the envi­
ronment, to keep things from being too cluttered), and the result of each call. Each time it is called
recursively, we print out the arguments and results with one level more of indentation:

args: [’begin’, [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]], [’fizz’, 3, 4]]

args: [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]]

result: None

args: [’fizz’, 3, 4]

98 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

args: fizz

result: <__main__.Function instance at 0x7b1e18>

args: 3

args: [’+’, ’a’, ’b’]

result: 3

args: 4

result: 4

args: +

result: Primitive <built-in function add>

args: a

result: 3

args: b

result: 4

result: 7

result: 7

result: 7

Here is another version, showing the basic part of the environment, but not the parent environ­
ment.

args: [’begin’, [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]], [’fizz’, 3, 4]] Env: global
args: [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]] Env: global
result: None
args: [’fizz’, 3, 4] Env: global

args: fizz Env: global

result: <__main__.Function instance at 0x7b1df0>

args: 3 Env: global

result: 3

args: 4 Env: global

args: [’+’, ’a’, ’b’] Env:{’a’: 3, ’b’: 4}

result: 4

args: + Env:{’a’: 3, ’b’: 4}

result: Primitive <built-in function add>

args: a Env:{’a’: 3, ’b’: 4}

result: 3

args: b Env:{’a’: 3, ’b’: 4}

result: 4

result: 7

result: 7

result: 7

3.7.2.5 If
The last special type of expression in Spy is a conditional, of the form:

(if (= x 3)

(fizz x 10)

(+ x 4))

It might seem, at first, that it would be okay to implement if as a primitive function, similar to +.
But there is an important reason not to do so. Consider the definition of the factorial function, in
Spy:

99 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

(def factorial (x)
(if (= x 1)

1
(* x (factorial (- x 1)))))

The most straightforward application of this function, (factorial 1) will get us into trouble.
Why? We would start by evaluating ’factorial’ and ’1’, and getting a function and 1. So
far so good. Now we make a new environment, and evaluate the body in that environment.
That requires evaluating all of the elements of the body in that environment. So, we’d find that
’if’ evaluates to a primitive function, that (= x 1) evaluates to True, and that 1 evaluates to 1.
Then, we’d need to evaluate that last expression, which is itself a function call. That, in itself, is no
problem. But we can see that eventually, we’ll have to evaluate factorial in an environment where
its argument is -1. And that will require evaluating factorial of -2, which will require evaluating
factorial of -3, and so on.

The most important thing about ’if’ is that it evaluates only one of its branches, depending on
whether its condition is True or False. Without this property, we cannot stop recursion.

So, now we can see what to do with an ’if’ expression. We’ll call the second, third, and fourth
elements the condition, then and else parts. We start by evaluating the condition part. If it is
True, we evaluate the then part, otherwise we evaluate the else part.

It is pretty straightforward to add this to our eval function; but note that we had to put it before
the function application clause, so that we can keep if expressions from being evaluated as if
they were function applications.

Here is the whole interpreter.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 100

Spy Eval def spyEval(form, env=globalEnv):

if isinstance(form, int):

return form

elif isinstance(form, str):

return env.lookup(form)

elif form[0] == ’begin’:

val = None
for entry in form[1:]:

val = spyEval(entry, env)
return val

elif form[0] == ’set’:
(tag, lhs, rhs) = form
env.add(lhs, spyEval(rhs, env))

elif form[0] == ’def’:
(tag, name, params, body) = form
env.add(name, Function(params, body, env))

elif form[0] == ’if’:
(tag, condition, ifBody, elseBody) = form
if spyEval(condition, env)

return spyEval(ifBody, env)
else:

return spyEval(elseBody, env)
elif isinstance(form, list):

f = spyEval(form[0], env)
return spyEval(f.body,

Environment(f.formal,
[spyEval(x, env) for x in form[1:]],
f.environment))

else:
Error("Illegal expression: "+str(form))

Yay! Now we have a complete Spy interpreter. Well, we still need implementations of the Envi­
ronment and Function classes, but that’s not very much more work. We can implement those
classes as exercises.

3.7.3 Object-Oriented Spy
We can add a simple object-oriented facility to Spy, which is modeled on Python’s OOP facility,
but is somewhat simpler. The crucial idea here is that classes and instances are both environments,
of exactly the same kind that we have been using to support binding and function calls in basic
Spy. The dictionary part of the environment supports the binding of attribute names to values
within the instance or class; and the parent environment part allows an instance to be connected
to its class, or a class to its superclass, so that attributes that are not defined within the instance
may be found in the class or superclass.

We only have to add two new syntactic features to the language: attribute lookup and class defi­
nition.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 101

3.7.3.1 Attribute lookup
In Python, when you want to get the value of an attribute a from an instance obj, you say obj.a.
In OOSpy, we’ll say (attr obj a). Remembering that an instance is an environment, all we
have to do to evaluate such an expression is to look up the symbol ’a’ in the environment ’obj’.

Referring to the second part of this form as the object part and the third as the name part, we can
add a clause for attr expressions to our interpreter. The name will always be a single symbol;
but the object part can be a general expression (we might, for example, call a function bigFun that
returns an object, yielding an expression like (attr (bigFun 3) x) to get the attribute named
x from the object returned by bigFun). This means that we have to evaluate the object part, using
our standard evaluation function. Now, we can add a clause for attr expressions to our spyEval:

Spy Eval ...
elif form[0] == ’attr’:

(tag, objectExpr, name) = form
return spyEval(objectExpr, env).lookup(name)

...

3.7.3.2 Class definition
All the rest of our work happens at class definition time. Here is a simple OOSpy class definition:

(class SimpleClass None

(begin (def init (self v)

(set (attr self v) v))

(def getV (self)

(attr self v))))

For reference, it is roughly equivalent to the Python:

class SimpleClass:

def init (self, v):

self.v = v

def getV (self):

return self.v

It has four parts: the special symbol ’class’, the class name SimpleClass, the name of a su­
perclass (in this case, there is no superclass, so we write None), and a class body, which is a Spy
expression. Our simple Spy implementation doesn’t have an equivalent to Python’s __init__
facility, in which the specially-named procedure is called automatically. So we call the method
init without underscores to make that clear.

Here is a picture of the environment that we would like to have result from this definition:

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 102

SimpleClass

global
init
getV

Procedure1
()
return Environment()

Procedure3
(self)
return self.v

Procedure2
(self,v)
self.v = v

Note that Spy differs from Python here in an important way: in Python, the environment stored
in a method is always the module environment; in Spy, to avoid having a special case, it is the
class environment in which it is defined.

Also, rather than binding SimpleClass directly to the environment for the class, we will bind
it to a procedure that makes a new environment whose parent is the class environment. This
procedure can be called directly to create a new instance of the class.

There are three steps involved in processing this class definition.

1.	 Make an environment for the class In this step, we just make a new empty environment, and
set its parent to be the class specified as the superclass of this class. If the superclass is None,
then we use global as the parent environment, so that global variables and primitive function
definitions will be accessible from the class body.

2.	 Evaluate the class body in the class environment In this step, we use our regular Spy eval­
uation mechanism, to evaluate the class body, in the new environment. In our SimpleClass
body, we define two methods; these definitions will appear in the class environment but will
not, for example, be accessible directly from the global environment.

3.	 Make a constructor function Finally, we define a new function, with the same name as the
class, in the environment in which the class definition is being evaluated (not the class envi­
ronment; if we did that, nobody would every be able to find the constructor!). The constructor
function has the job of making a new instance of this class. What is an instance? An environ­
ment. And a brand new instance of any class is simply an empty environment, whose parent
environment is the class environment.

After defining SimpleClass, we can use it as follows:

(begin
(set a (SimpleClass))
((attr a init) a 37)
((attr a getV) a))

This is roughly equivalent to the Python

a = SimpleClass()
a.init(37)
a.getV()

This may look a little bit strange. Let’s go step by step. First, we make an instance by calling the
constructor function. That’s pretty straightforward. Now, the value of variable a is an instance of
the SimpleClass class, which means that it is an environment.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 103

Now, what about this expression?

((attr a init) a 37)

Let’s try to work through it the way the interpreter would. It is a list, and the first element is not
a special symbol, so it must be a function call. That means we should evaluate each of the forms
in the list.

First we evaluate (attr a init), which is a list starting with the special symbol attr, so we
know it’s looking up an attribute in a class. It evaluates the expression a, getting the SimpleClass
instance, then looks for the init attribute, which yields the init function that we defined inside
the class body.

Evaluating the second and third elements of ((attr a init) a 37) yield our SimpleClass
instance and the number 37.

Now, we’re ready to do a function call. Let’s do it carefully. The formal parameters of the function
we’re calling are (’self’, ’v’). So, we make a new environment, in which those parameters
are bound to the SimpleClass instance and to 37, respectively, and whose parent environment
is the environment in which ((attr a init) a 37) is being evaluated. Now, we evaluate the
body of that function, which is

(set (attr self v) v)

in this new environment. Let’s call this environment E1. In order to understand what’s going on
here, we have to go slowly and carefully. Here’s E1:

a
SimpleClass

global
init
getV

Procedure1
()
return Environment()

Procedure3
(self)
return self.v

Procedure2
(self,v)
self.v = v

37v
self

E1

First, we recognize this as a set expression. But, so far, our set expressions have always had a
single symbol as their second element. Now, we will have to generalize it, so the second element
of a set expression can also be an attr expression. Let’s consider this kind of expression, in
general:

(set (attr x y) z)

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 104

In this form, x can be any expression that, when evaluated, yields an instance; y must be a single
symbol; and z can be any expression that, when evaluated, yields a value. The result of this
form is to set attribute y in the instance resulting from evaluating expression x to have the value
resulting from evaluating the expression z.

So, we need to evaluate (set (attr self v) v) in the environment E1. We start by evaluating
self, and getting the SimpleClass instance; we look for an attribute named v there and, not
finding one, make a new one. Now, we evaluate the third part of the set expression, which is v,
in the E1, and get the value 37. Finally, we set attribute v of our instance to 37. Yay. Here’s the
new state of the environment:

a
SimpleClass

global
init
getV

Procedure1
()
return Environment()

Procedure3
(self)
return self.v

Procedure2
(self,v)
self.v = v

37v
self

E1

One thing to notice is that Spy, as we have designed it, doesn’t have Python’s special facility that
automatically uses an object as the first argument of a method, when that method is accessed via
that object. So, we have to pass the object in again, explicitly, as the first argument.

Exercise 3.20.
Add this syntactic facility to OOSpy.
That is, make it so that we can write ((attr a init) 37) and ((attr
a getV)). This is a little bit tricky.

Evaluating the expression ((attr a getV) a) works similarly (you should be sure you under­
stand how), and returns the value 37.

So, after all that, we can add the last clause to our OOSpy interpreter, for handling class defin­
itions. Note that we also have to extend the code for handling set, so it can deal with setting
attributes of instances.

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 105

Spy Eval ...
elif form[0] == ’set’:

(tag, lhs, expr) = form
(targetEnv, name) = lhsEval(lhs, env)
targetEnv.add(name, spyEval(expr, env))

elif form[0] == ’class’:
(tag, name, super, body) = form
if super == ’None’:

super = globalEnv
classEnv = Environment(parent = super)
env.add(name, Primitive(lambda : Environment(parent = classEnv)))
spyEval(body, classEnv)

...

def lhsEval(lhs, env):
if isinstance(lhs, list):

(tag, objectExpr, name) = lhs
return (spyEval(objectExpr, env), name)

else:
return (env, lhs)

Primitive is a class that represents a primitive function in Spy. Its initializer just takes a proce­
dure as an argument: in this case, it is a procedure that makes a new environment whose parent
is the the class environment.

We’re done with a whole object-oriented language!

Exercise 3.21.	 Write an OOSpy class definition for an Averager class. It should have a
method addValue that allows you to “add” a numeric value to the set of
data it as seen and method getAverage that returns the average of all of
the values that have been added so far.

3.8 Object-Oriented Programming Examples
Here are some examples of object-oriented programming in Python.

3.8.1 A simple method example
Here’s an example to illustrate the definition and use of classes, instances, and methods.

class Square:

def __init__(self, initialDim):

self.dim = initialDim

def getArea (self):

return self.dim * self.dim

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 106

def setArea (self, area):

self.dim = area**0.5

def __str__(self):

return "Square of dim " + str(self.dim)

This class is meant to represent a square. Squares need to store, or remember, their dimension,
so we make an attribute for it, and assign it in the __init__ method. Now, we define a method
getArea that is intended to return the area of the square. There are a couple of interesting things
going on here.

Like all methods, getArea has an argument, self, which will stand for the instance that this
method is supposed to operate on. Now, the way we can find the dimension of the square is by
finding the value of the dim attribute of self.

We define another method, setArea, which will set the area of the square to a given value. In
order to change the square’s area, we have to compute a new dimension and store it in the dim
attribute of the square instance.27

Now, we can experiment with instances of class Square.

>>> s = Square(6)

>>> s.getArea()

36

>>> Square.getArea(s)

36

>>> s.dim

6

>>> s.setArea(100)

>>> s.dim

10.0

>>> s1 = Square(10)

>>> s1.dim

10

>>> s1.getArea()

100

>>> s2 = Square(100)

>>> s2.getArea()

10000

>>> print s1

Square of dim 10

Our class Square has the __str__ method defined, so it prints out nicely.

3.8.2 Superclasses and inheritance
What if we wanted to make a set of classes and instances that would help us to run a bank? We
could start like this:

27 We compute the square root of a value by raising to the power 0.5.

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 107

class Account:

def __init__(self, initialBalance):

self.currentBalance = initialBalance

def balance(self):

return self.currentBalance

def deposit(self, amount):

self.currentBalance = self.currentBalance + amount

def creditLimit(self):

return min(self.currentBalance * 0.5, 10000000)

>>> a = Account(100)

>>> b = Account(1000000)

>>> Account.balance(a)

100

>>> a.balance()

100

>>> Account.deposit(a, 100)

>>> a.deposit(100)

>>> a.balance()

300

>>> b.balance()

1000000

We’ve made an Account class28 that maintains a balance as an attribute. There are methods for
returning the balance, for making a deposit, and for returning the credit limit.

The Account class contains the procedures that are common to all bank accounts; the individual
instances contain state in the values associated with the names in their environments. That state
is persistent, in the sense that it exists for the lifetime of the program that is running, and doesn’t
disappear when a particular method call is over.

Now, imagine that the bank we’re running is getting bigger, and we want to have several different
kinds of accounts, with the credit limit depending on the account type. If we wanted to define
another type of account as a Python class, we could do it this way:

class PremierAccount:

def __init__(self, initialBalance):

self.currentBalance = initialBalance

def balance(self):

return self.currentBalance

def deposit(self, amount):

self.currentBalance = self.currentBalance + amount

def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)

>>> c = PremierAccount(1000)

>>> c.creditLimit()

1500.0

28	 A note on style. It is useful to adopt some conventions for naming things, just to help your programs be more read­
able. We’ve used the convention that variables and procedure names start with lower case letters and that class
names start with upper case letters. And we try to be consistent about using something called “camel caps” for
writing compound words, which is to write a compound name with the successiveWordsCapitalized. An alternative
is_to_use_underscores.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 108

This will let people with premier accounts have larger credit limits. And, the nice thing is that we
can ask for its credit limit without knowing what kind of an account it is, so we see that objects
support generic functions, which operate on different kinds of objects by doing different, but
type-appropriate operations.

However, this solution is still not satisfactory. In order to make a premier account, we had to
repeat a lot of the definitions from the basic account class, violating our fundamental principle of
laziness: never do twice what you could do once; instead, abstract and reuse.

Inheritance lets us make a new class that’s like an old class, but with some parts overridden or
new parts added. When defining a class, you can actually specify an argument, which is another
class. You are saying that this new class should be exactly like the parent class or superclass, but
with certain definitions added or overridden. So, for example, we can say

class PremierAccount(Account):

def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)

class EconomyAccount(Account):

def creditLimit(self):

return min(self.currentBalance*0.5, 20.00)

>>> a = Account(100)

>>> b = PremierAccount(100)

>>> c = EconomyAccount(100)

>>> a.creditLimit()

100.0

>>> b.creditLimit()

150.0

>>> c.creditLimit()

20.0

We automatically inherit the methods of our superclass (including __init__). So we still know
how to make deposits into a premier account:

>>> b.deposit(100)

>>> b.balance()

200

The fact that instances know what class they were derived from allows us to ask each instance
to do the operations appropriate to it, without having to take specific notice of what class it is.
Procedures that can operate on instances of different types or classes without explicitly taking
their types or classes into account are called polymorphic. Polymorphism is a very powerful
method for capturing common patterns.

3.8.3 A data type for times
Object-oriented programming is particularly useful when we want to define a new compositional
data type: that is, a representation for the data defining a class of objects and one or more oper­
ations for creating new instances of the class from old instances. We might do this with complex
numbers or points in a high-dimensional space.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 109

Here we demonstrate the basic ideas with a very simple class for representing times.

We’ll start by defining an initialization method, with default values specified for the parameters.

class Time:
def __init__(self, hours = 0, minutes = 0):

self.hours = hours
self. minutes = minutes

Here is a method for adding two time objects. If the summed minutes are greater than 60, it carries
into the hours. If the summed hours are greater than 24, then the excess is simply thrown away.
It is important that adding two Times returns a new Time object, and that it does not change any
aspect of either of the arguments.

def add(self, other):

newMinutes = (self.minutes + other.minutes) % 60

carryHours = (self.minutes + other.minutes) / 60

newHours = (self.hours + other.hours + carryHours) % 24

return Time(newHours, newMinutes)

Python has a special facility for making user-defined types especially cool: if, for instance, you
define a method called __add__ for your class Foo, then whenever it finds an expression of the
form <obj1> + <obj2>, and the expression <obj1> evaluates to an object of class Foo, it will
Foo’s __add__ method. So, here we set that up for times:

def __add__(self, other):

return self.add(other)

Additionally, defining methods called __str__ and __repr__ that convert elements of your class
into strings will mean that they can be printed out nicely by the Python shell.

def __str__(self):

return str(self.hours) + ’:’ + str(self.minutes)

def __repr__(self):

return str(self)

Here, we make some times. In the second case, we specify only the minutes, and so the hours
default to 0.

>>> t1 = Time(6, 30)
>>> t2 = Time(minutes = 45)
>>> t3 = Time(23, 59)

And now, we can do some operations on them. Note how our __str__ method allows them to
be printed nicely.

>>> t1
6:30
>>> t1 + t2
7:15
>>> t3 + t2
0:44
>>> t1 + t2 + t3

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 110

7:14

>>> (t1 + t2 + t3).minutes

14

3.8.4 Practice problem: argmax
Write a Python procedure argmax that takes two arguments: the first is a list of elements, and the
second is a function from elements to numerical values. It should return the element of the list
with the highest numerical score.

def argmax(elements, f):

bestScore = None

bestElement = None

for e in elements:

score = f(e)
if bestScore == None or score > bestScore:

bestScore = score

bestElement = e

return bestElement

def argmax(elements, f):

bestElement = elements[0]

for e in elements:

if f(e) > f(bestElement):

bestElement = e

return bestElement

def argmax(elements, f):

vals = [f(e) for e in elements]

return elements[vals.index(max(vals))]

def argmax(elements, f):

return max(elements, key=f])

There are many ways of writing this. Here are a few. It’s important to keep straight in your
head which variables contain scores and which contain elements. Any of these solutions
would have been fine; we wouldn’t expect most people to get the last one.

3.8.5 Practice problem: OOP
The following definitions have been entered into a Python shell:

class A:

yours = 0

def __init__(self, inp):

self.yours = inp
def give(self, amt):

self.yours = self.yours + amt

return self.yours

def howmuch(self):

return (A.yours, self.yours)

evaluated one after another (all of the left column first, then right column).

test = A(5) test = B(5)

test.take(2) test.take(2)

test.give(6) test.give(6)

test.howmuch() test.howmuch()

• None: This makes test be equal to a new instance of A, with attribute yours equal to 5.
• Error: Instances of A don’t have a take method.
• 11: This adds 6 to the value of test.yours and returns its value.
• (0, 11): At this point, we haven’t changed the class attribute A.yours, so it still has

value 0.

• None: This makes test be equal to a new instance of B; it inherits the init method from A,

so at this point test.yours is equal to 5.
• 3: Now, since test is an instance of B, the method test.take is defined; it changes

test.yours to be 3 and returns its value.

• (0, 3): Note that this refers to the give method defined in class B. So, first, the amount is

used to increment B.yours to have value 6. Then, we return A.yours and test.yours,

which are both unchanged.

• (6, 0, 3): This just returns the current values of all three yours attributes, one in each

class definition as well as test.yours.

3.8.6 Practice problem: The Best and the Brightest

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 111

class B(A):
yours = 0
def give(self, amt):

B.yours = B.yours + amt
return A.howmuch(self)

def take(self, amt):
self.yours = self.yours - amt
return self.yours

def howmuch(self):
return (B.yours, A.yours, self.yours)

Write the values of the following expressions. Write None when there is no value; write Error
when an error results and explain briefly why it is an error. Assume that these expressions are

Here are some class definitions, meant to represent a collection of students making up the student
body of a prestigious university.

class Student:
def __init__(self, name, iq, salary, height):

self.name = name

self.iq = iq

self.salary = salary

self.height = height

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 112

class StudentBody:
def __init__(self):

self.students = []
def addStudent(self, student):

self.students.append(student)
def nameOfSmartest(self):

code will go here
def funOfBest(self, fun, feature):

code will go here

The StudentBody class is missing the code for two methods:

nameOfSmartest: returns the name attribute of the student with the highest IQ •

funOfBest: takes a procedure fun and a procedure feature as input, and returns the result •
of applying procedure fun to the student for whom the procedure feature yields the highest
value

For the first two problems below, assume that these methods have been implemented.

Here is a student body:

jody = Student(’Jody’, 100, 100000, 80)
chris = Student(’Chris’, 150, 40000, 62)
dana = Student(’Dana’, 120, 2000, 70)
aardvarkU = StudentBody()
aardvarkU.addStudent(jody)
aardvarkU.addStudent(chris)
aardvarkU.addStudent(dana)

1.	 What is the result of evaluating aardvarkU.nameOfSmartest()?

’Chris’

2. Write a Python expression that will compute the name of the person who has the greatest
value of IQ + height in aardvarkU (not just for the example student body above). You can
define additional procedures if you need them.

aardvarkU.funOfBest(lambda x: x.name, lambda x: x.iq + x.height)

The second lambda expression specifies how to evaluate an element (that is, to sum its iq
and height attributes) and the first lambda expression says what function to apply to the
element with the highest score.

3.	 Implement the nameOfSmartest method. For full credit, use util.argmax (defined below)
or the funOfBest method.

If l is a list of items and f is a procedure that maps an item into a numeric score, then
util.argmax(l, f) returns the element of l that has the highest score.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 113

def nameOfSmartest(self):

return util.argmax(self.students, lambda x: x.iq).name

or

def nameOfSmartest(self):

return funOfBest(lambda x: x.name, lambda x: x.iq)

Note that in the first solution, the expression util.argmax(self.students, lambda x:
x.iq) returns the object with the highest iq attribute; then we return the name attribute of
that object.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 114

4. Implement the funOfBest method. For full credit, use util.argmax.

def funOfBest(self, fun, feature):
return fun(util.argmax(self.students, feature))

Practice Problem: A Library with Class
Let’s build a class to represent a library; let’s call it Library. In this problem, we’ll deal with
some standard types of objects:

• A book is represented as a string – its title.
• A patron (person who uses the library) is represented as a string – his/her name.

3.8.7

• A date is represented by an integer – the number of days since the library opened.

The class should have an attribute called dailyFine that starts out as 0.25. The class should
have the following methods:

__init__: takes a list of books and initializes the library. •

checkOut: is given a book, a patron and a date on which the book is being checked out and it •
records this. Each book can be kept for 7 days before it becomes overdue, i.e. if checked out on

day x, it becomes due on day x + 7 and it will be considered overdue by one day on day x + 8.

It returns None.

checkIn: is given a book and a date on which the book is being returned and it updates the
•
records. It returns a number representing the fine due if the book is overdue and 0.0 otherwise.
The fine is the number of days overdue times the value of the dailyFine attribute.
overdueBooks: is given a patron and a date and returns the list of books which that patron has •
checked out which are overdue at the given date.

Here is an example of the operation of the library:

>>> lib = Library([’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

>>> lib.checkOut(’a’, ’T’, 1)

>>> lib.checkOut(’c’, ’T’, 1)

>>> lib.checkOut(’e’, ’T’, 10)

>>> lib.overdueBooks(’T’, 13)

[’a’, ’c’]

>>> lib.checkIn(’a’, 13)

1.25

>>> lib.checkIn(’c’, 18)

2.50

>>> lib.checkIn(’e’, 18)

0.25

In the boxes below, define the Library class as described above. Above each answer box we
repeat the specification for each of the attributes and methods given above. Make sure that you
enter complete definitions in the boxes, including complete class and def statements.

Use a dictionary to store the contents of the library. Do not repeat code if at all possible. You can
assume that all the operations are legal, for example, all books checked out are in the library and
books checked in have been previously checked out.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 115

Class definition:

Include both the start of the class definition and the method definition for __init__ in this first

answer box.

The class should have an attribute called dailyFine that starts out as 0.25.

__init__: takes a list of books and initializes the library.

class Library:

dailyFine = 0.25

def __init__(self, books):

self.shelf = {}

for book in books:

self.shelf[book] = (None, None) # (patron, dueDate)

The crucial part here is deciding what information to store. Here, for each book, we store a
tuple of who has checked it out, and when it is due.

checkOut: is given a book, a patron and a date on which the book is being checked out and it
records this. Each book can be kept for 7 days before it becomes overdue, i.e. if checked out on
day x, it becomes due on day x + 7 and it will be considered overdue by one day on day x + 8. It
returns None.

def checkOut(self, book, patron, date):
self.shelf[book] = (patron, date+7)

checkIn: is given a book and a date on which the book is being returned and it updates the
records. It returns a number representing the fine due if the book is overdue and 0.0 otherwise.
The fine is the number of days overdue times the value of the dailyFine attribute.

def checkIn(self, book, date):

patron, due = self.shelf[book]

self.shelf[book] = (None, None)

return max(0.0, (date - due))*self.dailyFine

Note the destructuring assignment in the first line. It’s not crucial, but it’s nice style, and
keeps us from having to refer to components like self.shelf[book][1], which are ugly,
long, and hard to get right. Instead of using a max, you could use an if statement to handle
the case of the book being overdue or not, but this is more compact and pretty clear.

overdueBooks: is given a patron and a date and returns the list of books which that patron has
checked out which are overdue at the given date.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 116

def overdueBooks(self, patron, date):

overdue = []

for book in self.shelf:

p, d = self.shelf[book]

if p and d and p == patron and date > d:

overdue.append(book)

return overdue

It’s not really necessary to check to be sure that p and d are not None, because p == patron
will only be true for a real patron, and if the patron is not None then d won’t be either. But
this code makes it clear that we’re only interested in books that have been checked out.

Define a new class called LibraryGrace that behaves just like the Library class except that it
provides a grace period (some number of days after the actual due date) before fines start being
accumulated. The number of days in the grace period is specified when an instance is created.
See the example below.

>>> lib = LibraryGrace(2, [’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

>>> lib.checkOut(’a’, ’T’, 1)

>>> lib.checkIn(’a’, 13)

0.75

Write the complete class definition for LibraryGrace. To get full credit you should not repeat
any code that is already in the implementation of Library, in particular, you should not need to
repeat the computation of the fine.

Class definition:

class LibraryGrace(Library):
def __init__(self, grace, books):

self.grace = grace

Library.__init__(self, books)

def checkIn(self, book, date):

return Library.checkIn(self, book, date - self.grace)

The crucial things here are: remembering to call the __init__ method of the parent class
and doing something to handle the grace period. In this example, when we check a book
back in, we pretend we’re actually checking it in on an earlier date. Alternatively, we could
have changed the checkout method to pretend that the checkout was actually happening in
the future.

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

