
Final Exam — Fall 10 1

6.01 Final Exam: Fall 2010
Name: Section:

Enter all answers in the boxes provided.
During the exam you may:

read any paper that you want to •

use a calculator •

You may not

use a computer, phone or music player •

For staff use:

1. /12

2. /10

3. /14

4. /8

5. /20

6. /20

7. /16

total: /100

Iy =

Determine Vx.

Vx =

1

Final Exam — Fall 10 2

Circuits (12 points)

1.1 Finding voltages and currents
Consider the circuit shown below:

Determine Iy.

10V

5
 2

4
 2AVx

Iy

Final Exam — Fall 10 3

1.2 Resistive Ladders
Determine the equivalent resistance of each of the following combinations of resistors.

R

R

equivalent resistance =

R

R

R

R

equivalent resistance =

Final Exam — Fall 10 4

equivalent resistance =

R

R

R

R

R

R

Determine an expression for V+ in terms of Vi.

V+ =

2

Final Exam — Fall 10 5

Op-Amp Circuit (10 points)

Determine an expression for V− in terms of Vo.

Consider the following circuit. Assume that the op amp is ideal, except that its output is limited
by the power supply to 0 < Vo < 10V.

10

15

30

15V

30
10

Vi

Vo

Let V+ and V− represent the voltages at the positive and negative input terminals of the op amp.

V− =

Final Exam — Fall 10 6

Determine an expression for Vo in terms of Vi, assuming no limits on Vo.

Vo =

Determine the range of input voltages Vi for which the output of the op amp, Vo, is not saturated.

range=

Final Exam — Fall 10 7

3 OOPS (14 points)
You are writing the software version of a popular card game. Each player’s objective is to gain lev­
els; a player gains a level each time they defeat another player in battle. The winner of each battle
is the player that currently has the highest “strength”, where strength is the sum of the player’s
current level (indicating her experience) and the current strength of any items she possesses. In
the case of a tie, the challenging player loses.

You have decided to use Python classes to represent the players and the items they can carry.
You hire a Harvard student to write the code, but he never took 6.01, so his code is not perfect.
Moreover, his dog ate part of the code in transit, so you have to fill in some missing pieces.

Here is his current code:

class Player:

name = ""

level = 1

equipment = []

potions = []

def __init__(self, name):

self.name = name
def currentStrength(self):

strength = self.level + sum([item.strength() for item in self.equipment])

return strength

def battle(self, other):

myStrength = self.currentStrength()

otherStrength = other.currentStrength()

print self.name, "challenges", other.name

print self.name, "has a total strength of", myStrength

print other.name, "has a total strength of", otherStrength

if myStrength > otherStrength:

print self.name, "wins!"

self.level += 1

other.level -= 1

else:

print other.name, "wins!"

other.level += 1

self.level -= 1

class Item:

coreStrength = 0

def __init__(self, name):

self.name = name

def strength(self):

return self.coreStrength

class BucklerOfSwashing(Item):

coreStrength = 2

class FreezingExplosive(Potion):

coreStrength = 5

Final Exam — Fall 10 8

Here is a brief interaction using this system:

>>>alyssa = Player("A. Python Hacker")

>>>ben = Player("Ben Bitdiddle")

>>>ben.battle(alyssa)

Ben Bitdiddle challenges A. Python Hacker

Ben Bitdiddle has a total strength of 1

A. Python Hacker has a total strength of 1
A. Python Hacker wins!

>>>alyssa.equipment.append(BucklerOfSwashing("excalibyr"))

>>>alyssa.battle(ben)

A. Python Hacker challenges Ben Bitdiddle
A. Python Hacker has a total strength of 4

Ben Bitdiddle has a total strength of 0

A. Python Hacker wins!

3.1 Where am I keeping things?
Someone points out that your Harvard friend is not very comfortable with the distinction between
class and instance variables. He notes that in the above example, evaluating

for e in ben.equipment:

print e.name

results in

excalibyr

which doesn’t seem right, since alyssa is the person possessing this item, not ben.

Describe what is wrong with Santa’s code, and indicate what you would change to correct this.

Do this with minimal change to code.

Final Exam — Fall 10 9

3.2 I need a drink
Assuming that your correction in the previous part is made, we now need to worry about potions
– unfortunately Rudolph ate the code for the Potion class. Potions are items that can only be used
once (afterwards, they have no “strength”). If a person is engaged in a battle, and has an unused
potion, it is consumed during the battle, contributing it strength to the overall strength. Potions
thus have a ’usedUp’ method, which returns a boolean indicating whether or not the potion has
been used.

Our plan is to have the Potion class inherit from the Item class. To use potions, we need to
decide how to compute its strength. If a potion inherits a strength method from the Item class,
then it will always contribute to the strength computation. However, we want behaviors such as:

>>>alyssa = Player("A. Python Hacker")

>>>ben = Player("Ben Bitdiddle")

>>>ben.battle(alyssa)

Ben Bitdiddle challenges A. Python Hacker

Ben Bitdiddle has a total strength of 1

A. Python Hacker has a total strength of 1
A. Python Hacker wins!

>>>alyssa.equipment.append(BucklerOfSwashing("excalibyr"))

>>>ben.potions.append(FreezingExplosive())

>>>alyssa.battle(ben)

A. Python Hacker challenges Ben Bitdiddle
A. Python Hacker has a total strength of 4

Ben Bitdiddle has a total strength of 5

Ben Bitdiddle wins!

>>>alyssa.battle(ben)
A. Python Hacker challenges Ben Bitdiddle
A. Python Hacker has a total strength of 3

Ben Bitdiddle has a total strength of 1

A. Python Hacker wins!

Notice that in the last two battles, Alyssa loses the first one because Ben has a potion, which is
expended. Thus in the next battle, Alyssa wins because Ben no longer has that strength.

Final Exam — Fall 10 10

Write the Potion class; be sure to inherit from the Item class, and do not repeat code unnecessarily.

Provide a new method below for currentStrength (in Player) to achieve the described behav­
ior.

Final Exam — Fall 10 11

3.3 I need a lot of drinks
While some potions are “use once”, it would be nice to have a potion that never runs out. Create
a new class, called InfinitePotion, that inherits from the Potion class. This version of a potion
never expires. For example:

class FreezingCanada(InfinitePotion):

coreStrength = 5

>>>alyssa = Player("A. Python Hacker")

>>>ben = Player("Ben Bitdiddle")

>>>ben.battle(alyssa)

Ben Bitdiddle challenges A. Python Hacker

Ben Bitdiddle has a total strength of 1

A. Python Hacker has a total strength of 1
A. Python Hacker wins!

>>>alyssa.equipment.append(BucklerOfSwashing("excalibyr"))

>>>ben.potions.append(FreezingCanada())

>>>alyssa.battle(ben)

A. Python Hacker challenges Ben Bitdiddle
A. Python Hacker has a total strength of 4

Ben Bitdiddle has a total strength of 5

Ben Bitdiddle wins!

>>>alyssa.battle(ben)
A. Python Hacker challenges Ben Bitdiddle
A. Python Hacker has a total strength of 3

Ben Bitdiddle has a total strength of 6

Ben Bitdiddle wins!

Write the InfinitePotion class; be sure to inherit from the Potion class, and do not repeat code
unnecessarily. You should be able to obtain the behavior above without changing any other code.

4

Final Exam — Fall 10 12

State machines (8 points)
Consider the following procedure:

def ImOdd(inList):

outList = []

y = 0

for i in range(len(inList)):

y = y +inList[i]
if y%2 == 1:

outList.append(None)

y = 0

else:

outList.append(y)

return outList

What is the value of

ImOdd([1,2,4,1,2,4,6,7,4,3,8,4,3])

Write a state machine class OddSM such that OddSM().transduce(inList) will return the same
result as ImOdd(inList), provided inList is a list of integers.

class OddSM(sm.SM):
startState = 0
def getNextValues(self, state, inp):

Final Exam — Fall 10 13

5 A touching experience (20 points)
Consider adding a gripper to the side of one of our robots as shown in the figure below. The
gripper can be extended (toward the wall in the figure), retracted (away from the wall), and it can
open and close.

We’re trying to grasp a block of known width which is placed against a wall, but we’re initially
uncertain of the location of the block’s center (the black square) relative to the center of the robot’s
gripper. We start with the gripper open to a width slightly wider than the block’s width.

To keep things very simple, we’ll assume that there are only three states, corresponding to when
the block center is:

a little to the left of the gripper center (call this ’l’), or •

centered on the gripper (call this ’c’), or •

a little to the right of the gripper center (call this ’r’).•

robot

l

x

wall
c

robot
x

wall

robot

r

x

wall

Note that these represent positions of the center of the block relative to the center of the gripper.

Assume that there’s a sensor on each finger tip that can detect contact. The robot gets observations
by extending the gripper forward a fixed distance which is sufficient to reach the wall; the gripper
will stop moving when it hits either the wall or the block. If both sensors trigger then they are
touching the wall behind the block and we can close the gripper and grasp. If only one sensor
triggers, it is touching the block and we need to pull the gripper back, move the robot either right
or left as appropriate and try again. The sensors are not perfect, they may miss a contact with
some probability.

Let’s say that the robot’s moves to the left and right can be noisy; it might move to the adjacent
location (in the desired direction) or it might leave the robot in its current location. Note that a
move to the right from l or a move to the left from r leaves the robot in the same location.

To simplify things, the state of the robot will simply be represented by ’l’, ’c’ or ’r’, and
we won’t worry about commanding the robot to retract the gripper, move to the side, and then
extend the gripper; we will simply treat these as all part of a move to the left or right.

if the right finger sensed a contact.

def pOGivenS(s):

Write a Python procedure to encode the observation model

Final Exam — Fall 10 14

5.1 Observation Model
Assume that each sensor has an independent probability of 0.25 of missing an actual contact. The
sensors will never trigger without a contact.

for this situation. Represent observa­
tions as a tuple of the form (L, R) where L is True if the left finger sensed a contact and R is True

Final Exam — Fall 10 15

5.2 Belief update - left contact
For this part, assume that

the probability of moving in the commanded direction is 0.5 and the probability of staying in •
the current state is 0.5.

the probability of missing a contact on each finger is (independently) 0.25
•

the initial belief state (for (’l’, ’c’, ’r’)) is (1/4, 1/2, 1/4)•

We observe a single contact on the left finger (observation = (True, False)). What is the belief state
after this observation (use fractions)?

’l’ ’c’ ’r’

Now, we command a motion to the right. What is the resulting belief state (use fractions)?

’l’ ’c’ ’r’

If you show your work neatly below, we may be able to give you partial credit.

Final Exam — Fall 10 16

5.3 Belief update - no contact
Make the same assumptions as above and starting from the same initial belief state:
(1/4, 1/2, 1/4).

We observe that neither finger detects a contact (observation = (False, False)). What is the belief
state after this observation (use fractions)?

’l’ ’c’ ’r’

We command a motion to the right. What is the resulting belief state (use fractions)?

’l’ ’c’ ’r’

If you show your work neatly below, we may be able to give you partial credit.

Final Exam — Fall 10 17

6 Trail blazing (20 points)
You are trying to plan a path for a vehicle moving through an environment without obstacles.
The environment has several cities, some of which are connected by straight roads. The vehicle
starts at a city A and has to move to another city D. It can travel on-road or off-road. If it goes on
a road of length d, then the cost is d. If it goes off-road for a distance d, then the cost is 2d.

Here is an example world, with lines indicating roads, and a matrix of Euclidean (“airline”) dis­
tances between each pair of cities (this figure is drawn to scale):

A

C

F
HG

B

E

D

A B C D E F G H

A 0.0 4.0 8.1 7.0 1.0 7.1 2.2 5.1
B 4.0 0.0 7.0 8.1 5.0 8.6 5.4 7.1
C 8.1 7.0 0.0 4.0 8.6 5.0 7.1 5.4
D 7.0 8.1 4.0 0.0 7.1 1.0 5.1 2.2
E 1.0 5.0 8.6 7.1 0.0 7.0 2.0 5.0
F 7.1 8.6 5.0 1.0 7.0 0.0 5.0 2.0
G 2.2 5.4 7.1 5.1 2.0 5.0 0.0 3.0
H 5.1 7.1 5.4 2.2 5.0 2.0 3.0 0.0

We assume that when moving between one city and another, the vehicle uses the road if it’s
available on its direct path. So, for example:

The cost from E to A is 1 •

• The cost from E to F is 10 = dist(EG) + 2 ∗ dist(GH) + dist(HF)

• The cost from E to D is 14.2 = 2 ∗ dist(ED)

!!!! Note that the goal is city D !!!!

6.1 Cost
What is the cost of the path ABD

Final Exam — Fall 10 18

Scratch Paper

A

C

F
HG

B

E

D

A B C D E F G H

A 0.0 4.0 8.1 7.0 1.0 7.1 2.2 5.1
B 4.0 0.0 7.0 8.1 5.0 8.6 5.4 7.1
C 8.1 7.0 0.0 4.0 8.6 5.0 7.1 5.4
D 7.0 8.1 4.0 0.0 7.1 1.0 5.1 2.2
E 1.0 5.0 8.6 7.1 0.0 7.0 2.0 5.0
F 7.1 8.6 5.0 1.0 7.0 0.0 5.0 2.0
G 2.2 5.4 7.1 5.1 2.0 5.0 0.0 3.0
H 5.1 7.1 5.4 2.2 5.0 2.0 3.0 0.0

Final Exam — Fall 10	 19

6.2 Depth-First with DP
Some assumptions for this part:

•	 The AD off-road path is not allowed; all other paths on and off road are allowed.

•	 The successors (children) of a state are pushed onto the agenda in REVERSE ALPHABETICAL
order.

What is the path found from A to D by Depth First search with DP? What is its cost? What states
are expanded by the search.

• Path:

• Cost:

• Expanded:

6.3 Breadth First with DP
Some assumptions for this part:

•	 The AD off-road path is not allowed; all other paths on and off road are allowed.

•	 The successors (children) of a state are pushed onto the agenda in ALPHABETICAL order.

What is the path found from A to D by Breadth First search with DP? What is its cost? What states
are expanded by the search?

• Path:

• Cost:

• Expanded:

Final Exam — Fall 10 20

6.4 Uniform Cost with DP
Some assumptions for this part:

 All paths on and off road are allowed. •

• The successors (children) of a state are pushed into the agenda in ALPHABETICAL order.

What is the path found from A to D by Uniform Cost search with DP? What is its cost? What
states are expanded by the search?

• Path:

• Cost:

• Expanded:

6.5 Heuristic
Describe a (non-zero) admissible heuristic for this domain.

y[n] = v[n − 1]

poles:

stable k:

Final Exam — Fall 10 21

7 System functions (16 points)
Each of the following systems have one input signal x[n] and one output signal y[n]. Determine
expressions for the poles of each system Also determine all values of the parameter k for which
the system is stable (or write “none” if there is no choice for which the system is stable).

System 1:

y[n] = x[n] + u[n] + v[n]

u[n] = ky[n − 1]

poles:

stable k:

Final Exam — Fall 10 22

System 2:

R

R

2

k

+ +
� �

X Y

Final Exam — Fall 10 23

System 3:

sf.FeedbackSubtract(sf.Cascade(sf.Gain(k),sf.FeedbackAdd(sf.R(),sf.Gain(1))),sf.Gain(1))

poles:

stable k:

Final Exam — Fall 10 24

System 4:

Y R2

=
X (1 − 3R)(1 − 2kR + 4R2)

poles:

stable k:

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

