
Final Exam Solutions — Spring 10 1

6.01 Final Exam: Spring 2010
Name: Section:

Solutions: Not correct for the make-up exam.
Enter all answers in the boxes provided.
During the exam you may:

read any paper that you want to •

use a calculator •

You may not

use a computer, phone or music player •

For staff use:

1. /12

2. /10

3. /18

4. /6

5. /12

6. /4

7. /20

8. /18

total: /100

Final Exam Solutions — Spring 10 2

1 A Library with Class (12 points)
Let’s build a class to represent a library; let’s call it Library. In this problem, we’ll deal with
some standard types of objects:

 A book is represented as a string – its title. •
• A patron (person who uses the library) is represented as a string – his/her name.

• A date is represented by an integer – the number of days since the library opened.

The class should have an attribute called dailyFine that starts out as 0.25. The class should
have the following methods:

__init__: takes a list of books and initializes the library. •
checkOut: is given a book, a patron and a date on which the book is being checked out and it •
records this. Each book can be kept for 7 days before it becomes overdue, i.e. if checked out on
day x, it becomes due on day x + 7 and it will be considered overdue by one day on day x + 8.
It returns None.

checkIn: is given a book and a date on which the book is being returned and it updates the •
records. It returns a number representing the fine due if the book is overdue and 0.0 otherwise.
The fine is the number of days overdue times the value of the dailyFine attribute.

overdueBooks: is given a patron and a date and returns the list of books which that patron has •
checked out which are overdue at the given date.

Here is an example of the operation of the library:

>>> lib = Library([’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

>>> lib.checkOut(’a’, ’T’, 1)

>>> lib.checkOut(’c’, ’T’, 1)

>>> lib.checkOut(’e’, ’T’, 10)

>>> lib.overdueBooks(’T’, 13)

[’a’, ’c’]

>>> lib.checkIn(’a’, 13)

1.25

>>> lib.checkIn(’c’, 18)

2.50

>>> lib.checkIn(’e’, 18)

0.25

In the boxes below, define the Library class as described above. Above each answer box we
repeat the specification for each of the attributes and methods given above. Make sure that you
enter complete definitions in the boxes, including complete class and def statements.

Use a dictionary to store the contents of the library. Do not repeat code if at all possible. You can
assume that all the operations are legal, for example, all books checked out are in the library and
books checked in have been previously checked out.

Final Exam Solutions — Spring 10 3

1.1
Class definition:

Include both the start of the class definition and the method definition for __init__ in this first

answer box.

The class should have an attribute called dailyFine that starts out as 0.25.

__init__: takes a list of books and initializes the library.

class Library:
dailyFine = 0.25
def __init__(self, books):

self.shelf = {}
for book in books:

self.shelf[book] = (None, None) # (patron, dueDate)

checkOut: is given a book, a patron and a date on which the book is being checked out and it
records this. Each book can be kept for 7 days before it becomes overdue, i.e. if checked out on
day x, it becomes due on day x + 7 and it will be considered overdue by one day on day x + 8. It
returns None.

def checkOut(self, book, patron, date):
self.shelf[book] = (patron, date+7)

Final Exam Solutions — Spring 10 4

checkIn: is given a book and a date on which the book is being returned and it updates the
records. It returns a number representing the fine due if the book is overdue and 0.0 otherwise.
The fine is the number of days overdue times the value of the attribute. dailyFine

def checkIn(self, book, date):
patron, due = self.shelf[book]
self.shelf[book] = (None, None)
return max(0.0, (date - due))*self.dailyFine

overdueBooks: is given a patron and a date and returns the list of books which that patron has
checked out which are overdue at the given date.

def overdueBooks(self, patron, date):
overdue = []
for book in self.shelf:

p, d = self.shelf[book]
if p and d and p == patron and date > d:

overdue.append(book)
return overdue

Final Exam Solutions — Spring 10 5

1.2

Define a new class called LibraryGrace that behaves just like the Library class except that it
provides a grace period (some number of days after the actual due date) before fines start being
accumulated. The number of days in the grace period is specified when an instance is created.
See the example below.

>>> lib = LibraryGrace(2, [’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

>>> lib.checkOut(’a’, ’T’, 1)

>>> lib.checkIn(’a’, 13)

0.75

Write the complete class definition for LibraryGrace. To get full credit you should not repeat
any code that is already in the implementation of Library, in particular, you should not need to
repeat the computation of the fine.

Class definition:

class LibraryGrace(Library):
def __init__(self, grace, books):

self.grace = grace
Library.__init__(self, books)

def checkIn(self, book, date):
return Library.checkIn(self, book, date - self.grace)

Final Exam Solutions — Spring 10 6

2 Library State Machine (10 points)
We will now define a state machine class, called LibrarySM, to operate the library.

 The state machine will be initialized with a list of books and will create an instance of the Library
class and store it as an instance variable (assume that the Library class is defined in the same file
as your definition of LibrarySM).

We will allow the state machine to modify this library instance, like we did the grid instances in
design lab, for the sake of efficiency. However, your getNextValues method should not change
any other instance variables.

Each input to the state machine will be a tuple of length 2; the first element is a string indicating
an operation and the second element is the “argument” for that operation. The output of the
machine should be None unless specified otherwise below.

The allowed types of inputs (and their outputs) are illustrated by example below:

(’day’, 3) – advance the current date by 3 (or whatever integer is the argument); the date •
starts at 0. Output the new date in the format (’date’, 5).

(’start’, ’T’) – start dealing with patron ’T’.•
(’end’, ’T’) – end dealing with patron ’T’; the output should be the total accumulated fine •
for that patron since the most recent start (which may be 0.0), in the format (’total fine’,

0.5).

(’co’, ’a’) – check out book ’a’ for the current patron.
•
(’ci’, ’a’) – check in book ’a’ for the current patron; the output should be the fine if this •
book is overdue or 0.0 if it’s not, in the format (’fine’, 0.5).

Final Exam Solutions — Spring 10	 7

Here is an example of the operation of the machine.

>>> libsm = LibrarySM([’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, ’h’, ’i’])
>>> libsm.transduce([(’day’, 1),

(’start’, ’T’),
(’co’, ’a’), (’co’, ’b’), (’co’, ’c’),
(’co’, ’d’), (’co’, ’e’), (’co’, ’f’),
(’end’, ’T’),
(’start’, ’X’),
(’co’, ’g’), (’co’, ’h’), (’co’, ’i’),
(’end’, ’X’),
(’day’, 8),
(’start’, ’T’),
(’ci’, ’a’),
(’ci’, ’b’),
(’end’, ’T’)])

[(’date’, 1),
None,
None, None, None,
None, None, None,
(’total fine’, 0.0),
None,
None, None, None,
(’total fine’, 0.0),
(’date’, 9),
None,
(’fine’, 0.25),
(’fine’, 0.25),
(’total fine’, 0.5)]

1.	 Assuming that the inital date for the library is 0, what will the initial state of your machine be?
Explain each component.

self.startState = (0, None, 0.0) # (date, patron, fine)

Final Exam Solutions — Spring 10	 8

2.	 Write out the definition of LibrarySM class in Python. You can assume that all inputs will be
legal (nobody will try to check out a book that is not in the library; there will not be a start
for a new patron before the end of the previous patron; all the operations and arguments are
legal, etc.).

Class definition:

class LibrarySM(sm.SM):
def __init__(self, books):

self.lib = Library(books)
self.startState = (0, None, 0.0) # (date, patron, fine)

def getNextValues(self, state, inp):
date, patron, fine = state
operation, argument = inp
out = None
if operation == ’start’:

patron = argument
elif operation == ’ci’:

newFine = self.lib.checkIn(argument, date)
fine += newFine
out = (’fine’, newFine)

elif operation == ’co’:
self.lib.checkOut(argument, patron, date)

elif operation == ’day’:
date += argument
out = (’date’, date)

elif operation == ’end’:
out = (’total fine’, fine)

else:
print ’Illegal operation’, operation

return ((date, patron, fine), out)

Final Exam Solutions — Spring 10 9

Scratch paper

Final Exam Solutions — Spring 10 10

3 Machine Control (18 points)
Consider the following definition of a linear system, with gains k1 and k2:

class Accumulator(sm.SM):

startState = 0.0

def getNextValues(self, state, inp):

return(state+inp, state+inp)

def system(k1, k2):

plant = Accumulator()

sensor = sm.Delay()

controller = sm.ParallelAdd(sm.Gain(k1),

sm.Cascade(Accumulator(), sm.Gain(k2)))

return sm.FeedbackSubtract(sm.Cascade(controller, plant), sensor)

Note that ParallelAdd takes one input and provides it to two machines and outputs the sum of
the outputs of the two machines.

Here’s space to draw the block diagram, if you find it helpful (it won’t be graded).

3.1

• Write a system function for the sensor.

R

Final Exam Solutions — Spring 10 11

• Write a system function for the plant.

1

1 − R

Write a system function for the controller, in terms of k1 and k2.•

k1(1 − R) + k2

1 − R

Write a system function for the cascade combination of the controller and plant, in terms of k1•
and k2.

k1(1 − R) + k2 1 k1(1 − R) + k2
=

1 − R 1 − R (1 − R)2

• Write a system function for the whole system, in terms of k1 and k2.

−k1R + k1 + k2

(1 − k1)R2 + (k1 + k2 − 2)R + 1

Final Exam Solutions — Spring 10 12

3.2
Imagine a different system, whose system function is given by

k4R − k3 + k3k4

(1 − k3)R2 + (k3 + 3k4 − 2)R + 1

If we pick k4 = 0, give any non-zero value of k3 for which the system will converge, or explain
why there isn’t one.

With k4 = 0, the denominator of the system function is:
(1 − k3)R2 + (k3 − 2)R + 1

The roots of the corresponding z polynomial are [1, 1 − k3]. The pole at 1 means that the
system has a non-decreasing oscillation.

Final Exam Solutions — Spring 10 13

Scratch paper

Final Exam Solutions — Spring 10 14

4 Hot Bath (6 points)
A thermocouple is a physical device with two temperature probes and two electronic terminals.
If the probes are put in locations with different temperatures, there will be a voltage difference
across the terminals. In particular,

V+ − V− = k(Th − Tr)

where Th is the temperature (◦F) at the ’hot’ probe, Tr is the temperature (◦F) at the reference
probe, and k is about 0.02.

We have a vat of liquid that contains a heater (the coil at the bottom) and the ’hot’ temperature
sensor of the thermocouple. We would like to keep the liquid at the same temperature as the
reference probe. The heater should be off if Tr 6 Th and be on, otherwise. When Tr − Th = 1◦F,
then VO should be approximately +5V.

Design a simple circuit (using one or two op-amps and some resistors of any values you want) that
will achieve this; pick particular values for the resistors. Assume that we have a power supply of
+10V available, and that the voltage difference V+ − V− is in the range −10V to +10V .

VO

thermo-
couple

reference
temperature

V+

V-

'hot'
temperature

Tr

Th

V+ -
+

1KΩ

250KΩ

Vo

V- 1KΩ

250KΩ

Final Exam Solutions — Spring 10 15

5 Equivalences (12 points)
For each of the circuits below, provide the Thevenin equivalent resistance and voltage as seen
from the n1 − n2 port. For the circuits with op-amps, treat them using ideal op-amp model.

+_

1Ω

10V

n2

n1

3Ω +_

8Ω

10V

n2

n1

8Ω
8Ω

Vth = 7.5 Rth =0.75 Vth = 10 Rth =4

2.5A

n2

n1

4Ω

16Ω

10V

n2

n1

2Ω

+_
-
+ 2Ω

Vth = 10 Rth = 4 Vth = 10 Rth = 2

Final Exam Solutions — Spring 10 16

Scratch paper

Final Exam Solutions — Spring 10 17

6 T circuit (4 points)
−3Vi.Provide values for resistors R1 and R2 that make Vo =

Vi -
+

R1

1000Ω

1000Ω R2

Vo

R1 = 1000Ω

R2 = 1000Ω

Consider a world with some population R

Final Exam Solutions — Spring 10 18

7 Coyote v. Roadrunner (20 points)
of roadrunners and C of coyotes. Roadrunners eat

insects and coyotes eat roadrunners (when they can catch them). The roadrunner population
naturally increases, but when there are coyotes around, they eat the roadrunners and decrease the
roadrunner population. The coyote population, in the absence of roadrunners, finds something
else to eat, and stays the same, or declines a little.

7.1 Initial distribution
Let’s assume that the roadrunner population (R) can be low, med or high, and that the coyote
population (C) can be low, med, or high. So, there are 9 states, each corresponding to some value
of R and some value of C.

Here is the initial belief state, which is written as a joint distribution over C and R, Pr(C, R).

low
Roadrunners med

high

Coyotes
low med high

0.04 0.20 0.18
0.08 0.16 0.02
0.28 0.04 0.00

1. What is the marginal distribution Pr(C)?

Pr(C) = (0.4, 0.4, 0.2)

2. What is the distribution Pr(R|C = low)?

Pr(R|C = low) = (0.04/0.4, 0.08/0.4, 0.28/0.4) = (0.1, 0.2, 0.7)

3. What is the distribution Pr(R|C = high)?

Pr(R|C = high) = (0.18/0.2, 0.02/0.2, 0.0/0.2) = (0.9, 0.1, 0.0)

4. Are R and C independent? Explain why or why not.

No, if they were independent, we would have, for example,
Pr(R = high, C = high) = Pr(R = high)P(C = high)

and it isn’t.

Final Exam Solutions — Spring 10	 19

7.2 Transitions
Let’s start by studying how the roadrunner population evolves when there are no coyotes, repre­
sented by Ct = low (and the coyote population doesn’t change).

Pr(Rt+1 = low | Ct = low, Rt = low) = 0.1

Pr(Rt+1 = med | Ct = low, Rt = low) = 0.9

Pr(Rt+1 = high | Ct = low, Rt = low) = 0.0

Pr(Rt+1 = low | Ct = low, Rt = med) = 0.0

Pr(Rt+1 = med | Ct = low, Rt = med) = 0.3

Pr(Rt+1 = high | Ct = low, Rt = med) = 0.7

Pr(Rt+1 = low | Ct = low, Rt = high) = 0.0

Pr(Rt+1 = med | Ct = low, Rt = high) = 0.0

Pr(Rt+1 = high | Ct = low, Rt = high) = 1.0

1.	 Assume Ct = low. For simplicity, also assume that we start out knowing with certainty
that the roadrunner population is low. What is the distribution over the possible levels of the
roadrunner population (low, med, high) after 1 time step?

Pr(R1 | R0 = low, C0 = low) = (0.1, 0.9, 0.0)

2.	 Assume Ct = low. For simplicity, also assume that we start out knowing with certainty
that the roadrunner population is low. What is the distribution over the possible levels of the
roadrunner population (low, med, high) after 2 time steps?

Pr(R2 | R0 = low, C0 = low) = (0.01, 0.09 + 0.24, 0.63) = (0.01, 0.36, 0.63)

Final Exam Solutions — Spring 10	 20

7.3 Observations
Imagine that you are starting with the initial belief state, the joint distribution from problem 7.1.
If it helps, you can think of it as the following DDist over pairs of values (the first is the value of
R, the second is the value of C):

DDist({(’low’, ’low’) : 0.04, (’low’, ’med’) : 0.2, (’low’, ’high’) : 0.18,

(’med’, ’low’) : 0.08, (’med’, ’med’) : 0.16, (’med’, ’high’) : 0.02,

(’high’, ’low’) : 0.28, (’high’, ’med’) : 0.04, (’high’, ’high’) : 0.00})

You send an ecologist out into the field to sample the numbers of roadrunners and coyotes. The
ecologist can’t really figure out the absolute numbers of each species, but reports one of three
observations:

•	 moreC: means that there are significantly more coyotes than roadrunners (that is, that the level
of coyotes is high and the level of roadrunners is med or low, or that the level of coyotes is med
and the level of roadrunners is low).

•	 moreR: means that there are significantly more roadrunners than coyotes (that is, that the level
of roadrunners is high and the level of coyotes is med or low, or that the level of roadrunners
is med and the level of coyotes is low).

•	 same: means that there are roughly the same number of coyotes as roadrunners (the popula­
tions have the same level).

1.	 If there is no noise in the ecologist’s observations (that is, the observation is always true, given
the state), and the observation is moreR, what is the resulting belief state Pr(C0, R0 | O0 =

moreR) (the distribution over states given the observation)?

Coyotes
low med high

Roadrunners
low 0.0 0.00 0.00
med 0.2 0.0 0.00
high 0.7 0.1 0.00

Pr(Ot =

Final Exam Solutions — Spring 10	 21

2.	 Now, we will assume that the ecologist’s observations are fallible.

moreC | Ct > Rt) = 0.9

Pr(Ot = same |

Pr(Ot = moreR |

Pr(Ot = moreC |

Pr(Ot = same |

Pr(Ot = moreR |

Pr(Ot = moreC |

Pr(Ot = same |

Pr(Ot = moreR |

Ct > Rt) = 0.1

Ct > Rt) = 0.0

Ct = Rt) = 0.1

Ct = Rt) = 0.8

Ct = Rt) = 0.1

Ct < Rt) = 0.0

Ct < Rt) = 0.1

Ct < Rt) = 0.9

Now, if the observation is moreR, what is the belief state Pr(C0, R0 | O0 = moreR) (the
distribution over states given the observation)?

low
Roadrunners med

high

low
Coyotes

med high

0.004/0.38 = 0.011
0.072/0.38 = 0.189
0.252/0.38 = 0.663

0.00
0.016/0.38 = 0.042
0.036/0.38 = 0.094

0.00
0.00
0.00

Final Exam Solutions — Spring 10 22

8 Ab und Aufzug (18 points)
Hans, Wilhelm, and Klaus are three business tycoons in a three-story skyscraper with one elevator.
We know in advance that they will call the elevator simultaneously after their meetings tomorrow
and we want to get them to their destinations as quickly as possible (time is money!). We also
know that the elevator will be on the first floor when they call it. We’re going to use search to find
the best path for the elevator to take.

Hans starts on the 2nd floor, and wants to go to the 1st floor.

Wilhelm starts on the 3rd floor, and wants to go to the 1st floor.

Klaus starts on the 3rd floor, and wants to go to the 2nd floor.

State will be stored as a tuple whose first element is the location of the elevator and whose second
element is a tuple with the locations of Hans, Wilhelm, and Klaus, in that order. A location of
None means that the person in question is riding the elevator. So the state

(2, (None, 1, 2))

means that Hans is on the elevator which is on the 2nd floor and Klaus is on the 2nd floor as well,

but not on the elevator, whereas Wilhelm is on the 1st floor.

Our legal actions are:

legalActions =

[’ElevatorDown’, ’ElevatorUp’, (0, ’GetsOn’), (0, ’GetsOff’),

(1, ’GetsOn’), (1, ’GetsOff’), (2, ’GetsOn’), (2, ’GetsOff’)]

where "ElevatorUp" causes the elevator to move one floor up, "ElevatorDown" causes it to
move one floor down, and 0, 1, and 2 correspond to Hans, Wilhelm, and Klaus, respectively.

Let’s say it takes one minute for the elevator to move one floor in either direction, and it takes
one minute for anyone to get on or off the elevator unless Klaus is involved. It takes Klaus five
minutes to get on or off the elevator (he’s extremely slow); it also takes everyone else five minutes
to get on or off the elevator if Klaus is already riding the elevator (he’s extremely talkative).

8.1 Goal
Write the goal function.

def goal(state):

return state[1] == (1, 1, 2)

Final Exam Solutions — Spring 10 23

Scratch paper

Final Exam Solutions — Spring 10	 24

8.2 Search Strategies

In what follows: ED is ’ElevatorDown’, EU is ’ElevatorUp’, 0On is (0, ’GetsOn’), etc.
Also, N stands for None.

Suppose that we are in the middle of the search and the search agenda consists of the following
nodes (listed in the order that they were added to the agenda, earliest first):

− (2, (2, 3, 3)) EU
−	 −−A: (1, (2, 3, 3)) EU

− −− (3, (2, 3, 3)) 2On
−− (3, (2, 3, N))−1On (3, (2, N, N))→ →	 → →

B: (1, (2, 3, 3))−EU
− (2, (2, 3, 3))−0On (2, (N, 3, 3)) −−ED (1, (N, 3, 3)) 0Off (1, (1, 3, 3))−−	 −−−−→ → →	 →

− (2, (2, 3, 3)) EU
−	 −− −−C: (1, (2, 3, 3)) EU

− −− (3, (2, 3, 3)) 1On
−− (3, (2, N, 3))−2On (3, (2, N, N)) ED (2, (2, N, N))→ →	 → → →

Assume that no states other than the ones listed were visited in the search.•
•	 An illegal action leaves you in the same state and Pruning Rule 1 applies (don’t consider any

path that visits the same state twice).

•	 Assume that the order of operations is as listed at the beginning of this problem:

ED, EU, 0On, 0Off, 1On, 1Off, 2On, 2Off

Note that in general you may have to expand more than one node to find the next state that is
visited.

8.2.1 If we are doing breadth-first search (BFS)

1.	 Starting from this agenda, which node (A, B, or C) gets expanded first (circle one)?

A* B C

2.	 Which node gets added to the agenda first? Specify its parent node, action, and state.

A, ElevatorDown, (2, (2, N, N))

3. What is the total path cost of the new node added to the agenda?

13 minutes

Final Exam Solutions — Spring 10	 25

Agenda:

− (2, (2, 3, 3)) EU
−	 −−A: (1, (2, 3, 3)) EU

− −− (3, (2, 3, 3)) 2O
−− (3, (2, 3, N))−1On (3, (2, N, N))→ →	 → →

B: (1, (2, 3, 3))−EU
− (2, (2, 3, 3))−0On (2, (N, 3, 3)) −−ED (1, (N, 3, 3)) 0Off (1, (1, 3, 3))−−	 −−−−→ → →	 →

− (2, (2, 3, 3)) EU
−	 −− −−C: (1, (2, 3, 3)) EU

− −− (3, (2, 3, 3)) 1O
−− (3, (2, N, 3))−2On (3, (2, N, N)) ED (2, (2, N, N))→ →	 → → →

8.2.2 If we are doing depth-first search (DFS)

1.	 Starting from this agenda, which node (A, B, or C) gets expanded first (circle one)?

A B C*

2. Which node gets added to the agenda first? Specify its parent node, action, and state.

C, ElevatorDown, (1, (2, N, N))

3. What is the total path cost of the new node added to the agenda?

10 minutes

8.2.3 If we are doing breadth-first search with dynamic programming (BFS+DP)

1.	 Starting from this agenda, which node (A, B, or C) gets expanded first (circle one)?
A* B C

2.	 Which node gets added to the agenda first? Specify its parent node, action, and state.

B, ElevatorUp, (2, (1, 3, 3))

3. What is the total path cost of the new node added to the agenda?

5 minutes

Final Exam Solutions — Spring 10	 26

Agenda:

EU EU 2O 1On
− (2, (2, 3, 3)) −	 −−A: (1, (2, 3, 3)) − −− (3, (2, 3, 3)) −− (3, (2, 3, N))− (3, (2, N, N))→ →	 → →

B: (1, (2, 3, 3))−EU
− (2, (2, 3, 3))−0On (2, (N, 3, 3)) −−ED (1, (N, 3, 3)) 0Off (1, (1, 3, 3))−−	 −−−−→ → →	 →

− (2, (2, 3, 3)) EU
−	 −− −−C: (1, (2, 3, 3)) EU

− −− (3, (2, 3, 3)) 1O
−− (3, (2, N, 3))−2On (3, (2, N, N)) ED (2, (2, N, N))→ →	 → → →

8.2.4 If we are doing uniform-cost search (ucSearch)

1.	 Starting from this agenda, which node (A, B, or C) gets expanded first (circle one)?

A B* C

2. Which node gets added to the agenda first? Specify its parent node, action, and state.

B, ElevatorUp, (2, (1, 3, 3))

3. What is the total path cost of the new node added to the agenda?

5 minutes

Final Exam Solutions — Spring 10	 27

8.3 Heuristics
Frieda, Lola, Ulrike, and Xenia (four engineers) are asked to produce heuristics to speed up the
search. In all the heuristics, distance is measured in number of floors.

•	 Frieda suggests that you use the maximum of the distances between each person and his desti­
nation plus 2 times the number of people who are not on the right floor.

•	 Lola suggests that you use the maximum of the distances between each person and his desti­
nation plus 10 if Klaus is not on the elevator and not on the right floor, plus 5 if Klaus is on the
elevator.

•	 Ulrike suggests that you use the sum of the distances between each person and his destination.

•	 Xenia suggests that you use the maximum of the distances between each person and his desti­
nation.

Which of these heuristics are admissible? Circle Yes or No.

F: Yes No•

L: Yes No•

U: Yes No•

X: Yes No•

L and X are both admissible; F and U are both inadmissible.

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

