
5 Functional Style

In the functional programming style, one tries to use a very small set of primitives and
means of combination. We'll see that recursion is a very powerful primitive, which could
allow us to dispense with all other looping constructs (while and for) and results in
code with a certain beauty.

Another element of functional programming style is the idea of functions as first-class
objects. That means that we can treat functions or procedures in much the same way
we treat numbers or strings in our programs: we can pass them as arguments to other
procedures and return them as the results from procedures. This will let us capture
important common patterns of abstraction and will also be an important element of
object-oriented programming.

5.1 Basics

But let's begin at the beginning. The primitive elements in the functional programming
style are basic functions. They're combined via function composition: so, for instance
f(x, g(x, 2)) is a composition of functions. To abstract away from the details of an
implementation, we can define a function

def square(x):
return x*x

Or

def average(a,b):
return (a+b)/2.0

And now, having defined those functions, we can use them exactly as if they were
primitives. So, for example, we could compute the mean square of two values as

average(square(7),square(11))

We can also construct functions "anonymously" using the lambda constructor:

>>> f = lambda x: x*x
>>> f
<function <lambda> at 0x4ecf0>
>>> f(4)
16

The word lambda followed by a sequence of variables separated by commas, then a
colon, then a single expression using those variables, defines a function. It doesn't
need to have an explicit return; the value of the expression is always returned. A single
expression can only be one line of Python, such as you could put on the right hand side
of an assignment statement. Here are some other examples of functions defined using
lambda.

This one uses two arguments.

>>> g = lambda x,y : x * y
>>> g(3, 4)
12

12

You don't need to name a function to use it. Here we construct a function and apply it
all in one line:

>>> (lambda x,y : x * y) (3, 4)

Here's a more interesting example. What if you wanted to compute the square root of a
number? Here's a procedure that will do it:

def sqrt(x):
def goodEnough(guess):

return abs(x-square(guess)) < .0001

guess = 1.0

while not goodEnough(guess):

guess=average(guess,x/guess)

return guess

>>>sqrt(2)
1.4142156862745097

This is an ancient algorithm, due to Hero of Alexandria.1 It is an iterative algorithm: it
starts with a guess about the square root, and repeatedly asks whether the guess is
good enough. It's good enough if, when we square the guess, we are close to the
number, x, that we're trying to take the square root of. If the guess isn't good enough,
we need to try to improve it. We do that by making a new guess, which is the average
of the original guess and x / guess.

How do we know that this procedure is ever going to finish? We have to convince
ourself that, eventually, the guess will be good enough. The mathematical details of
how to make such an argument are more than we want to get into here, but you
should at least convince yourself that the new guess is closer to x than the previous
one was. This style of computation is generally quite useful. We'll see later in this
chapter how to capture this common pattern of function definition and re-use it easily.

Note also that we've defined a function, goodEnough, inside the definition of another
function. We defined it internally because it's a function that we don't expect to be
using elsewhere; but we think naming it makes our program for sqrt easier to
understand. We'll study this style of definition in detail in the next chapter. For now, it's
important to notice that the variable x inside goodEnough is the same x that was passed
into the sqrt function.

5.2 List Comprehensions

Python has a very nice built-in facility for doing many interative operations called list
comprehensions. The general template is
[expr for var in list]
where var is a single variable, list is an expression that results in a list, and expr is an
expression that uses the variable var. The result is a list, of the same length as list,
which is obtained by successively letting var take values from list, and then evaluating
expr, and collecting the results into a list.

Whew. It's probably easier to understand it by example.

>>> [x/2.0 for x in [4, 5, 6]]

[2.0, 2.5, 3.0]

>>> [y**2 + 3 for y in [1, 10, 1000]]

[4, 103, 1000003]

>>> [a[0] for a in [['Hal', 'Abelson'],['Jacob','White'],

['Leslie','Kaelbling']]]
['Hal', 'Jacob', 'Leslie']
>>> [a[0]+'!' for a in [['Hal', 'Abelson'],['Jacob','White'],

 ['Leslie','Kaelbling']]]
['Hal!', 'Jacob!', 'Leslie!']
>>> [x/2.0 for x in [4, 5, 6]]
[2.0, 2.5, 3.0]

Another useful feature of list comprehensions is that they implement a common
functional-programming capability of filtering. Imagine that you have a list of numbers
and you want to construct a list containing just the ones that are odd. You might write

>>> nums = [1, 2, 5, 6, 88, 99, 101, 10000, 100, 37, 101]

>>> [x for x in nums if x%2==1]

[1, 5, 99, 101, 37, 101]

And, of course, you can combine this with the other abilities of list comprehensions, to,
for example, return the squares of the odd numbers:

>>> [x*x for x in nums if x%2==1]
[1, 25, 9801, 10201, 1369, 10201]

Footnotes:

1Hero of Alexandria is involved in this course in multiple ways. We'll be studying
feedback later on in the course, and Hero was the inventor of several devices that use
feedback, including a self-filling wine goblet. Maybe we'll assign that as a final project...

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

