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PROFESSOR: Today I want to talk a little bit about designing control systems. This will finish up our

discussions on signals and systems. Let me then just briefly review where we are.

Hopefully this might help you also for perspective with regard to thinking about the

exam tonight.

We've looked at a bunch of different kinds of representations for discrete time

systems. The easiest, most concise method we looked at was the representation

using a difference equation. That's mathematically as concise as you can get. But it

doesn't tell you important things like who's the input and who's the output and what

are all the different ways that you can get through the system from input to output?

So for that question block diagrams are nice. Block diagrams are graphical. It

makes it very easy to see when there is, for example, a cyclic path through the

network.

But they're graphic. They're not nearly so concise as difference equations. So then

we went on to operators. Operators are just as concise as difference equations but

they contain additional information because the operators have an implicit

argument. So there's an input, which is the argument to the operator, and there's an

output, which is the output of the operator. So you can tell who is the input and who

is the output.

So that's good. That sort of combines the strengths of difference equations and

block diagrams. You end up with a concise representation that has complete

information about the signal flow paths.

Furthermore, you can analyze the operators by using polynomial mathematics and

that gives rise to the notion of a system functional. And that's a very nice closure
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because that represents an abstraction that lets us think about a whole system as

though it were just one part, one thing, one operator.

So we use that structure then, all of those representations, to try to learn about

feedback. And first off, in the block diagram it's very easy to see that any time you

have feedback -- feedback so enormously powerful that we want to use it in design -

- but you can see immediately from the structure of the block diagram that if you

have feedback then you have cycles.

Why is that interesting? Well, that's interesting because if you have cycles then even

transient inputs can generate persistent outputs. So that's a kind of behavior that we

would like to understand.

From the nature of feedback it generates cycles. From the nature of cycles it

generates persistent responses even if there's no input. And we saw that we could

characterize those by thinking about those responses for one part at a time. And

those parts we thought of as poles and the responses to a single pole we called

modes. So we thought through a way of decomposing the response of a

complicated system in terms of a number of additive components that are based on

poles. Poles are just the base of a geometric sequence.

So today then what I want to do is use that framework to think about design. How

would you optimize the design of a controller?

Looking back to where we've been, way back in Lab 4, ancient history, we looked at

how you could program the robot to approach a wall. And we saw that depending

on how you set up that system you could get very different performances. And what

we'd like to do is have a way that we can design for performance without actually

building it. The kind of thing that we built in the lab, Lab 4, was so easy that building

it to determine its behaviors was not a bad problem.

But In general if you were building a 777, there's more than one pole. And you

wouldn't necessarily want to test drive all of the bad configurations. So we'd like to

be able to understand that kind of a problem analytically. We'd like to be able to
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analyze it.

So using the different representations you can generate a very concise

representation just thinking in terms of difference equations. You all did this in Lab

4. And you get a single difference equation that tells you in principle everything

there is that you could know, but not in a form that's very easy to analyze.

It's a bit better if you translate the difference equation into a block diagram because

now you can see that this system of equations has in fact two feedback loops in it.

Two cycles. Two things that might potentially generate persistent responses to

transient signals, which could then degrade performance. If the transient signal lasts

ten years it might be a bad controller. If the 777 hits turbulence and never stabilizes

that would be bad. If small disturbances got bigger with time that might be bad,

right?

So we can see that this simple controller described by these difference equations

has the potential to do that sort of stuff. And we'd like to understand, when does it?

The easiest way to think about analyzing this is to focus first on the inner loop and

ask the question, what's the functional representation for that box which we would

call an accumulator? This box, this thing, accumulates at its output, the sum of all

the things that ever came in so we call it an accumulator. So what's the functional

representation of an accumulator? Well, we just do polynomial math. Easy so we

can recognize from the block diagram that the signal Y could be constructed by

applying R to W.

But we can also see in the block diagram that W is the sum of X and Y. And then if

we take the left hand side and the right hand side of this double equation we get

something that involves just X and Y, which we can solve for the ratio Y over X.

Which then says that the ratio is R over (1 minus R). That's a functional

representation for the effect of the accumulation.

That's also something that comes up so frequently in the design of control systems

that we give it a name. We call this Black's Equation. And it's especially useful to
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avoid these little trivial steps in algebra, to just jump to the answer.

So let's see that everybody's following me. The equation for this box is the thing that

we will call Black's Equation. It's not mysterious. It's something that you could

derive, so derive it. Figure out the functional form for the system that goes from X to

Y and figure out which of these forms is correct. (1) through (4), or (5) if none of the

above applies. So take 30 seconds, figure out the answer. I'm going to ask you to

raise your hand. You're free to talk to your neighbors.

OK. So everybody who raised your hands tell me what the right answer is. OK,

wonderful. It's about 95%. No. It's about 100% correct out of about 95%

participation. So the answer you can form just like we did before, no particular tricks,

using simple algebra. Simple algebra you get F over (1 minus FG). The thing I want

you to recognize is kind of a graphical way of thinking about that. And you can just

memorize F over (1 minus FG) and that's fine.

But there's some interesting things that the designer thinks about. This functional

form is F, that's the forward gain. That's the gain through the system starting at the

input and going directly to the output. So this form says that the closed loop gain,

the system function that results when the loop is closed, is just the forward gain, F,

divided by (1 minus the loop gain). The loop gain is the product around the loop

once. So that's just a convenient way of thinking about it. Any time you have a

feedback system of this type you can think about the closed loop response as being

the forward path F divided by (1 minus loop gain FG).

So the answer was 1. And generally we'll see two different ways of representing the

system. Sometimes we'll represent it with a plus as we did with the accumulator.

Many times we'll represent it with a minus. That's the way we think about control

problems. We put in the minus because we'd like to think about the controller as

trying to make something go to 0. So when you take the difference, that gives us an

error signal. And then we can think about the controller being the thing that drives

that error to 0.

But however you think about it, there's two forms that are very closely related. They
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really differ by just a minus sign which you could think of as just multiplying G. So it's

sort of like the right hand side is just a minus G plugged into the left hand side.

So then the way you use this idea, you think about the block diagram and you say,

OK I can replace this thing with an equivalent system which is R over (1 minus R)

and then repeat. So the R over (1 minus R) means that, if you think about Black's

Equation now for this loop, you should think about the forward gain, K minus T, R

over (1 minus R), that's this. Divided by (1 plus the loop gain). So 1 plus, and the

loop gain, well, the wire down here just has a gain of 1. So the loop gain and the

forward gain are the same thing. So you get this kind of expression which simplifies

to this.

There's two things I want you to see about this. First off, I want you to see that even

though the simple-minded way of plugging in said that we should have got a

quotient of quotients N over D over N over D, it's simplified to a single ratio. If you

design a system out of just adders, gains and delays, that will always be true.

There's a closure. It will always be the case that the functional that represents a

system of that form will always have the property that it's a polynomial in R divided

by another polynomial in R, that's just the way polynomials work.

The other thing is that you can now start to interpret what the behavior of this could

represent in a simpler form than thinking about this. So this kind of a representation

that leads to intuition about what the behavior should be is very helpful when you're

thinking about design. And in particular this particular thing says that if we think

about a simpler system that could generate that same response we can generate

some intuition for how we would like to set the parameter k. So in particular this

system functional which we generated for this system could equally apply to that

system. Is that clear?

So there's a numerator, which I've represented here. There's a numerator, which

has an R in it and has a minus kT in it. I'm going to, for reasons that you'll see in a

minute, I'm going to call something P0 because it's the pole. So the numerator I've

represented here and this denominator has this form. And I wrote it that way
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because this is the canonical form for the way of thinking about a pole.

So what I showed is that even though this was a more complicated system you can

think about it as the cascade of a delay, a gain, and a pole. The pole can be

calculated from the gain, the pole is the multiplier for R, so the pole is (1 plus kT).

So if I were to choose kT to be minus 0.2 then the pole would be at 0.8. If the pole is

at 0.8 then the mode, the natural response to the pole, would have the form P to the

n. They always have the form geometric P to the n, so it would look like 0.8 to the n.

Because of the pre-multiplier of 1 minus P0 the whole thing gets multiplied by 0.2

and because of the delay the whole thing gets shifted to the right.

The important thing is that by thinking about manipulating this as an operator we

can recognize and simplify the form of the behavior. That gives us an intuitive grasp

over how to best choose kT. It's all clear?

Now, the behaviors that we're interested in are not always unit-sample responses.

We do unit-sample responses because they're the easiest possible thing we could

think of, right? A unit-sample is the simplest non-zero signal. A unit-sample is the

signal that is different from 0 in exactly one place -- the easiest possible place, 0.

And it has its easy-as-possible non-zero value -- 1. So we focus on the unit-sample

signal because it's the easiest possible signal we could think about.

But when we're thinking about behaviors we're often thinking about other things.

Often we'll think about the step response. Here I have illustrated the way you would

measure a step response. A step response is what would happen if the output were

initially 0, if we were at rest, and suddenly we turned on a signal that was constant

at 1.

That would happen in the robot case if we started the robot close to the wall, at rest,

near 0 -- so that the output signal is close to 0, but the desired input was a meter

behind. Then that would be an input signal that started at time equals 0 equal to 1

and persisted forever at 1. And the result then would be what we call the step

response.
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The step response is typically easier to measure in the lab than is the unit-sample

response. So we use the unit-sample response when we're thinking analytically,

when we're doing calculations, and we use the step response when we're in the lab

trying to measure something.

And the whole theory wouldn't be very useful if there weren't a close relationship

between those two things. This diagram illustrates the relationship. If we think about

a system H for which we would like to find the step response, the step response to

that system is what would the system do if you put the unit-step into the system. I've

represented the unit-step here as u[n]. u[n], the signal that is 0 for n less than 0,

and 1 for n bigger than or equal to 0 -- is just the accumulation of the delta function,

the unit-sample.

So this system, the cascade of an accumulator with H, would measure the step

response of H if it were driven with the sample signal. Because of the properties of

polynomials and because block diagrams follow the rules for polynomials, we can

flip these whenever the systems both start at rest, and if we flip those we get a

different interpretation.

What this says is that if you were to take H and stimulate it with the unit-sample you

would get h, little h, which we would call the unit-sample response because it's the

response to the system when the input is the unit-sample. So if you measured h

with the unit-sample rather then with the unit-step you would get the unit-sample

response from which you could generate the step response by running it through an

accumulator.

So what that says is there's a close association, there's a close relationship,

between the unit-sample response and the unit-step response. One is the

accumulation of the other. The unit-step response is the accumulated response to

the unit-sample response. So that means that in that previous example where we

saw that setting kT equal to minus 0.2 resulted in this unit-sample response, that

would correspond to this unit-step response. All you do is for every sample you

calculate, for this response you calculate the sum of say, n equals 0, you would take
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the sum of all of the previous answers in H[n]. It's the accumulation.

So it starts at 0 since the sum of all those numbers is 0. Then at time 1 it becomes

the sum from here back so it becomes 0.2. Then here it's the sum from here back.

And if you add these all up it becomes a number that approaches 1. Not

surprisingly, right? If you've got a feedback system and if you started the robot up

against the wall and the desired position was one meter behind you would

monotonically approach 1, OK?

And what you can see is that if you change the value of the pole, here I've changed

the kT from minus 0.2 which is what the previous answer was, to minus 0.8, I've

changed the value of the pole, the unit-sample response got faster. And the unit-

step response also got faster.

The point is there are different kinds of performance metrics that we might want to

use, unit-sample response, unit-step response, but the responses of all of them,

you can tell something about the response to all of them from the response of the

unit-sample signal. That's why we focus so much on the unit-sample signal. It's not

because it's the most popular thing to use in the lab. It's because it's the easiest

thing to calculate with and it gives us insight into things that we would like to

measure in the lab.

So for this very simple system what you can show is that there's only a few possible

behaviors, a few categories of behaviors. If you were to choose kT to be between 0

and 1, then the pole, which is (1 plus kT) would also be between 0 and 1. Since the

system has a single pole you can say a lot about the response from the numerical

value of the pole.

If the pole is between 0 and 1 then the response is going to be monotonic and

converging. That results because the unit-sample response was positive only and

decayed towards 0. Because it's positive only it means monotonic -- goes to 0 and

makes it converge.

So you can infer properties about the unit-step's response from properties of the
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pole just like we could infer properties of the unit-sample response. If you changed

kT to be between minus 2 and 1 you get a P0 that's between minus 1 and 0. Again

that's just that equation. That says that the response will be alternating.

So the sign of the unit-sample response goes positive then negative. It still

converges in the sense that the unit sample response approaches 0. And what that

means for the unit step-response is that the unit-step response will converge toward

1. The sign doesn't alternate around 0, the sign alternates around 1. So again, you

can infer the properties of the unit-step response from the properties of the unit-

sample response.

And if you have kT that is less than minus 2 then you get a P0 that's less than minus

1 and that's a divergent response.

So the point is you can infer properties about the control system by thinking about

the poles of the system where here I've illustrated it for a simple system that only

has one pole.

OK. I told you a bunch of facts. Now you figure out something. How would I choose

k for this system to get the quote, "best performance?"

So which value of kT would give the fastest convergence for the unit-sample signal?

OK, participation is down but the hit rate is still good. Virtually everybody who

volunteered to answer got the right answer.

The most popular answer was (2). Why is the answer (2)? What's the range of

possibilities that we could get? If we choose k, or kT, we could choose kT to be--

what's the range of kT that we could use? Minus 2 to 0? [INAUDIBLE] we could use

kT, any real number, right? We couldn't use imaginary numbers because that

doesn't sort of make sense for a real system.

But we could choose any real number. The real numbers map, according to this

chart, the real numbers map to a different real number. If you choose kT you can

figure out where is the pole by that mapping.
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Where would you put the pole to get the fastest response? If you have your choice

of putting the pole anywhere on this red line, that red line or that red line, where

would you put it and why?

AUDIENCE: Just inside the [INAUDIBLE]

PROFESSOR: Putting it inside the unit circle would probably be a good idea because?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: Yeah. If you didn't put it inside the unit circle it wouldn't converge. That's right.

So you like [UNINTELLIGIBLE] the inside. Given the choice of anywhere here and

anywhere here which would you choose? How would you choose it? Yeah.

AUDIENCE: Derive.

PROFESSOR: Derive. And how do you get that?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: What would happen if it was close to [UNINTELLIGIBLE]? It converges quite quickly,

right? Poles always converge geometrically. The base of the geometric is the pole

value. So you'd like the pole to be as small as possible to get the convergence as

fast as possible. That make sense to everybody?

So in particular for this example if you chose kT to be minus 1 in that limit then this

entire factor goes away. So the entire response degenerates to R and R is not

instantaneous but it's pretty fast. What that says is that you get to the final value in

one step.

So if the input consisted of a unit sample, which has non-zero value only at 0, the

output would have non-zero value only at 1, right?

Thinking about the way that works in practice, think about the robot and think about

we're trying to drive toward the wall. If we made kT be minus one, and just for the

sake of being concrete let me say that T is about 1/10. That's what the sampling
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period is for the robots we use in the lab. If T were 1/10 then the best k would be

minus 10. And what that says is that if we were 1 meter away from where we want

to be we would set the velocity to 10 meters per second. What that says is that if we

started 1 meter away from where we want to be, so this is intended to represent

position on the same axis that this has showed, so if we started here and we wanted

to be here, time is plotted down.

If we use the rule that we just specified then we would set the velocity given this

condition which is 1 meter away from where we want to be. We would set the

velocity to be 10. If we set the velocity to be 10 then after 1 unit of time, after 1/10 of

a second, we are 1 meter to the right, which just happens to be exactly where we

want to be. Had we chosen k to be bigger we would have overshot. Had we chosen

k to be smaller we would have undershot. k equals 10 gave us precisely the right

answer so that we get there in one fell swoop.

Then on the very next step we would compute a velocity of 0 because we are at

where we want to be so we would stay there. And that condition would persist

forever.

The idea would be this simple system provides a way that we could set the gain so

we could get to where we want to be in one step. It's hard to beat that.

The problem that results and the reason you didn't see that good behavior in the lab

was that the sensors in the robot don't work instantaneously. They introduce delay.

And as an idealization of that delay I want to think through the same problem. But

now let's say that the sensor delays the input to the sensor which is the output of

the system. Let's say that the sensor introduces a delay of 1, so now instead of

reporting d sensed, which was d0[n], it reports d0[n minus 1].

So now what would happen? Now with the delay, if I started here and if by some

mysterious process I was here at time n equals 1, then I would calculate my new

velocity. What would be my new velocity here? I'm right where I want to be. What

would be my new velocity if I assume that the sensor has a delay of

[UNINTELLIGIBLE]?
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AUDIENCE: 10.

PROFESSOR: 10. Because of the delay the sensor is reporting that I'm a meter away from where I

want to be. So the controller calculates, oh, I need to go forward a meter. I'll set the

velocity to 10. So having set the velocity to 10 and then one step goes by, now

we're completely on the wrong side. That's what happens when you put delay into

the system. So because we're basing this decision on where we were last time we

go to the wrong place.

So now we're here. What will the controller say next?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: Stay here. You're in a great place. I'm really 1 meter too close. In fact I banged into

the wall. But the sensor is telling me I'm exactly where I want to be so stay here.

Say I didn't kill myself, what will the velocity next be? Minus 10. So now I tell myself

to go back. That's probably a good move. But now I still think I'm too close to the

wall so I tell myself to continue to back up.

The idea is that I get poor performance. The delay had a devastating effect on the

way that the controller worked. Even though it's a tiny change to the way the system

works it has a devastating effect on behavior.

We'd like to be able to predict that without having to measure it. Here's the same

equations except that I put a delay in the sensor. Here is the same block diagram

but I've represented a delay in the sensor path. So now the question is, what's the

new functional representation for that control system?

So what's the answer? Can you rate the functional form for this system as one of

(1), (2), (3), or (4), or is it none of the above? About 1/3 participation and about

100% correct. The answer's four. You get to use Black's Equation or however you'd

like to think about that. You can think about reducing the inner loop the same as we

did before and then think about this as forward over (1 plus loop gain) but now the

loop gain has R squared in it instead of R. We get this form.
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How does this form differ from when the R wasn't here? What's the difference

between R not there and R is there? What's the answer? Anyone?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: The squared term. So this term in the previous form was just an R and in this form

is a square and so what's that do? What's the importance of the fact that there's a

square there? Two poles, right? We now have a polynomial in the denominator that

is quadratic in R.

And what that's going to do is it's going to give us two poles instead of one. The

importance of that is that now we're going to have to think through-- we previously

categorized what were all the behaviors you could get from one pole. The behaviors

you can get from one pole were monotonic divergence, non-monotonic alternating

divergence, monotonic convergence, alternating convergence. So there were four

behaviors that were possible with one pole.

Now we have to think through what are all the possible behaviors that we could get

with two poles. Different problem. Hopefully they're related.

So here, the way we would find out what the poles are is take this expression,

substitute for every R, 1 over z, turn the ratio of polynomials in R into a ratio of

polynomials in z. To do that in this case I had to multiply numerator and

denominator by z squared. Having done that I get a second order polynomial in z in

the bottom so there's two poles which are the roots of that polynomial. And that's

just a quadratic equation.

The interesting thing now is to map out what are all the possible behaviors that that

system can give us. It's important to realize that's a simple generalization of what

we saw before. It will be the case that any system that we construct out of adders,

gains and delays will have the property that we can write the system functional as a

ratio of polynomials in R. By the factor theorem we will always be able to factor the

denominator. And by the notion of partial fractions we'll always be able to write
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some complicated expression like that in terms of a sum of parts. Each part being

first order.

The intuition we get from this is that what we ought to do is factor the denominator,

find the poles, and associate a behavior with each of those poles.

Here's what the problem looks like for the two pole problem. If we have the general

form given here and if we start by thinking about kT having a small magnitude, if kT

has a small magnitude then we have 1/2 plus or minus the square root of 1/2

squared. So that's 1/2 plus or minus 1/2. That's 0 or 1. So the poles for this system,

if you make k be very small, the poles are at 0, near 0 and near 1. Is that a good

system response or a bad system response?

Bad. Why? Well, we're trying to think through the behavior of the second order

system by thinking about the separate behaviors of each of the poles.

Is this a good pole or a bad pole? Why? The response is always pole

[UNINTELLIGIBLE]. The mode associated with the response at a pole near one is

something near one to the end. That never converges. If you start with some error

the error persists forever. Well, that's not good. If wind turbulence knocks you into a

decline in your airplane and it persists forever, that's not good. You would like those

things to damp out.

So this pole is bad. How about that pole? That one has a response that decays

quickly. But the problem is that when you add the two pieces together, that was the

reason I showed you this decomposition, you can think about the polynomial being

factored and being broken into a number of parts. The part that's associated with

the pole near one has a response that goes for a long time. So that will

asymptotically dominate your response. So we refer to this as a dominant pole. This

pole dominates the response. That's a way of inferring the behavior of two poles

from the sum of single poles. In this particular case there's one pole that matters

more than the other one. So we call that pole the dominant pole.

If you were to make kT more negative, So here's the general form. If you make kT
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negative, you can make the thing under the radical sign go towards 0. If you made

the thing under the radical sign go to 0 then you would get two poles at 1/2. So here

we would see that if kT were minus 1/4, if kT were minus 1/4 we would have 1/2

squared, which is plus 1/4. Minus 1/4 would give us 0 under the radical.

So we would get two poles at 1/2. Is that good or bad? Well, it's better than the

previous example, right? Because each of those poles is associated with the

response where the error gets half what it used to be on every step. So it

converges.

If going from 0 to minus 1/4 is good, then going to minus 1/2 might be better, right?

If you continue that trend, say you make kT be minus 1, if kT is minus 1 then you

get 1/2 squared minus one. So 1/2 squared is 1/4, minus 1 would be minus 3/4.

That gives us a complex pole here. So we get two poles that are right on the unit

circle.

What's that mean? That means oscillations. Oscillations is something you can't get

with one pole with a real system. Oscillations result from a poll that has an

imaginary component. If the system is real you could only get such poles in pairs.

So it's this pair that makes sense for a real valued system. And that gives rise to

oscillations and that's exactly what we saw here. So we can associate the

oscillations that we saw in the simulated lab experiment with poles that have

imaginary components.

So what would be the period of the oscillation in the system given by 1/2 plus j root

3 over 2?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Excuse me? Excuse me?

AUDIENCE: Where did the root three come from?

PROFESSOR: The previous page. If you substitute minus 1.

So what's the period of the oscillation? So the period's represented by 5 converged
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into 6.

So how do you get 6? The easiest way to think about that is to think about the poles

being expressed in polar notation. The poles we previously said were 1/2 plus or

minus j root 3 over 2. That's the same as e plus or minus j pi over 3. It's easier to

use that form because if you take that form, so if you think about e to the j, what

was it, 2 pi over 3? Pi over 3.

So if you think about that form, that's the pole, we can write that that way. Then the

inside has a magnitude of 1. So we can think about that just being a magnitude of 1

and an angle of pi over 3. So when you raise that to the n, the magnitude to the n,

one to the n is always 1, and the angle raised to the n, it just increases linearly with

n. So the angle goes from pi over 3 to 2pi over 3 to pi to 4pi over 3, et cetera.

So you can think about this going from pi over 3, 2pi over 3, pi, 4, 5, 6. It takes n

equals 6 to get around to where it started so the period is 6.

If you were to further change the game, if you were to make it even more negative,

the poles would go outside the unit circle. And then what would happen?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: Right. So that's completely unacceptable. The point is that by changing the gain you

can get any behavior on this figure which is called the root locus. So root meaning

the root of a polynomial. Locus meaning the acceptable values of points. So the root

locus shows you all the possible behaviors they could result from this system.

So given that root locus, how would you choose k to make your system response as

fast as you could? So what value of kT would you want? Everyone raise your hands.

That's very good. So the most popular answer is number (2). So why would the

answer be number (2)? What do you look at? Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Remember what we're trying to do. We're trying to infer properties of the behavior
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of this second order system from the pole locations. We know that there's an

expansion that lets us expand the system in terms of the sum of two first order

responses. The slowest of the first order responses will dominate eventually. So

what we need to look at is the slowest of the two responses.

We would like to know of the two poles which one is the slowest? The slowest is the

one that's closest to the unit circle. So we would get the fastest response when the

slowest one is as fast as possible. As the poles initially go toward each other from 0

to 1 this one is getting faster, this one is getting slower. So the slowest one is this

one. So the slowest one is fastest when they meet.

And then when they diverge does the slowest one get faster or slower? It's already

slower because it gets closer to the unit circle. So you get the fastest response

whenever you get the two poles both colliding at 1/2 and that was the case that

happened when kT was minus 1/4 from two or three slides ago.

So the idea then is to try to infer what would be the behavior of this higher order

system by thinking about the behaviors of the individual components, here the

poles. And what we saw was something that's in fact a very important general trend.

What we saw was that we first analyzed the wall finder system assuming there was

no delay in the sensor. And we found that that system was characterized by a single

pole and we had the design freedom of putting that pole anywhere we wanted to on

the real axis. And that allowed us to choose the pole to be at 0 which gave terrific

performance.

The interesting thing that happened when you add just one more pole by putting a

delay in the sensor, you make the system more complicated and now you can't

possibly get nearly so good behavior. The behavior is a lot worse than it was before.

And in fact, if you were to do the same kind of analysis by putting yet another delay

in the sensor you would find even worse behavior.

The idea then, the generalization of the way the behaviors is working, generally

speaking adding delays inside a feedback loop is a destabilizing thing. Generally as

the number of delays increases you end up having to back off on the maximum gain
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that you can use because the system becomes less stable.

So the overall moral is that delays are bad generally. I mean, you could concoct

some kind of a weird scheme where that wouldn't be true. But it's actually hard to

concoct such a weird scheme. In general, and in virtually every physical system that

you'll run into, adding delays makes the system harder to stabilize. And that's the

big message.

And the system that we looked at in the lab, the wall finder was actually quite hard

because the number of delays was large. If you try to track where delays can enter

the robot system they get in at very many different places. In the physical sensor, in

the microprocessor, in the conversion from analog to digital, there's a number of

delays in that system. And that's why it becomes hard to stabilize.

OK. So that's the main content for today. What I want to do is give you one more

practice question. The big problem that I want you to think about from today is how

do you characterize performance? When we had a single pole performance was

easy to talk about because performance was diverging monotonically, diverging

alternating, converging monotonically, converging alternating. There were four kinds

of behaviors.

When we went to second order we saw some new behaviors. It could become

oscillatory. What I'd like you to do now is think not just about those properties but

many other properties.

So here's some questions. Think about the system on the top and I'd like you to

infer properties about that system. In particular, does this system have three poles?

Is the unit sample response, is there a way to write that as the sum of three

geometric sequences? What's the unit sample response? And is one of the poles

that z equals 1? So think about the system, think about five ways of characterizing it

and tell me how many of those five characterizations is correct.

So how many of the properties are true?

AUDIENCE: [UNINTELLIGIBLE] Probably 2/3 correct?
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PROFESSOR: How many poles? How do you get three? Where are the poles?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: How do I find poles? What do I do? Yes?

AUDIENCE: You use Black's Equation [UNINTELLIGIBLE] the top you can express

[UNINTELLIGIBLE] so use Black's Equation to express the system function as R

cubed over (1 minus R-cubed) then--

PROFESSOR: That's right.

AUDIENCE: --the denominator as an order of 3 and you combine the 3s.

PROFESSOR: So a little more formally, we would take this thing and we would rewrite that with R

goes to 1 over z. So we get 1 over z cubed, 1 minus (1 over z cubed), which is then,

clearing the z cubes we would get 1 over (z cubed minus 1).

How many poles? Three. What are the poles of z cubed minus 1? Three poles in

what?

AUDIENCE: 0 [UNINTELLIGIBLE]

PROFESSOR: And so let's vote. Let's take a vote. There's two poles at z equals 1. Yes? No?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: Why not?

AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: So there's two poles. I made a [UNINTELLIGIBLE] plane. Where's the poles? Well,

you could factor it, right? If you factored it you'd find that there is a pole at 1, right?

But then there's two more poles like that. So the poles are the three roots of 1,

which can be written like 1 e to the j, 2pi over 3, and e to the j minus 2pi over 3.

Which pole was the dominant pole?
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AUDIENCE: [UNINTELLIGIBLE]

PROFESSOR: OK, bad question. What's a better question?

AUDIENCE: How many dominant poles are there?

PROFESSOR: How many dominant poles are there? That's a much better question, yes. There's

sort of three poles that are equally dominant, right? They all have the same

magnitude.

Why do we talk about dominant poles? What are dominant poles good for? If I told

you that I had a pole at 3 and a pole at minus 1, which one's the dominant pole?

AUDIENCE: 3.

PROFESSOR: Why?

AUDIENCE: Greater magnitude.

PROFESSOR: Greater magnitude. Why do we care? We don't care, right? What's good about the

dominant pole? Well, we can write this response as something that looks like three

to the n plus minus 1 to the n. If you let n get big enough the only one that matters

is 3 to the n.

So if all you care about is exactly how the plane was flying the instant before it hit

the ground then you would only need to worry about long time. And if you only worry

about long time you only need to worry about the pole that's worst behaved. That's

where the concept comes from. So none of these poles are particularly worse

behaved than the others.

What's the unit-sample response associated with that pole? We have a name for

that [INAUDIBLE] right?

AUDIENCE: It's huge.

PROFESSOR: It's [UNINTELLIGIBLE]. What's the unit-sample response associated with this pole?
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Well, it's got a complex value right? So the unit-sample response associated with

that pole is e to the j 2 pi over 3 n. That's a complex number. That's 1 at time 0 and

e to the j 2 pi over 3n at time 1 and e to the j 4 pi over 3 at time two. So it goes from

here at 0 to here at 1 to here at 2,3, 4, 5, 6, 7, 8.

What's the period of this pole? What's the period of the unit-sample responses

associated with that pole? 3. Because it takes 3 to get around to where you started

again.

What's the period of this pole? 3. You just spin around backward.

What's the period of the response associated with that pole? Bad question. All right,

what's a better question? Is there a period associated with it? You could say that

period 1 [UNINTELLIGIBLE] definition of period.

What's the period of this pole? Dumb question, right? Period implies repeat. If the

response repeats itself after some time then we would say the response is periodic.

Neither of those poles, well, the minus 1 is. Is the minus 1 pole periodic? Yes.

What's the difference between periodic and alternation? Does a [UNINTELLIGIBLE]

alternate?

AUDIENCE: Yes.

PROFESSOR: Does it oscillate?

AUDIENCE: No.

PROFESSOR: Bad question. Alternate is a word that we invented for one pole. Because the

response alternated in sine. The unit-sample response in one pole, where the pole

is a negative number, alternated in sine. So we gave that a name.

Alternation is not necessarily something that we would like to associate with a higher

order system.

Periodic is perfectly reasonable to talk about for a higher order system. Periodic
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merely means that if y of n were a periodic signal that I could express y of n plus n

as y of n. That would be periodic. If the thing repeats itself we would say it's

periodic.

So the point of going over this stuff is just to give you some exercise in thinking

about how to think about properties of systems. We develop properties initially

thinking about one pole. Those properties were easy. Converging, diverging,

monotonic, alternating.

When we try to think about corresponding properties of higher order systems we

can't simply map the simple properties of first order systems into the other. We have

to think about more complicated things. Then we think about things like dominant. If

one of the poles has a bigger magnitude than the other then for large times we can

ignore the smaller one.

What happens for short time? Does this response monotonically increase with time

for all time? No. Since the response associated with minus 1 alternates in sine, for

short times, for times with n close to 0, that can be just as important as this one. So

the dominant pole idea tells you how things work when you have large times. It

doesn't necessarily tell you how things work when you have small times.

How about, the unit sample response is the sum of three geometrics. Yes or no?

What are the three geometrics? And the answer to that's yes. That's very important.

The three geometrics over here are this pole to the n plus this pole to the n plus

something that goes with this other pole to the n. Now it's a weighted sum but the

weights are not necessarily 0.

The slide that I showed you for the partial fraction decomposition, you can always

write a higher order system as a sum of first order factors. That's the partial fraction

expansion. That doesn't mean the weights are all unity.

Number (2), can you write the unit-sample response as the sum of three geometric

signals? Yes. There it is. And if you're really good at complex math you could find

out a, b and c. And that would tell you the unit-sample response and that would tell
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you the answer to (3) and (4).

Is the unit-sample response 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1? Or 1, 0, 0, 0,

1, 1 -- whatever. Is it one of those two or something different? And how do you

figure it out? How do you figure out the unit? Is the unit-sample response-- Is

number (2) correct? Is the unit-sample response 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1--

Yes? How do you know that? You could solve that equation. Is there an easier way?

Yeah?

AUDIENCE: I wrote it as a difference equation.

PROFESSOR: Just write the difference equation. Exactly. So even though I bad-mouth difference

equations a lot, here it's easy. In fact, you can see it in the network. Thinking about

the difference equation would be easy. Thinking about the network would be easy.

If we think about the unit-sample response of this thing started at rest, rest means

this is 0, this is 0, and this is 0 initially. Unit-sample response means this becomes 1

at time 0. At time 0 this is 1, this is 0, this is 0, this is 0. So if I think about what's the

time response look like and I did plus, this is 0, 1, 0, 0, 0. The first answer is 0.

Clock ticks. What happens? This is 1. This becomes 1. This doesn't change. That

doesn't change. This goes to 0. 0 comes around here. That goes to 0. So that's the

answer at time 1.

What happens at time 2? Just keep working it. The clock ticks, this goes to 1, this

goes to 0, these stay 0, this stays 0. That's the answer at time equals 2.

Now the clock ticks. Now this comes over to here, that means it comes back here.

This is still 0. That comes to 1. That's the answer for time 3. Now the clock ticks.

And you can see the whole thing would just repeat itself now.

Is the response periodic? Yes. The response is periodic. What's the period? 3. And I

can see [INAUDIBLE] if the [INAUDIBLE] there it's going to have be related to the

period over here. These periods are not same. This period is 3, this period is 3, this

period is 1, if you want to call that a period. But they are related.
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OK. The point of this exercise is to illustrate two things. We inferred properties of

first order systems by looking at a single pole which for a real system could only

behave in one of four different ways.

Second order system introduced new behaviors. Now we can oscillate, which we

couldn't do before. Having got to oscillation, oscillation came about because of

complex numbers. If you go to higher order systems nothing new happens in

algebra. There's no such thing as meta-complex numbers, right? Complex is as bad

as it gets.

So you can have complex numbers. The higher order behaviors can still have

complex numbers but you have to think when we ask you, what's the property of a

higher order system. You can think about it in terms of the individual parts but it

requires some thinking.

OK. Good luck tonight. See you then.
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