
MITOCW | MIT6_01SC_rec2_300k.mp4

KENDRA PUGH: Hi. I'd like to talk to you today about inheritance as a fundamental concept in object

oriented programming, its use in Python, and also tips and tricks for using

inheritance in Python and in the object oriented programming paradigm in 6.01.

First thing I'm going to do is give a really quick crash course on inheritance to catch

you up to speed, and also so that you're clear on what I mean when I say

something like parent class. And also, I'm going to address the sort of nuances of

using inheritance while programming in an object oriented fashion in Python.

A lot of the code in 6.01 uses the object oriented programming paradigm. And a lot

of the code in 6.01 will inherit from parent classes. So this is part of the motivation

for going through a quick review, and then also indicating the most common slip

ups, and also the most significant things that you may or may not have seen from

other languages.

All right, first, a crash course on inheritance. Let's look at the board. Inheritance is

the idea that you can arrange objects in a hierarchical fashion such that very, very

generalized or basic things that are true of a whole group of objects can be

specified at a higher level. And then, you can work your way down to progressively

more specific levels.

The most formal encounter you've probably had with this thing, that approach, is the

biological taxonomy, right? Kingdom, phylum, class, order, family, genus, species.

Every species has all the properties of that particular genus. All the genuses of a

particular family have the properties of that family, and so on, and so forth. That's a

very concrete example. But I find it a little boring. So I'm going to talk about dog

breeds instead.

You're probably familiar with the fact that golden retrievers are a type of retrievers

and that retrievers are a particular kind of dog. You can make generalizations about

goldens based on what you know about dogs, right? All dogs bark. All dogs have

four legs if they aren't injured or have some sort of congenital defect, that kind of

1



thing. And goldens also have all the properties of retrievers, right? They are capable

of going and catching game that you've either shot, or possibly chase it down and

bring it back to you. So they're bred to have very particular properties.

Goldens are also bred to have very particular properties. And those that are very

specific to goldens define the difference between a golden versus a retriever in the

general sense. Likewise, when we want to make objects that have very particular

properties but also share general properties with other objects, we're going to

create a new category of object and put the specifics in that very specific category

and then take the things that we can generalize and put them in more general

categories so we don't end up rewriting a lot of code. Or we end up reusing code,

but not copying and pasting it everywhere because that's annoying.

The other major advantage of using inheritance is that code is more intuitive. You

can make references to the same piece of code all over the place. But it's not as

intuitively accessible to do that over, and over, and over again, right? It's really

convenient to think of the fact that golden could be a subclass or subtype of

retriever, and that retriever could be a subclass or subtype of dog.

When I talk about this relationship in terms of object oriented programming-- when I

talk about these categories in terms of object oriented programming and when

you're actually looking at code, goldens are a subclass, or child class, of retrievers.

And retrievers are a parent class or super class of goldens. Likewise, dogs are a

parent class of retrievers.

So now, I've defined my terminology and also hopefully given you a very, very, very

quick review of inheritance. Now, I'm going to talk about the specifics in Python.

If I turn over here, I've written up a very short class definition for dog, right? Every

dog has the class attribute, cry. Every dog has an initialization method that gives

every dog a very specific name that is passed in when you initialize the dog. And

every dog has access to the class method, greeting, which returns a string that

says, "I'm," whatever the name of the dog is, and also the specific cry, which in this

case, is actually the class cry.

2



If you're unfamiliar with using the plus in terms of strings, it's just a concatenator. So

play around with that in IDLE if you're confused. I would recommend copying all of

this into IDLE, and then playing around with a particular instantiation of dogs, in this

case, Lassie.

If you look at Lassie.name, you'll end up going after self.name, which is specified

when your initialize the object. So Lassie's name is Lassie.

Likewise, if you were to type in Lassie.greeting, open paren, close paren, and hit

Enter, you should get a string return that says, "I'm Lassie," comma, "bark." Mostly

this is to familiarize you with object oriented in Python in the general sense. Now,

we're going to look at what happens when you want to set up a subclass.

If I set up class Retriever and I want to inherit from the super-class, Dog, I'm going

to pass in Dog. This is in the same syntax that I would use if it were a function and I

wanted to pass in a parameter. If I wanted to inherit from multiple things or multiple

classes, I would put multiple classes here. Right now, we're just going to inherit from

Dog.

Note that I have no code here. This is pretty much meant to explicitly specify the

fact that Retriever is not actually going to introduce any new properties to dogs.

Their types are going to be different. So if I create something that's a Retriever, it

will be of object type Retriever, versus if I create something and say, "Dog," open

paren, close paren, it's going to be of type Dog.

But what happens when I create a Retriever-- and as an aside, if you know who

Benji is, I know he's not a retriever. But bear with me here. If I create a Retriever, it's

first going to look for an initialization in any other methods or attributes in the

Retriever class definition, run any code that's here, and then go to the parent class,

and run all the code here.

So even though Retriever did not have any explicit code underneath it, I can still

interact with the object, Benji, the same way that I interacted with the object Lassie.

It has all the same methods and all the same attributes. Phew. So there's basic

3



inheritance.

And I will make another aside that if you're doing this, you probably don't need to

create a subclass in the first place. If you're designing your own code, and you're

trying to think about what the best way to organize things is, if you have to create a

subtype or a subclass and there are no new methods or attributes or no different

ways of addressing those methods or attributes, then this category is probably

actually just this category. You may want to make a difference so that you can do

interesting things with type checking. I think that's the only thing I can think of that

would justify it. And I might be wrong. Python gurus out there should correct me. But

a thing to keep in mind.

So we've done the first half of our inheritance. We're going to inherit one more time

and create a class of golden retrievers. Once again, I've got my class definition and

my indication that I'm going to inherit from Retriever. I don't have any initialization or

attribute assignments. I only have a definition for greeting.

So what happens here? Well, the first thing we always do is look for an initialization

method. Golden doesn't have one, so it's going to check the Retriever class.

Retriever doesn't have one, so it's going to check the Dog class. The initialization

method is here. So when it runs the initialization method, it's going to run this code.

The first thing that's going to happen is any code, or any attribute assignments, or

method definitions here are going to be considered the canon, or the first thing that

any Golden is going to reference. So greeting is going to be executed before

greeting used in any other place. You notice the only difference between this

greeting and the Dog greeting is that "OHAI!" has been prepended to the phrase.

And the way that we end up doing that is we refer to-- we concatenate, and then

refer to the superclass. And once again, we have to pass in the explicit argument,

self, when we're talking about a class definition. Later, when you actually instantiate

an object and use your parens, you're not going to have to put self as an argument.

It'll get confused. We'll go over that in a second.

4



So let's say I create a golden retriever, Sidney. I'm going to pass in one argument,

which is the name. We're going to consider all the definitions here first, which

means that goldens are going to have a method for greeting that is specified here.

It's going to use the method for greeting from Retriever. And we could put in

anything here, right? We could put Dog.greeting. We could put in some other

function that is in the same environment as class Golden. But here, we can explicitly

access the superclass that we defined here.

We're going to head over to Retriever to see if there any additional methods or

attributes that are a consequence of being a subclass of Retriever that we need to

add to our definition. Now, we just hit the pass. On the other hand, Retriever inherits

from Dog. So once again, we have to jump over to a super-class and grab any

attributes or methods that are defined there as well.

So all the way back over to Sidney. When I call Sidney.greeting(), the first thing that

happens is that I look in the most specific subclass, or whatever my object type is

and see if there's a definition for the method. Because there is, I'm not going to use

Dog.greeting(). I'm going to use Golden.greeting(). Golden.greeting() says return a

string that says, "OHAI!" And also append it to whatever Retriever.greeting()

returns.

I go over to Retriever. It's not here, but I still have a reference to Dog. I go over to

Dog. It has a method for greeting. And it says, "I'm Sidney. Bark." So the final return

type should be, "OHAI. I'm Sidney. Bark."

This concludes my basic overview of inheritance of object-oriented programming in

Python for 6.01. Next time, I'll review some interesting features in Python that

actually originated in earlier languages and also particularly things in aliasing that

people that are new to Python or people that are new to programming find

especially confusing.

5


