
1 Chapter 6.01— Spring 2011— April 25, 2011

6.01 Course Notes
Spring 2011

1 Course Overview 6
1.1 Goals for 6.01 6
1.2 Modularity, abstraction, and modeling 7
1.2.1 Example problem 7
1.2.2 An abstraction hierarchy of mechanisms 8
1.2.3 Models 12
1.3 Programming embedded systems 15
1.3.1 Interacting with the environment 15
1.3.2 Programming models 17
1.4 Summary 19

2 Learning to Program in Python 20
2.1 Using Python 20
2.1.1 Indentation and line breaks 21
2.1.2 Types and declarations 22
2.1.3 Modules 23
2.1.4 Interaction and Debugging 23
2.2 Procedures 24
2.3 Control structures 26
2.3.1 Conditionals 26
2.4 Common Errors and Messages 34
2.5 Python Style 36
2.5.1 Normalize a vector 36
2.5.2 Perimeter of a polygon 37
2.5.3 Bank transfer 38
2.5.4 Coding examples 39

Chapter 6.01— Spring 2011— April 25, 2011 2

3 Programs and Data 45

3.1 Primitives, Composition, Abstraction, and Patterns 46

3.2 Expressions and assignment 47

3.2.1 Simple expressions 47

3.2.2 Variables 48

3.3 Structured data 50

3.3.1 List mutation and shared structure 53

3.3.2 Tuples and strings 57

3.4 Procedures 59

3.4.1 Definition 59

3.4.2 Procedure calls 60

3.4.3 Non-local references 63

3.4.4 Environments in Python 65

3.4.5 Non-local references in procedures 66

3.4.6 Procedures as first-class objects 67

3.5 Object-oriented programming 72

3.5.1 Classes and instances 73

3.5.2 Methods 76

3.5.3 Initialization 79

3.5.4 Inheritance 81

3.5.5 Using Inheritance 84

3.6 Recursion 85

3.7 Implementing an interpreter 88

3.7.1 Spy 88

3.7.2 Evaluating Spy expressions 90

3.7.3 Object-Oriented Spy 99

3.8 Object-Oriented Programming Examples 104

3.8.1 A simple method example 104

3.8.2 Superclasses and inheritance 105

3.8.3 A data type for times 107

3.8.4 Practice problem: argmax 109

3.8.5 Practice problem: OOP 109

3.8.6 Practice problem: The Best and the Brightest 110

3.8.7 Practice Problem: A Library with Class 113

Chapter 6.01— Spring 2011— April 25, 2011 3

4 State Machines 116

4.1 Primitive state machines 117

4.1.1 Examples 118

4.1.2 State machines in Python 123

4.1.3 Simple parking gate controller 131

4.2 Basic combination and abstraction of state machines 134

4.2.1 Cascade composition 134

4.2.2 Parallel composition 136

4.2.3 Feedback composition 138

4.2.4 Plants and controllers 146

4.2.5 Conditionals 148

4.2.6 Switch 148

4.3 Terminating state machines and sequential compositions 151

4.3.1 Repeat 152

4.3.2 Sequence 154

4.3.3 RepeatUntil and Until 156

4.4 Using a state machine to control the robot 158

4.4.1 Rotate 159

4.4.2 Forward 160

4.4.3 Square Spiral 161

4.5 Conclusion 164

4.6 Examples 165

4.6.1 Practice problem: Things 165

4.6.2 Practice problem: Inheritance and State Machines 166

Chapter 6.01— Spring 2011— April 25, 2011 4

5 Signals and Systems 168

5.1 The signals and systems abstraction 168

5.1.1 Modularity, primitives, and composition 170

5.1.2 Discrete-time signals and systems 171

5.1.3 Linear time-invariant systems 172

5.2 Discrete-time signals 172

5.2.1 Unit sample signal 173

5.2.2 Signal combinators 173

5.2.3 Algebraic properties of operations on signals 175

5.2.4 Sinusoidal primitives 176

5.3 Feedforward systems 177

5.3.1 Representing systems 177

5.3.2 Combinations of systems 179

5.4 Feedback Systems 183

5.4.1 Accumulator example 183

5.4.2 General form of LTI systems 186

5.4.3 System functions 187

5.4.4 Primitive systems 188

5.4.5 Combining system functions 188

5.5 Predicting system behavior 190

5.5.1 First-order systems 190

5.5.2 Second-order systems 192

5.5.3 Higher-order systems 204

5.5.4 Finding poles 206

5.5.5 Superposition 207

5.6 Designing systems 208

5.7 Summary of system behavior 208

5.8 Worked Examples 209

5.8.1 Specifying difference equations 209

5.8.2 Difference equations and block diagrams 210

5.8.3 Wall finder 213

5.8.4 Cool difference equations 219

5.8.5 Modeling 220

5.8.6 SM to DE 224

5.8.7 On the Verge 224

5.8.8 What’s Cooking? 226

5.8.9 Pole Position 229

5.8.10 System functions 230

Chapter

6 Circuits
6.1 What is a circuit?
6.1.1 Electrical circuits
6.2 Conservation laws
6.2.1 Kirchoff’s current law
6.2.2 Kirchoff’s Voltage Law
6.3 Circuit elements
6.4 Solving circuits
6.4.1 NVCC Method
6.4.2 Solution strategy
6.4.3 An example
6.4.4 Node method (optional)
6.4.5 Common Patterns
6.5 Circuit Equivalents
6.5.1 Example
6.5.2 Norton Equivalents
6.6 Op Amps
6.6.1 Voltage-controlled voltage sources
6.6.2 Simplified model
6.6.3 Op-amps and feedback
6.6.4 Where does the current come from?

7 Probabilistic State Estimation
7.1 State spaces
7.2 Probability distributions on atomic state spaces
7.3 Random variables
7.3.1 Python representations of distributions
7.4 Operations on random variables
7.4.1 Constructing a joint distribution
7.4.2 Marginalization
7.4.3 Conditioning
7.4.4 Bayesian reasoning
7.4.5 Total probability
7.4.6 Python operations on distributions
7.5 Modeling with distributions
7.5.1 Primitives
7.5.2 Mixture distribution
7.6 Stochastic state machines
7.6.1 Copy machine example
7.6.2 Representation in Python
7.7 State estimation
7.7.1 Our first copy
7.7.2 Our second copy
7.8 General state estimation
7.8.1 Python

6.01— Spring 2011— April 25, 2011 5

232

232

233

234

234

237

241

244

245

247

248

249

252

256

259

260

260

260

264

266

269

270

270

271

273

275

276

276

278

279

279

280

280

283

283

285

286

287

288

289

289

291

292

293

Chapter 6.01— Spring 2011— April 25, 2011 6

8 Long-term decision-making and search 295

8.1 State-space search 296

8.1.1 Representing search trees 298

8.1.2 Basic search algorithm 299

8.1.3 Basic pruning, or How not to be completely stupid 300

8.1.4 Stacks and Queues 302

8.1.5 Depth-First Search 303

8.1.6 Breadth-First Search 305

8.1.7 Dynamic programming 306

8.1.8 Configurable search code 309

8.2 Connection to state machines 310

8.3 Numeric search domain 311

8.4 Computational complexity 313

8.5 Uniform cost search 314

8.5.1 Connection to state machines 318

8.6 Search with heuristics 319

7 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

Chapter 1
Course Overview

1.1 Goals for 6.01
We have many goals for this course. Our primary goal is for you to learn to appreciate and use
the fundamental design principles of modularity and abstraction in a variety of contexts from
electrical engineering and computer science. To achieve this goal, we will study electrical engi­
neering (EE) and computer science (CS) largely from the perspective of how to build systems that
interact with, and attempt to control, an external environment. Such systems include everything
from low-level controllers like heat regulators or cardiac pacemakers, to medium-level systems
like automated navigation or virtual surgery, to high-level systems that provide more natural
human-computer interfaces.

Our second goal is to show you that making mathematical models of real systems can help in the
design and analysis of those systems; and to give you practice with the difficult step of deciding
which aspects of the real world are important to the problem being solved and how to model
them in ways that give insight into the problem.

We also hope to engage you more actively in the educational process. Most of the work of this
course will not be like typical problems from the end of a chapter. You will work individually
and in pairs to solve problems that are deeper and more open-ended. There will not be a unique
right answer. Argument, explanation, and justification of approach will be more important than
the answer. We hope to expose you to the ubiquity of trade-offs in engineering design: it is rare
that an approach will be best in every dimension; some will excel in one way, others in a different
way. Deciding how to make such trade-offs is a crucial part of engineering.

Another way in which we hope to engage you in the material is by having many of you return
to the course as lab assistants in future semesters. Having a large number of lab assistants in the
class means that students can be given more open-ended problems, and have people around to
help them when they are stuck. Even more importantly, the lab assistants are meant to question
the students as they go; to challenge their understanding and help them see and evaluate a variety
of approaches. This process is of great intellectual value to student and lab assistant alike.

Finally, of course, we have the more typical goals of teaching exciting and important basic ma­
terial from electrical engineering and computer science, including modern software engineering,
linear systems analysis, electronic circuits, and decision-making. This material all has an internal
elegance and beauty, as well as crucial role in building modern EE and CS systems.

Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 8

1.2 Modularity, abstraction, and modeling
Whether proving a theorem by building up from lemmas to basic theorems to more specialized
results, or designing a circuit by building up from components to modules to complex processors,
or designing a software system by building up from generic procedures to classes to class libraries,
humans deal with complexity by exploiting the power of abstraction and modularity. Without
such tools, a single person would be overwhelmed by the complexity of a system, as there is only
so much detail that a single person can consciously manage at a time.

Modularity is the idea of building components that can be re-used; and abstraction is the idea
that after constructing a module (be it software or circuits or gears), most of the details of the
module construction can be ignored and a simpler description used for module interaction (the
module computes the square root, or doubles the voltage, or changes the direction of motion).

Given basic modules, one can move up a level of abstraction and construct a new module by
putting together several previously-built modules, thinking only of their abstract descriptions,
and not their implementations. And, of course, this process can be repeated over many stages.
This process gives one the ability to construct systems with complexity far beyond what would
be possible if it were necessary to understand each component in detail.

Any module can be described in a large number of ways. We might describe the circuitry in a
digital watch in terms of how it behaves as a clock and a stopwatch, or in terms of voltages and
currents within the circuit, or in terms of the heat produced at different parts of the circuitry. Each
of these is a different model of the watch. Different models will be appropriate for different tasks:
there is no single correct model. Rather, each model exposes different dimensions of the system,
allowing us to explore many aspects of the design space of a system, and to trade off different
factors in the performance of a system.

The primary theme of this course will be to learn about different methods for building modules
out of primitives, and of building different abstract models of them, so that we can analyze or
predict their behavior, and so we can recombine them into even more complex systems. The same
fundamental principles will apply to software, to control systems, and to circuits.

1.2.1 Example problem
Imagine that you need to make a robot that will roll up close to a light bulb and stop a fixed
distance from it. The first question is, how can we get electrical signals to relate to the physical
phenomena of light readings and robot wheel rotations? There is a large part of electrical engi­
neering related to the design of physical devices that connect to the physical world in such a way
that some electrical property of the device relates to a physical process in the world. For example,
a light-sensitive resistor (photo-resistor) is a sensor whose resistance changes depending on light
intensity impinging on it; a motor is an effector whose rotor speed is related to the voltage across
its two terminals. In this course, we will not examine the detailed physics of sensors and effectors,
but will concentrate on ways of designing systems that use sensors and effectors to perform both
simple and more complicated tasks. To get a robot to stop in front of a light bulb, the problem will
be to find a way to connect the photo-resistor to the motor, so that the robot will stop at an appro­
priate distance from the bulb. Thus, we will already use the idea of abstraction to treat sensors

Chapter 1 Course Overview	 6.01— Spring 2011— April 25, 2011 9

and effectors as primitive modules whose internal details we can ignore, and whose performance
characteristics we can use as we design systems built on these elements.

1.2.2 An abstraction hierarchy of mechanisms
Given the light-sensitive resistor and the motor, we could find many ways of connecting them,
using bits of metal and ceramic of different kinds, or making some kind of magnetic or mechanical
linkages. The space of possible designs of machines is enormous.

One of the most important things that engineers do, when faced with a set of design problems,
is to standardize on a basis set of components to use to build their systems. There are many
reasons for standardizing on a basis set of components, mostly having to do with efficiency of
understanding and of manufacturing. It is important, as a designer, to develop a repertoire of
standard bits and pieces of designs that you understand well and can put together in various ways
to make more complex systems. If you use the same basis set of components as other designers,
you can learn valuable techniques from them, rather than having to re-invent the techniques
yourself. And other people will be able to readily understand and modify your designs.

We can often make a design job easier by limiting the space of possible designs, and by standard­
izing on:

•	 a basis set of primitive components;

•	 ways of combining the primitive components to make more complex systems;

•	 ways of “packaging” or abstracting pieces of a design so they can be reused (in essence creat­
ing new “primitives”); and

•	 ways of capturing common patterns of abstraction (essentially, abstracting our abstractions).

Very complicated design problems can become tractable using such a primitive-combination­
abstraction-pattern (PCAP) approach. In this class, we will examine and learn to use a variety
of PCAP strategies common in EE and CS, and will even design some of our own, for special pur­
poses. In the rest of this section, we will hint at some of the PCAP systems we will be developing
in much greater depth throughout the class. Figure 1.1 shows one view of this development, as a
successive set of restrictions of the design space of mechanisms.

One very important thing about abstract models is that once we have fixed the abstraction, it
will usually be possible to implement it using a variety of different underlying substrates. So,
as shown in figure 1.2, we can construct general-purpose computers out of a variety of different
kinds of systems, including digital circuits and general-purpose computers. And systems satisfy­
ing the digital circuit abstraction can be constructed from analog circuits, but also from gears or
water or light.

Another demonstration of the value of abstracted models is that we can use them, by analogy, to
describe quite different systems. So, for example, the constraint models of circuits that we will
study can be applied to describing transmission of neural signals down the spinal cord, or of heat
through a network of connected bodies.

Let’s explore the abstraction hierarchy figure 1.1 in some more detail, moving up abstraction lev­
els while observing common patterns.

10 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

electrical systems

traditional analog circuits

digital electronic circuits

electronic computers

electronic computers
running Python programs

electronic computers with
Python programs that

select outputs by
planning

Figure 1.1 Increasingly constrained systems.

General-purpose computer

Digital circuits Turing
machine

Cellular
automata

Analog
electronics Gears Light Water

Figure 1.2 A single abstraction may have a variety of different underlying implementations.

Circuits
Typical electronics circuits are built out of a basis set of primitive components such as voltage
sources, resistors, capacitors, inductors and transistors. This set of component types was chosen
to be closely related to primitive concepts in our physical understanding of electronic systems
in terms of voltage, current, resistance, and the rate of change of those quantities over time. So,
when we buy a physical resistor, we tend to think only of its resistance; and when we buy a
capacitor, we think of its ability to store charge. But, of course, that physical resistor has some
capacitance, and the capacitor, some resistance. Still, it helps us in our designs to have devices
that are as close to the ideal models as possible; and it helps that people have been designing with
these components for years, so that we can adopt the strategies that generations of clever people
have developed.

The method of combining circuit elements is to connect their terminals with conductors (wires,
crimps, solder, etc.), a process that is generically referred to as wiring. And our method of ab­
straction is to describe the constraints that a circuit element exerts on the currents and voltages of
terminals to which the element is connected.

So, armed with the standard basis set of analog circuit components, we can try to build a circuit to
control our robot. We have a resistance that varies with the light level, but we need a voltage that
does so, as well. We can achieve this by using a voltage divider, which is shown in figure 1.3A.
Using an abstract, constraint-based model of the behavior of circuit components that we will

Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 11

study in detail later in the course, we can determine the following relationship between Vout and
Vin:

RB
Vout = Vin .

RA + RB

So, for example, if RA = RB, then Vout = Vin/2. Or, in our case, if RA actually varies with the
amount of light shining on it, then Vout will also vary with the light.1

RA

RB

Vin

Vout

RA

RB

Vin

Vout

motor

RA

RB

Vin

Vout

motor

Figure 1.3 Voltage dividers: A. Resistor divider. B. Connected to a motor, in a way that breaks
the abstraction from part A. C. Connected to a motor, with a buffer.

That is great. So, now, we might imagine that we could use this voltage difference that we have
created to drive the motor at different speeds, depending on the light hitting the resistor, using a
circuit something like the one shown in figure 1.3B. But, sadly, that will not work. It turns out that
once we connect the motor to the circuit, it actually changes the voltages, and we can no longer
maintain the voltage difference needed to drive the motor.

So, although we have developed an abstract model of the behavior of circuit components, which
lets us analyze the behavior of a particular complete circuit design, it does not give us modu­
larity. That is, we cannot design two parts of a circuit, understand each of their behaviors, and
then predict the behavior of the composite system based on the behavior of the separate compo­
nents. Instead, we would have to re-analyze the joint behavior of the whole composite system.
Lack of modularity makes it very difficult to design large systems, because two different people,
or the same person at two different times, cannot design pieces and put them together without
understanding the whole.

To solve this problem, we can augment our analog-circuit toolbox with some additional compo­
nents that allow us to design components with modular behavior; they “buffer” or “isolate” one
part of the circuit from another in ways that allow us to combine the parts more easily. In this
class, we will use op-amps to build buffers, which will let us solve our sample problem using a
slightly more complex circuit, as shown in figure 1.3C.

Thus, the key point is that good modules preserve abstraction barriers between the use of a mod­
ule and internal details of how they are constructed. We will see this theme recur as we discuss
different PCAP systems.

1 Do not worry if this example does not make much sense to you; we will explore this all in great detail later.

12 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

Digital circuits
In analog circuits, we think about voltages on terminals ranging over real values. This gives us
the freedom to create an enormous variety of circuits, but sometimes that freedom actually makes
the design process more difficult. To design ever more complex circuits, we can move to a much
stronger, digital abstraction, in which the voltages on the terminals are thought of as only taking
on values that are either “low” or “high” (often called 0 and 1). This PCAP system is made up of
a basis set of elements, called gates, that are built out of simpler analog circuit components, such
as transistors and resistors. Adopting the digital abstraction is a huge limitation on the kinds
of circuits that can be built. However, digital circuits can be easy to design and build and also
can be inexpensive because the basic elements (gates) are simple (fewer transisters are need to
construct a gate than to construct an op amp), versatile (only a small number of different kinds
of logic elements are necessary to construct an arbitrary digital circuit), and combinations are
easy to think about (using Boolean logic). These properties allow designers to build incredibly
complex machines by designing small parts and putting them together into increasingly larger
pieces. Digital watches, calculators, and computers are all built this way.

Digital design is a very important part of EECS, and it is treated in a number of our courses at basic
and advanced levels, but is not one of the topics we will go into in detail in 6.01. Nevertheless,
the same central points that we explore in this course apply to this domain as well.

Computers
One of the most important developments in the design of digital circuits is that of the general-
purpose “stored program” computer. Computers are a particular class of digital circuits that are
general purpose: the same actual circuit can perform (almost) any transformation between its
inputs and its outputs. Which particular transformation it performs is governed by a program,
which is some settings of physical switches, or information written on an external physical mem­
ory, such as cards or a tape, or information stored in some sort of internal memory.

The “almost” in the previous section refers to the actual memory capacity of the computer. Exactly
what computations a computer can perform depends on the amount of memory it has; and also
on the time you are willing to wait. So, although a general-purpose computer can do anything
a special-purpose digital circuit can do, in the information-processing sense, the computer might
be slower or use more power. However, using general-purpose computers can save an enormous
amount of engineering time and effort. It is much cheaper and easier to debug and modify and
manufacture software than hardware. The modularities and abstractions that software PCAP
systems give us are even more powerful than those derived from the digital circuit abstraction.

Again, we can see how abstraction separates use from details; we don’t need to know how the
circuits inside a computer are designed, we just need to know the rules by which we can use them
and the constraints under which they perform.

Python programs
Every general-purpose computer has a different detailed design, which means that the way its
program needs to be specified is different. Furthermore, the “machine languages” for describing
computer programs, at the most primitive level, are awkward for human programmers. So, we

Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 13

have developed a number of computer programming languages for specifying a desired com­
putation. These languages are converted into instructions in the computer’s native machine lan­
guage by other computer programs, called compilers or interpreters. One of the coolest and most
powerful things about general-purpose computers is this ability to write computer programs that
process or create or modify other computer programs.

Computer programming languages are PCAP systems. They provide primitive operations, ways
of combining them, ways of abstracting over them, and ways of capturing common abstraction
patterns. We will spend a considerable amount of time in this course studying the particular
primitives, combination mechanisms, and abstraction mechanisms made available in the Python
programming language. But the choice of Python is relatively unimportant. Virtually all modern
programming languages supply a similar set of mechanisms, and the choice of programming
language is primarily a matter of taste and convenience.

In a computer program we have both data primitives and computation primitives. At the most
basic level, computers generally store binary digits (bits) in groups of 32 or 64, called words.
These words are data primitives, and they can be interpreted by our programs as representing
integers, floating-point numbers, strings, or addresses of other data in the computer’s memory.
The computational primitives supported by most computers include numerical operations such
as addition and multiplication, and locating and extracting the contents of a memory at a given
address. In Python, we will work at a level of abstraction that does not require us to think very
much about addresses of data, but it is useful to understand that level of description, as well.

Primitive data and computation elements can be combined and abstracted in a variety of differ­
ent ways, depending on choices of programming style. We will explore these in more detail in
section 1.3.2.

1.2.3 Models
So far, we have discussed a number of ways of framing the problem of designing and construct­
ing mechanisms. Each PCAP system is accompanied by a modeling system that lets us make
mathematical models of the systems we construct.

What is a model? It is a new system that is considerably simpler than the system being modeled,
but which captures the important aspects of the original system. We might make a physical model
of an airplane to test in a wind tunnel. It does not have to have passenger seats or landing lights;
but it has to have surfaces of the correct shape, in order to capture the important properties for
this purpose. Mathematical models can capture properties of systems that are important to us,
and allow us to discover things about the system much more conveniently than by manipulating
the original system itself.

One of the hardest things about building models is deciding which aspects of the original system
to model and which ones to ignore. Many classic, dramatic engineering failures can be ascribed to
failing to model important aspects of the system. One example (which turned out to be an ethical
success story, rather than a failure) is LeMessurier’s Citicorp Building2, in which an engineering
design change was made, but tested in a model in which the wind came only from a limited set
of directions.

2 See “The Fifty-Nine Story Crisis”, The New Yorker, May 29, 1995, pp 45-53.

14 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

Another important dimension in modeling is whether the model is deterministic or not. We
might, for example, model the effect of the robot executing a command to set its velocity as mak­
ing an instantaneous change to the commanded velocity. But, of course, there is likely to be some
delay and some error. We have to decide whether to ignore that delay and error in our model and
treat it as if it were ideal; or, for example, to make a probabilistic model of the possible results
of that command. Generally speaking, the more different the possible outcomes of a particular
action or command, and the more diffuse the probability distribution over those outcomes, the
more important it is to explicitly include uncertainty in the model.

Once we have a model, we can use it in a variety of different ways, which we explore below.

Analytical models
By far the most prevalent use of models is in analysis: Given a circuit design, what will the voltage
on this terminal be? Given a computer program, will it compute the desired answer? How long
will it take? Given a control system, implemented as a circuit or as a program, will the system
stop at the right distance from the light bulb?

Analytical tools are important. It can be hard to verify the correctness of a system by trying
it in all possible initial conditions with all possible inputs; sometimes it is easier to develop a
mathematical model and then prove a theorem about the model.

For some systems, such as pure software computations, or the addition circuitry in a calculator,
it is possible to analyze correctness or speed with just a model of the system in question. For
other systems, such as fuel injectors, it is impossible to analyze the correctness of the controller
without also modeling the environment (or “plant”) to which it is connected, and then analyzing
the behavior of the coupled system of the controller and environment.

To demonstrate some of these tradeoffs, we can do a very simple analysis of a robot moving to­
ward a lamp. Imagine that we arrange it so that the robot’s velocity at time t, V[t], is proportional
to the difference between the actual light level, X[t], and a desired light level (that is, the light
level we expect to encounter when the robot is the desired distance from the lamp), Xdesired ; that
is, we can model our control system with the difference equation

V[t] = k(Xdesired − X[t])

where k is the constant of proportionality, or gain, of the controller.

Now, we need to model the world. For simplicity, we equate the light level to the robot’s position
(assuming that the units match); in addition we assume the robot’s position at time t is its position
at time t − 1 plus its velocity at time t − 1 (actually, this should be the product of the velocity and
the length of time between samples, but we can just assume a unit time step and thus use velocity).
When we couple these models, we get the difference equation

X[t] = X[t − 1] + k(Xdesired − X[t − 1]) .

Now, for a given value of k, we can determine how the system will behave over time, by solving
the difference equation in X.

Later in the course, we will see how easily-determined mathematical properties of a difference-
equation model can tell us whether a control system will have the desired behavior and whether

15 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

or not the controller will cause the system to oscillate. These same kinds of analyses can be applied
to robot control systems as well as to the temporal properties of voltages in a circuit, and even to
problems as unrelated as the consequences of a monetary policy decision in economics. It is
important to note that treating the system as moving in discrete time steps is an approximation
to underlying continuous dynamics; it can make models that are easier to analyze, but it requires
sophisticated understanding of sampling to understand the effects of this approximation on the
correctness of the results.

Synthetic models
One goal of many people in a variety of sub-disciplines of computer science and electrical en­
gineering is automatic synthesis of systems from formal descriptions of their desired behavior.
For example, you might describe some properties you would want the input/output behavior of
a circuit or computer program to have, and then have a computer system discover a circuit or
program with the desired property.

This is a well-specified problem, but generally the search space of possible circuits or programs
is much too large for an automated process; the intuition and previous experience of an expert
human designer cannot yet be matched by computational search methods.

However, humans use informal models of systems for synthesis. The documentation of a software
library, which describes the function of the various procedures, serves as an informal model that
a programmer can use to assemble those components to build new, complex systems.

Internal models
As we wish to build more and more complex systems with software programs as controllers, we
find that it is often useful to build additional layers of abstraction on top of the one provided by
a generic programming language. This is particularly true when the nature of the exact computa­
tion required depends considerably on information that is only received during the execution of
the system.

Consider, for example, an automated taxi robot (or, more prosaically, the navigation system in
your new car). It takes, as input, a current location in the city and a goal location, and gives, as
output, a path from the current location to the goal. It has a map built into it.

It is theoretically possible to build an enormous digital circuit or computer program that contains
a look-up table, in which we precompute the path for all pairs of locations and store them away.
Then when we want to find a path, we could simply look in the table at the location correspond­
ing to the start and goal location and retrieve the precomputed path. Unfortunately, the size of
that table is too huge to contemplate. Instead, what we do is construct an abstraction of the prob­
lem as one of finding a path from any start state to any goal state, through a graph (an abstract
mathematical construct of “nodes” with “arcs” connecting them). We can develop and implement
a general-purpose algorithm that will solve any shortest-path problem in a graph. That algorithm
and implementation will be useful for a wide variety of possible problems. And for the naviga­
tion system, all we have to do is represent the map as a graph, specify the start and goal states,
and call the general graph-search algorithm.

16 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

We can think of this process as actually putting a model of the system’s interactions with the
world inside the controller; it can consider different courses of action in the world and pick the
one that is the best according to some criterion.

Another example of using internal models is when the system has some significant lack of infor­
mation about the state of the environment. In such situations, it may be appropriate to explicitly
model the set of possible states of the external world and their associated probabilities, and to
update this model over time as new evidence is gathered. We will pursue an example of this
approach near the end of the course.

1.3 Programming embedded systems
There are many different ways of thinking about modularity and abstraction for software. Differ­
ent models will make some things easier to say and do and others more difficult, making different
models appropriate for different tasks. In the following sections, we explore different strate­
gies for building software systems that interact with an external environment, and then different
strategies for specifying the purely computational part of a system.

1.3.1 Interacting with the environment
Increasingly, computer systems need to interact with the world around them, receiving informa­
tion about the external world, and taking actions to affect the world. Furthermore, the world is
dynamic, so that as the system is computing, the world is changing, requiring future computation
to adapt to the new state of the world.

There are a variety of different ways to organize computations that interact with an external
world. Generally speaking, such a computation needs to:

1. get information from sensors (light sensors, sonars, mouse, keyboard, etc.),
2. perform computation, remembering some of the results, and
3. take actions to change the outside world (move the robot, print, draw, etc.).

These operations can be put together in different styles.

1.3.1.1 Sequential
The most immediately straightforward style for constructing a program that interacts with the
world is the basic imperative style, in which the program gives a sequence of ’commands’ to the
system it is controlling. A library of special procedures is defined, some of which read information
from the sensors and others of which cause actions to be performed. Example procedures might
move a robot forward a fixed distance, or send a file out over the network, or move video-game
characters on the screen.

In this model, we could naturally write a program that moves an idealized robot in a square, if
there is space in front of it.

if noObstacleInFront:

moveDistance(1)

turnAngle(90)

moveDistance(1)

17 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

turnAngle(90)

moveDistance(1)

turnAngle(90)

moveDistance(1)

turnAngle(90)

The major problem with this style of programming is that the programmer has to remember to
check the sensors sufficiently frequently. For instance, if the robot checks for free space in front,
and then starts moving, it might turn out that a subsequent sensor reading will show that there
is something in front of the robot, either because someone walked in front of it or because the
previous reading was erroneous. It is hard to have the discipline, as a programmer, to remember
to keep checking the sensor conditions frequently enough, and the resulting programs can be
quite difficult to read and understand.

For the robot moving toward the light, we might write a program like this:

while lightValue < desiredValue:

moveDistance(0.1)

This would have the robot creep up, step by step, toward the light. We might want to modify it so
that the robot moved a distance that was related to the difference between the current and desired
light values. However, if it takes larger steps, then during the time that it is moving it will not be
sensitive to possible changes in the light value and cannot react immediately to them.

1.3.1.2 Event-Driven
User-interface programs are often best organized differently, as event-driven (also called interrupt
driven) programs. In this case, the program is specified as a collection of procedures (called ’han­
dlers’ or ’callbacks’) that are attached to particular events that can take place. So, for example,
there might be procedures that are called when the mouse is clicked on each button in the inter­
face, when the user types into a text field, or when the temperature of a reactor gets too high.
An “event loop” runs continuously, checking to see whether any of the triggering events have
happened, and, if they have, calling the associated procedure.

In our simple example, we might imagine writing a program that told the robot to drive forward
by default; and then install an event handler that says that if the light level reaches the desired
value, it should stop. This program would be reactive to sudden changes in the environment.

As the number and frequency of the conditions that need responses increases, it can be difficult
to both keep a program like this running well and guarantee a minimum response time to any
event.

1.3.1.3 Transducer
An alternative view is that programming a system that interacts with an external world is like
building a transducer with internal state. Think of a transducer as a processing box that runs
continuously. At regular intervals (perhaps many times per second), the transducer reads all of
the sensors, does a small amount of computation, stores some values it will need for the next
computation, and then generates output values for the actions.

18 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

This computation happens over and over and over again. Complex behavior can arise out of
the temporal pattern of inputs and outputs. So, for example, a robot might try to move forward
without hitting something by defining a procedure:

def step():

distToFront = min(frontSonarReadings)

motorOutput(gain * (distToFront - desiredDistance), 0.0)

Executed repeatedly, this program will automatically modulate the robot’s speed to be propor­
tional to the free space in front of it.

The main problem with the transducer approach is that it can be difficult to do tasks that are
fundamentally sequential (like the example of driving in a square, shown above). We will start
with the transducer model, and then, as described in section 4.3, we will build a new abstraction
layer on top of it that will make it easy to do sequential commands, as well.

1.3.2 Programming models
Just as there are different strategies for organizing entire software systems, there are different
strategies for formally expressing computational processes within those structures.

1.3.2.1 Imperative computation
Most of you have probably been exposed to an imperative model of computer programming,
in which we think of programs as giving a sequential set of instructions to the computer to do
something. And, in fact, that is how the internals of the processors of computers are typically
structured. So, in Java or C or C++, you write typically procedures that consist of lists of instruc­
tions to the computer:

1. Put this value in this variable

2. Square the variable

3. Divide it by pi

4. If the result is greater than 1, return the result

In this model of computation, the primitive computational elements are basic arithmetic opera­
tions and assignment statements. We can combine the elements using sequences of statements,
and control structures such as if, for, and while. We can abstract away from the details of a
computation by defining a procedure that does it. Now, the engineer only needs to know the
specifications of the procedure, but not the implementation details, in order to use it.

1.3.2.2 Functional computation
Another style of programming is the functional style. In this model, we gain power through
function calls. Rather than telling the computer to do things, we ask it questions: What is 4 + 5?
What is the square root of 6? What is the largest element of the list?

These questions can all be expressed as asking for the value of a function applied to some argu­
ments. But where do the functions come from? The answer is, from other functions. We start with
some set of basic functions (like “plus”), and use them to construct more complex functions.

19 Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011

This method would not be powerful without the mechanisms of conditional evaluation and re­
cursion. Conditional functions ask one question under some conditions and another question
under other conditions. Recursion is a mechanism that lets the definition of a function refer to the
function being defined. Recursion is as powerful as iteration.

In this model of computation, the primitive computational elements are typically basic arithmetic
and list operations. We combine elements using function composition (using the output of one
function as the input to another), if, and recursion. We use function definition as a method
of abstraction, and the idea of higher-order functions (passing functions as arguments to other
functions) as a way of capturing common high-level patterns.

1.3.2.3 Data structures
In either style of asking the computer to do work for us, we have another kind of modularity and
abstraction, which is centered around the organization of data.

At the most primitive level, computers operate on collections of (usually 32 or 64) bits. We can
interpret such a collection of bits as representing different things: a positive integer, a signed
integer, a floating-point number, a Boolean value (true or false), one or more characters, or an
address of some other data in the memory of the computer. Python gives us the ability to work
directly with all of these primitives, except for addresses.

There is only so much you can do with a single number, though. We would like to build computer
programs that operate on representations of documents or maps or circuits or social networks. To
do so, we need to aggregate primitive data elements into more complex data structures. These can
include lists, arrays, dictionaries, and other structures of our own devising.

Here, again, we gain the power of abstraction. We can write programs that do operations on
a data structure representing a social network, for example, without having to worry about the
details of how the social network is represented in terms of bits in the machine.

1.3.2.4 Object-oriented programming: computation + data structures
Object-oriented programming is a style that applies the ideas of modularity and abstraction to
execution and data at the same time.

An object is a data structure, together with a set of procedures that operate on the data. Basic
procedures can be written in an imperative or a functional style, but ultimately there is imperative
assignment to state variables in the object.

One major new type of abstraction in OO programming is “generic” programming. It might be
that all objects have a procedure called print associated with them. So, we can ask any object to
print itself, without having to know how it is implemented. Or, in a graphics system, we might
have a variety of different objects that know their x, y positions on the screen. So each of them can
be asked, in the same way, to say what their position is, even though they might be represented
very differently inside the objects.

In addition, most object-oriented systems support inheritance, which is a way to make new kinds
of objects by saying that they are mostly like another kind of object, but with some exceptions.
This is another way to take advantage of abstraction.

Chapter 1 Course Overview 6.01— Spring 2011— April 25, 2011 20

Programming languages
Python as well as other modern programming languages, such as Java, Ruby and C++, support
all of these programming models. The programmer needs to choose which programming model
best suits the task. This is an issue that we will return to throughout the course.

1.4 Summary
We hope that this course will give you a rich set of conceptual tools and practical techniques, as
well as an appreciation of how math, modeling, and implementation can work together to enable
the design and analysis of complex computational systems that interact with the world.

Acknowledgments
Thanks to Jacob White, Hal Abelson, Tomas Lozano-Perez, Sarah Finney, Sari Canelake, Eric
Grimson, Ike Chuang, and Berthold Horn for useful comments and criticisms, and to Denny
Freeman for significant parts and most of the figures in the linear systems chapter. - LPK

21 Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011

Chapter 2
Learning to Program in Python

Depending on your previous programming background, we recommend different paths through
the available readings:

•	 If you have never programmed before: you should start with a general introduction to pro­
gramming and Python. We recommend Python for Software Design: How to Think Like a
Computer Scientist, by Allen Downey. This is a good introductory text that uses Python to
present basic ideas of computer science and programming. It is available for purchase in
hardcopy, or as a free download from:

http://www.greenteapress.com/thinkpython

After that, you can go straight to the next chapter.

•	 If you have programmed before, but not in Python: you should read the rest of this chapter
for a quick overview of Python, and how it may differ from other programming languages
with which you are familiar.

•	 If you have programmed in Python: you should skip to the next chapter.

Everyone should have a bookmark in their browser for Python Tutorial, by Guido Van Rossum.
This is the standard tutorial reference by the inventor of Python. It is accessible at:

http://docs.python.org/tut/tut.html

In the rest of this chapter, we will assume you know how to program in some language, but are
new to Python. We will use Java as an informal running comparative example. In this section we
will cover what we think are the most important differences between Python and what you may
already know about programming; but these notes are by no means complete.

2.1 Using Python
Python is designed for easy interaction between a user and the computer. It comes with an inter­
active mode called a listener or shell. The shell gives a prompt (usually something like »>) and
waits for you to type in a Python expression or program. Then it will evaluate the expression you
entered, and print out the value of the result. So, for example, an interaction with the Python shell
might look like this:

http://www.greenteapress.com/thinkpython
http://docs.python.org/tut/tut.html

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 22

>>> 5 + 5

10

>>> x = 6

>>> x

6

>>> x + x

12

>>> y = ’hi’

>>> y + y

’hihi’

>>>

So, you can use Python as a fancy calculator. And as you define your own procedures in Python,
you can use the shell to test them or use them to compute useful results.

2.1.1 Indentation and line breaks
Every programming language has to have some method for indicating grouping of instructions.
Here is how you write an if-then-else structure in Java:

if (s == 1){

s = s + 1;

a = a - 10;

} else {

s = s + 10;

a = a + 10;

}

The braces specify what statements are executed in the if case. It is considered good style to
indent your code to agree with the brace structure, but it is not required. In addition, the semi­
colons are used to indicate the end of a statement, independent of the locations of the line breaks
in the file. So, the following code fragment has the same meaning as the previous one, although
it is much harder to read and understand.

if (s == 1){

s = s

+ 1;	 a = a - 10;

} else {

s = s + 10;

a = a + 10;

}

In Python, on the other hand, there are no braces for grouping or semicolons for termination.
Indentation indicates grouping and line breaks indicate statement termination. So, in Python, we
would write the previous example as

if s == 1:

s = s + 1

a = a - 10

else:

s = s + 10

a = a + 10

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 23

There is no way to put more than one statement on a single line.3 If you have a statement that is
too long for a line, you can signal it with a backslash:

aReallyLongVariableNameThatMakesMyLinesLong = \

aReallyLongVariableNameThatMakesMyLinesLong + 1

It is easy for Java programmers to get confused about colons and semi-colons in Python. Here is
the deal: (1) Python does not use semi-colons; (2) Colons are used to start an indented block, so
they appear on the first line of a procedure definition, when starting a while or for loop, and
after the condition in an if, elif, or else.

Is one method better than the other? No. It is entirely a matter of taste. The Python method is
pretty unusual. But if you are going to use Python, you need to remember that indentation and
line breaks are significant.

2.1.2 Types and declarations
Java programs are what is known as statically and strongly typed. Thus, the types of all the
variables must be known at the time that the program is written. This means that variables have
to be declared to have a particular type before they are used. It also means that the variables
cannot be used in a way that is inconsistent with their type. So, for instance, you would declare x
to be an integer by saying

int x;
x	 = 6 * 7;

But you would get into trouble if you left out the declaration, or did

int x;
x	 = "thing";

because a type checker is run on your program to make sure that you don’t try to use a variable
in a way that is inconsistent with its declaration.

In Python, however, things are a lot more flexible. There are no variable declarations, and the
same variable can be used at different points in your program to hold data objects of different
types. So, the following is fine, in Python:

if x == 1:

x = 89.3

else:

x = "thing"

The advantage of having type declarations and compile-time type checking, as in Java, is that a
compiler can generate an executable version of your program that runs very quickly, because it
can be certain about what kind of data is stored in each variable, and it does not have to check it at
runtime. An additional advantage is that many programming mistakes can be caught at compile

3	 Actually, you can write something like if a > b: a = a + 1 all on one line, if the work you need to do inside an
if or a for is only one line long.

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 24

time, rather than waiting until the program is being run. Java would complain even before your
program started to run that it could not evaluate

3 + "hi"

Python would not complain until it was running the program and got to that point.

The advantage of the Python approach is that programs are shorter and cleaner looking, and pos­
sibly easier to write. The flexibility is often useful: In Python, it is easy to make a list or array with
objects of different types stored in it. In Java, it can be done, but it is trickier. The disadvantage
of the Python approach is that programs tend to be slower. Also, the rigor of compile-time type
checking may reduce bugs, especially in large programs.

2.1.3 Modules
As you start to write bigger programs, you will want to keep the procedure definitions in multiple
files, grouped together according to what they do. So, for example, we might package a set of
utility functions together into a single file, called utility.py. This file is called a module in
Python.

Now, if we want to use those procedures in another file, or from the the Python shell, we will
need to say

import utility

so that all those procedures become available to us and to the Python interpereter. Now, if we
have a procedure in utility.py called foo, we can use it with the name utility.foo. You can
read more about modules, and how to reference procedures defined in modules, in the Python
documentation.

2.1.4 Interaction and Debugging
We encourage you to adopt an interactive style of programming and debugging. Use the Python
shell a lot. Write small pieces of code and test them. It is much easier to test the individual pieces
as you go, rather than to spend hours writing a big program, and then find it does not work, and
have to sift through all your code, trying to find the bugs.

But, if you find yourself in the (inevitable) position of having a big program with a bug in it, do
not despair. Debugging a program does not require brilliance or creativity or much in the way of
insight. What it requires is persistence and a systematic approach.

First of all, have a test case (a set of inputs to the procedure you are trying to debug) and know
what the answer is supposed to be. To test a program, you might start with some special cases:
what if the argument is 0 or the empty list? Those cases might be easier to sort through first (and
are also cases that can be easy to get wrong). Then try more general cases.

Now, if your program gets your test case wrong, what should you do? Resist the temptation to
start changing your program around, just to see if that will fix the problem. Do not change any
code until you know what is wrong with what you are doing now, and therefore believe that the
change you make is going to correct the problem.

http:utility.py

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 25

Ultimately, for debugging big programs, it is most useful to use a software development environ­
ment with a serious debugger. But these tools can sometimes have a steep learning curve, so in
this class we will learn to debug systematically using “print” statements.

One good way to use “print” statements to help in debugging is to use a variation on binary
search. Find a spot roughly halfway through your code at which you can predict the values of
variables, or intermediate results your computation. Put a print statement there that lists expected
as well as actual values of the variables. Run your test case, and check. If the predicted values
match the actual ones, it is likely that the bug occurs after this point in the code; if they do not,
then you have a bug prior to this point (of course, you might have a second bug after this point,
but you can find that later). Now repeat the process by finding a location halfway between the
beginning of the procedure and this point, placing a print statement with expected and actual
values, and continuing. In this way you can narrow down the location of the bug. Study that part
of the code and see if you can see what is wrong. If not, add some more print statements near the
problematic part, and run it again. Don’t try to be smart....be systematic and indefatigable!

You should learn enough of Python to be comfortable writing basic programs, and to be able to
efficiently look up details of the language that you don’t know or have forgotten.

2.2 Procedures
In Python, the fundamental abstraction of a computation is as a procedure (other books call them
“functions” instead; we will end up using both terms). A procedure that takes a number as an
argument and returns the argument value plus 1 is defined as:

def f(x):

return x + 1

The indentation is important here, too. All of the statements of the procedure have to be indented
one level below the def. It is crucial to remember the return statement at the end, if you want
your procedure to return a value. So, if you defined f as above, then played with it in the shell,4

you might get something like this:

>>> f

<function f at 0x82570>

>>> f(4)

5

>>> f(f(f(4)))

7

If we just evaluate f, Python tells us it is a function. Then we can apply it to 4 and get 5, or apply
it multiple times, as shown.

What if we define

4	 Although you can type procedure definitions directly into the shell, you will not want to work that way, because if
there is a mistake in your definition, you will have to type the whole thing in again. Instead, you should type your
procedure definitions into a file, and then get Python to evaluate them. Look at the documentation for Idle or the 6.01
FAQ for an explanation of how to do that.

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 26

def g(x):
x + 1

Now, when we play with it, we might get something like this:

>>> g(4)

>>> g(g(4))

Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "<stdin>", line 2, in g

TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

What happened!! First, when we evaluated g(4), we got nothing at all, because our definition of
g did not return anything. Well...strictly speaking, it returned a special value called None, which
the shell does not bother printing out. The value None has a special type, called NoneType. So,
then, when we tried to apply g to the result of g(4), it ended up trying to evaluate g(None),
which made it try to evaluate None + 1, which made it complain that it did not know how to
add something of type NoneType and something of type int.

Whenever you ask Python to do something it cannot do, it will complain. You should learn to
read the error messages, because they will give you valuable information about what is wrong
with what you were asking.

Print vs Return
Here are two different function definitions:

def f1(x):
print x + 1

def f2(x):
return x + 1

What happens when we call them?

>>> f1(3)
4
>>> f2(3)
4

It looks like they behave in exactly the same way. But they don’t, really. Look at this example:

>>> print(f1(3))
4
None
>>> print(f2(3))
4

In the case of f1, the function, when evaluated, prints 4; then it returns the value None, which is
printed by the Python shell. In the case of f2, it does not print anything, but it returns 4, which is
printed by the Python shell. Finally, we can see the difference here:

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 27

>>> f1(3) + 1

4

Traceback (most recent call last):

File "<stdin>", line 1, in ?

TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

>>> f2(3) + 1

5

In the first case, the function does not return a value, so there is nothing to add to 1, and an error
is generated. In the second case, the function returns the value 4, which is added to 1, and the
result, 5, is printed by the Python read-eval-print loop.

The book Think Python, which we recommend reading, was translated from a version for Java, and
it has a lot of print statements in it, to illustrate programming concepts. But for just about every­
thing we do, it will be returned values that matter, and printing will be used only for debugging,
or to give information to the user.

Print is very useful for debugging. It is important to know that you can print out as many items
as you want in one line:

>>> x = 100

>>> print ’x’, x, ’x squared’, x*x, ’xiv’, 14

x 100 x squared 10000 xiv 14

We have also snuck in another data type on you: strings. A string is a sequence of characters. You
can create a string using single or double quotes; and access individual elements of strings using
indexing.

>>> s1 = ’hello world’

>>> s2 = "hello world"

>>> s1 == s2

True

>>> s1[3]

’l’

As you can see, indexing refers to the extraction of a particular element of a string, by using
square brackets [i] where i is a number that identifies the location of the character that you
wish to extract (note that the indexing starts with 0).

Look in the Python documentation for more about strings.

2.3 Control structures
Python has control structures that are slightly different from those in other languages.

2.3.1 Conditionals

Booleans
Before we talk about conditionals, we need to clarify the Boolean data type. It has values True
and False. Typical expressions that have Boolean values are numerical comparisons:

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 28

>>> 7 > 8

False

>>> -6 <= 9

True

We can also test whether data items are equal to one another. Generally we use == to test for
equality. It returns True if the two objects have equal values. Sometimes, however, we will be
interested in knowing whether the two items are the exact same object (in the sense discussed in
section 3.3). In that case we use is:

>>> [1, 2] == [1, 2]

True

>>> [1, 2] is [1, 2]

False

>>> a = [1, 2]

>>> b = [1, 2]

>>> c = a

>>> a == b

True

>>> a is b

False

>>> a == c

True

>>> a is c

True

Thus, in the examples above, we see that == testing can be applied to nested structures, and basi­
cally returns true if each of the individual elements is the same. However, is testing, especially
when applied to nested structures, is more refined, and only returns True if the two objects point
to exactly the same instance in memory.

In addition, we can combine Boolean values conveniently using and, or, and not:

>>> 7 > 8 or 8 > 7

True

>>> not 7 > 8

True

>>> 7 == 7 and 8 > 7

True

If

Basic conditional statements have the form:5

if <booleanExpr>:

<statementT1>

...

<statementTk>

else:

<statementF1>

5 See the Python documentation for more variations.

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 29

...

<statementFn>

When the interpreter encounters a conditional statement, it starts by evaluating <boolean-
Expr>, getting either True or False as a result.6 If the result is True, then it will eval­
uate <statementT1>,...,<statementTk>; if it is False, then it will evaluate <state­
mentF1>,...,<statementFn>. Crucially, it always evaluates only one set of the statements.

Now, for example, we can implement a procedure that returns the absolute value of its argument.

def abs(x):

if x >= 0:

return x

else:

return -x

We could also have written

def abs(x):

if x >= 0:

result = x

else:

result = -x

return result

Python uses the level of indentation of the statements to decide which ones go in the groups of
statements governed by the conditionals; so, in the example above, the return result statement
is evaluated once the conditional is done, no matter which branch of the conditional is evaluated.

For and While
If we want to do some operation or set of operations several times, we can manage the process in
several different ways. The most straightforward are for and while statements (often called for
and while loops).

A for loop has the following form:

for <var> in <listExpr>:

<statement1>

...

<statementn>

The interpreter starts by evaluating listExpr. If it does not yield a list, tuple, or string7, an error
occurs. If it does yield a list or list-like structure, then the block of statements will, under normal
circumstances, be executed one time for every value in that list. At the end, the variable <var>
will remain bound to the last element of the list (and if it had a useful value before the for was
evaluated, that value will have been permanently overwritten).

Here is a basic for loop:

6	 In fact, Python will let you put any expression in the place of <booleanExpr>, and it will treat the values 0, 0.0, [],
’’, and None as if they were False and everything else as True.

7 or, more esoterically, another object that can be iterated over.

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 30

result = 0
for x in [1, 3, 4]:

result = result + x * x

At the end of this execution, result will have the value 26, and x will have the value 4.

One situation in which the body is not executed once for each value in the list is when a return
statement is encountered. No matter whether return is nested in a loop or not, if it is evaluated it
immediately causes a value to be returned from a procedure call. So, for example, we might write
a procedure that tests to see if an item is a member of a list, and returns True if it is and False if
it is not, as follows:

def member(x, items):
for i in items:

if x == i:
return True

return False

The procedure loops through all of the elements in items, and compares them to x. As soon as
it finds an item i that is equal to x, it can quit and return the value True from the procedure. If
it gets all the way through the loop without returning, then we know that x is not in the list, and
we can return False.

Exercise 2.1.	 Write a procedure that takes a list of numbers, nums, and a limit, limit,
and returns a list which is the shortest prefix of nums the sum of whose
values is greater than limit. Use for. Try to avoid using explicit indexing
into the list. (Hint: consider the strategy we used in member.)

Range
Very frequently, we will want to iterate through a list of integers, often as indices. Python provides
a useful procedure, range, which returns lists of integers. It can be used in complex ways, but the
basic usage is range(n), which returns a list of integers going from 0 up to, but not including, its
argument. So range(3) returns [0, 1, 2].

Exercise 2.2. Write a procedure that takes n as an argument and returns the sum of the
squares of the integers from 1 to n-1. It should use for and range.

31 Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011

Exercise 2.3.	 What is wrong with this procedure, which is supposed to return True if
the element x occurs in the list items, and False otherwise?

def member (x, items):

for i in items:

if x == i:

return True

else:

return False

While
You should use for whenever you can, because it makes the structure of your loops clear. Some­
times, however, you need to do an operation several times, but you do not know in advance how
many times it needs to be done. In such situations, you can use a while statement, of the form:

while <booleanExpr>:
<statement1>
...
<statementn>

In order to evaluate a while statement, the interpreter evaluates <booleanExpr>, getting a
Boolean value. If the value is False, it skips all the statements and evaluation moves on to the
next statement in the program. If the value is True, then the statements are executed, and the
<booleanExpr> is evaluated again. If it is False, execution of the loop is terminated, and if it is
True, it goes around again.

It will generally be the case that you initialize a variable before the while statement, change that
variable in the course of executing the loop, and test some property of that variable in the Boolean
expression. Imagine that you wanted to write a procedure that takes an argument n and returns
the largest power of 2 that is smaller than n. You might do it like this:

def pow2Smaller(n):
p = 1
while p*2 < n:

p = p*2

return p

Lists
Python has a built-in list data structure that is easy to use and incredibly convenient. So, for
instance, you can say

>>> y = [1, 2, 3]

>>> y[0]

1

>>> y[2]

3

>>> y[-1]

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 32

3

>>> y[-2]

2

>>> len(y)

3

>>> y + [4]

[1, 2, 3, 4]

>>> [4] + y

[4, 1, 2, 3]

>>> [4,5,6] + y

[4, 5, 6, 1, 2, 3]

>>> y

[1, 2, 3]

A list is written using square brackets, with entries separated by commas. You can get elements
out by specifying the index of the element you want in square brackets, but note that, like for
strings, the indexing starts with 0. Note that you can index elements of a list starting from the
initial (or zeroth) one (by using integers), or starting from the last one (by using negative integers).

You can add elements to a list using ’+’, taking advantage of Python operator overloading. Note
that this operation does not change the original list, but makes a new one.

Another useful thing to know about lists is that you can make slices of them. A slice of a list is
sublist; you can get the basic idea from examples.

>>> b = range(10)

>>> b

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> b[1:]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> b[3:]

[3, 4, 5, 6, 7, 8, 9]

>>> b[:7]

[0, 1, 2, 3, 4, 5, 6]

>>> b[:-1]

[0, 1, 2, 3, 4, 5, 6, 7, 8]

>>> b[:-2]

[0, 1, 2, 3, 4, 5, 6, 7]

Iteration over lists
What if you had a list of integers, and you wanted to add them up and return the sum? Here are
a number of different ways of doing it.8

8	 For any program you will ever need to write, there will be a huge number of different ways of doing it. How should
you choose among them? The most important thing is that the program you write be correct, and so you should choose
the approach that will get you to a correct program in the shortest amount of time. That argues for writing it in the way
that is cleanest, clearest, shortest. Another benefit of writing code that is clean, clear and short is that you will be better
able to understand it when you come back to it in a week or a month or a year, and that other people will also be better
able to understand it. Sometimes, you will have to worry about writing a version of a program that runs very quickly,
and it might be that in order to make that happen, you will have to write it less cleanly or clearly or briefly. But it is
important to have a version that is correct before you worry about getting one that is fast.

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 33

First, here is a version in a style you might have learned to write in a Java class (actually, you
would have used for, but Python does not have a for that works like the one in C and Java).

def addList1(l):
sum	 = 0
listLength = len(l)
i =	 0
while (i < listLength):

sum	 = sum + l[i]
i =	 i + 1

return sum

It increments the index i from 0 through the length of the list - 1, and adds the appropriate element
of the list into the sum. This is perfectly correct, but pretty verbose and easy to get wrong.

Here is a version using Python’s for loop.

def addList2(l):
sum	 = 0
for i in range(len(l)):

sum	 = sum + l[i]
return sum

A loop of the form

for x in l:
something

will be executed once for each element in the list l, with the variable x containing each successive
element in l on each iteration. So,

for	 x in range(3):
print x

will print 0 1 2. Back to addList2, we see that i will take on values from 0 to the length of the
list minus 1, and on each iteration, it will add the appropriate element from l into the sum. This
is more compact and easier to get right than the first version, but still not the best we can do!

This one is even more direct.

def addList3(l):
sum	 = 0
for	 v in l:

sum	 = sum + v
return sum

We do not ever really need to work with the indices. Here, the variable v takes on each successive
value in l, and those values are accumulated into sum.

For the truly lazy, it turns out that the function we need is already built into Python. It is called
sum:

def addList4(l):
return sum(l)

34 Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011

In section ??, we will see another way to do addList, which many people find more beautiful
than the methods shown here.

List Comprehensions
Python has a very nice built-in facility for doing many iterative operations, called list comprehen­
sions. The basic template is

[<resultExpr> for <var> in <listExpr> if <conditionExpr>]

where <var> is a single variable (or a tuple of variables), <listExpr> is an expression that evalu­
ates to a list, tuple, or string, and <resultExpr> is an expression that may use the variable <var>.
The if <conditionExpr> is optional; if it is present, then only those values of <var> for which
that expression is True are included in the resulting computation.

You can view a list comprehension as a special notation for a particular, very common, class of
for loops. It is equivalent to the following:

resultVar = []
for <var> in <listExpr>:

if <conditionExpr>:
resultVar.append(<resultExpr>)

resultVar

We used a kind of funny notation *resultVar* to indicate that there is some anonymous list that
is getting built up during the evaluation of the list comprehension, but we have no real way of
accessing it. The result is a list, which is obtained by successively binding <var> to elements of
the result of evaluating <listExpr>, testing to see whether they meet a condition, and if they
meet the condition, evaluating <resultExpr> and collecting the results into a list.

Whew. It is probably easier to understand it by example.

>>> [x/2.0 for x in [4, 5, 6]]

[2.0, 2.5, 3.0]

>>> [y**2 + 3 for y in [1, 10, 1000]]

[4, 103, 1000003]

>>> [a[0] for a in [[’Hal’, ’Abelson’],[’Jacob’,’White’],

[’Leslie’,’Kaelbling’]]]
[’Hal’, ’Jacob’, ’Leslie’]
>>> [a[0]+’!’ for a in [[’Hal’, ’Abelson’],[’Jacob’,’White’],

[’Leslie’,’Kaelbling’]]]
[’Hal!’, ’Jacob!’, ’Leslie!’]

Imagine that you have a list of numbers and you want to construct a list containing just the ones
that are odd. You might write

>>> nums = [1, 2, 5, 6, 88, 99, 101, 10000, 100, 37, 101]

>>> [x for x in nums if x%2==1]

[1, 5, 99, 101, 37, 101]

Note the use of the if conditional here to include only particular values of x.

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 35

And, of course, you can combine this with the other abilities of list comprehensions, to, for exam­
ple, return the squares of the odd numbers:

>>> [x*x for x in nums if x%2==1]

[1, 25, 9801, 10201, 1369, 10201]

You can also use structured assignments in list comprehensions

>>> [first for (first, last) in [[’Hal’, ’Abelson’],[’Jacob’,’White’],
[’Leslie’,’Kaelbling’]]]

[’Hal’, ’Jacob’, ’Leslie’]

>>> [first+last for (first, last) in [[’Hal’, ’Abelson’],[’Jacob’,’White’],

[’Leslie’,’Kaelbling’]]]

[’HalAbelson’, ’JacobWhite’, ’LeslieKaelbling’]

Another built-in function that is useful with list comprehensions is zip. Here are some examples
of how it works:

> zip([1, 2, 3],[4, 5, 6])

[(1, 4), (2, 5), (3, 6)]

> zip([1,2], [3, 4], [5, 6])

[(1, 3, 5), (2, 4, 6)]

Here is an example of using zip with a list comprehension:

>>> [first+last for (first, last) in zip([’Hal’, ’Jacob’, ’Leslie’],

[’Abelson’,’White’,’Kaelbling’])]

[’HalAbelson’, ’JacobWhite’, ’LeslieKaelbling’]

Note that this last example is very different from this one:

>>> [first+last for first in [’Hal’, ’Jacob’, ’Leslie’] \
for last in [’Abelson’,’White’,’Kaelbling’]]

[’HalAbelson’, ’HalWhite’, ’HalKaelbling’, ’JacobAbelson’, ’JacobWhite’,

’JacobKaelbling’, ’LeslieAbelson’, ’LeslieWhite’, ’LeslieKaelbling’]

Nested list comprehensions behave like nested for loops, the expression in the list comprehen­
sion is evaluated for every combination of the values of the variables.

2.4 Common Errors and Messages
Here are some common Python errors and error messages to watch out for. Please let us know if
you have any favorite additions for this list.

A complaint about NoneType often means you forgot a return. •

def plus1 (x):
x + 1

>>> y = plus1(x)

>>> plus1(x) + 2

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: ’NoneType’ and ’int’

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 36

•	 Weird results from math can result from integer division

>>> 3/ 9

0

•	 “Unsubscriptable object” means you are trying to get an element out of something that isn’t a
dictionary, list, or tuple.

>>> x = 1

>>> x[3]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’int’ object is unsubscriptable

•	 “Object is not callable” means you are trying to use something that isn’t a procedure or method
as if it were.

>>> x = 1

>>> x(3)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: ’int’ object is not callable

•	 “List index out of range” means you are trying to read or write an element of a list that is not
present.

>>> a = range(5)

>>> a

[0, 1, 2, 3, 4]

>>> a[5]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list index out of range

•	 “Maximum recursion depth exceeded” means you have a recursive procedure that is nested
very deeply or your base case is not being reached due to a bug.

def fizz(x):
return fizz(x - 1)

>>> fizz(10)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 2, in fizz

File "<stdin>", line 2, in fizz

...

File "<stdin>", line 2, in fizz

RuntimeError: maximum recursion depth exceeded

•	 “Key Error” means that you are trying to look up an element in a dictionary that is not present.

>>> d = {’a’:7, ’b’:8}

>>> d[’c’]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

KeyError: ’c’

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 37

Another common error is forgetting the self before calling a method. This generates the same •
error that you would get if you tried to call a function that wasn’t defined at all.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "V2.py", line 22, in __add__

return add(v)

NameError: global name ’add’ is not defined

2.5 Python Style
Software engineering courses often provide very rigid guidelines on the style of programming,
specifying the appropriate amount of indentation, or what to capitalize, or whether to use un­
derscores in variable names. Those things can be useful for uniformity and readability of code,
especially when a lot of people are working on a project. But they are mostly arbitrary: a style is
chosen for consistency and according to some person’s aesthetic preferences.

There are other matters of style that seem, to us, to be more fundamental, because they directly
affect the readability or efficiency of the code.

Avoid recalculation of the same value. •

You should compute it once and assign it to a variable instead; otherwise, if you have a bug
in the calculation (or you want to change the program), you will have to change it multiple
times. It is also inefficient.

• Avoid repetition of a pattern of computation.

You should use a function instead, again to avoid having to change or debug the same basic
code multiple times.

• Avoid numeric indexing.

You should use destructuring if possible, since it is much easier to read the code and therefore
easier to get right and to modify later.
Avoid excessive numeric constants. •

You should name the constants, since it is much easier to read the code and therefore easier to
get right and to modify later.

Here are some examples of simple procedures that exhibit various flaws. We’ll talk about what
makes them problematic.

2.5.1 Normalize a vector
Let’s imagine we want to normalize a vector of three values; that is to compute a new vector of
three values, such that its length is 1. Here is our first attempt; it is a procedure that takes as input
a list of three numbers, and returns a list of three numbers:

def normalize3(v):
return [v[0]/math.sqrt(v[0]**2+v[1]**2+v[2]**2),

v[1]/math.sqrt(v[0]**2+v[1]**2+v[2]**2),

v[2]/math.sqrt(v[0]**2+v[1]**2+v[2]**2)]

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 38

This is correct, but it looks pretty complicated. Let’s start by noticing that we’re recalculating the
denominator three times, and instead save the value in a variable.

def normalize3(v):

magv = math.sqrt(v[0]**2+v[1]**2+v[2]**2)

return [v[0]/magv,v[1]/magv,v[2]/magv]

Now, we can see a repeated pattern, of going through and dividing each element by magv. Also,
we observe that the computation of the magnitude of a vector is a useful and understandable
operation in its own right, and should probably be put in its own procedure. That leads to this
procedure:

def mag(v):

return math.sqrt(sum([vi**2 for vi in v]))

def normalize3(v):

return [vi/mag(v) for vi in v]

This is especially nice, because now, in fact, it applies not just to vectors of length three. So, it’s
both shorter and more general than what we started with. But, one of our original problems has
snuck back in: we’re recomputing mag(v) once for each element of the vector. So, finally, here’s a
version that we’re very happy with:9

def mag(v):

return math.sqrt(sum([vi**2 for vi in v]))

def normalize3(v):

magv = mag(v)

return [vi/magv for vi in v]

2.5.2 Perimeter of a polygon
Now, let’s consider the problem of computing the length of the perimeter of a polygon. The input
is a list of vertices, encoded as a list of lists of two numbers (such as [[1, 2], [3.4, 7.6],
[-4.4, 3]]). Here is our first attempt:

def perim(vertices):

result = 0

for i in range(len(vertices)-1):

result = result + math.sqrt((vertices[i][0]-vertices[i+1][0])**2 + \
(vertices[i][1]-vertices[i+1][1])**2)

return result + math.sqrt((vertices[-1][0]-vertices[0][0])**2 + \
(vertices[-1][1]-vertices[0][1])**2)

9	 Note that there is still something for someone to be unhappy with here: the use of a list comprehension means that
we’re creating a new list, which we are just going to sum up; that’s somewhat less efficient than adding the values
up in a loop. However, as we said at the outset, for almost every program, clarity matters more than efficiency. And
once you have something that’s clear and correct, you can selectively make the parts that are executed frequently more
efficient.

Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011 39

Again, this works, but it ain’t pretty. The main problem is that someone reading the code doesn’t
immediately see what all that subtraction and squaring is about. We can fix this by defining
another procedure:

def perim(vertices):

result = 0

for i in range(len(vertices)-1):

result = result + pointDist(vertices[i],vertices[i+1])

return result + pointDist(vertices[-1],vertices[0])

def pointDist(p1,p2):

return math.sqrt(sum([(p1[i] - p2[i])**2 for i in range(len(p1))]))

Now, we’ve defined a new procedure pointDist, which computes the Euclidean distance be­
tween two points. And, in fact, we’ve written it generally enough to work on points of any
dimension (not just two). Just for fun, here’s another way to compute the distance, which some
people would prefer and others would not.

def pointDist(p1,p2):

return math.sqrt(sum([(c1 - c2)**2 for (c1, c2) in zip(p1, p2)]))

For this to make sense, you have to understand zip. Here’s an example of how it works:

> zip([1, 2, 3],[4, 5, 6])

[(1, 4), (2, 5), (3, 6)]

2.5.3 Bank transfer
What if we have two values, representing bank accounts, and want to transfer an amount of
money amt between them? Assume that a bank account is represented as a list of values, such as
[’Alyssa’, 8300343.03, 0.05], meaning that ’Alyssa’ has a bank balance of $8,300,343.03,
and has to pay a 5-cent fee for every bank transaction. We might write this procedure as follows.
It moves the amount from one balance to the other, and subtracts the transaction fee from each
account.

def transfer(a1, a2, amt):

a1[1] = a1[1] - amt - a1[2]

a2[1] = a2[1] + amt - a2[2]

To understand what it’s doing, you really have to read the code at a detailed level. Furthermore,
it’s easy to get the variable names and subscripts wrong.

Here’s another version that abstracts away the common idea of a deposit (which can be positive
or negative) into a procedure, and uses it twice:

def transfer(a1, a2, amt):

deposit(a1, -amt)

deposit(a2, amt)

def deposit(a, amt):

a[1] = a[1] + amt - a[2]

http:8300343.03
http:$8,300,343.03

Chapter 2 Learning to Program in Python	 6.01— Spring 2011— April 25, 2011 40

Now, transfer looks pretty clear, but deposit could still use some work. In particular, the use
of numeric indices to get the components out of the bank account definition is a bit cryptic (and
easy to get wrong).10

def deposit(a, amt):

(name, balance, fee) = a

a[1] = balance + amt - fee

Here, we’ve used a destructuring assignment statement to give names to the components of the
account. Unfortunately, when we want to change an element of the list representing the account,
we still have to index it explicitly. Given that we have to use explicit indices, this approach in
which we name them might be better.

acctName = 0

acctBalance = 1

acctFee = 2

def deposit(a, amt):

a[acctBalance] = a[acctBalance] + amt - a[acctFee]

Strive, in your programming, to make your code as simple, clear, and direct as possible. Occa­
sionally, the simple and clear approach will be too inefficient, and you’ll have to do something
more complicated. In such cases, you should still start with something clear and simple, and in
the end, you can use it as documentation.

2.5.4 Coding examples
Following are some attempts at defining a procedure isSubset, which takes two arguments, a
and b, and returns True if a is a subset of b, assuming that a and b are represented as lists of
elements.

Here is one solution to the problem which is in the Pythonic functional style.

def isSubset(a, b):

return reduce(operator.and_, [x in b for x in a])

This is short and direct. The expression x in b tests to see if the item x is in the list b. So,
[x in b for x in a] is a list of Booleans, one for each element in a, indicating whether that
element is in b. Finally, we reduce that list using the and operator11 , which will have the value
True if all of the elements of the list are True, and False otherwise.

An alternative is to do it recursively:

def isSubset(a, b):

if a == []:

return True

else:

return a[0] in b and isSubset(a[1:], b)

10	 We’ll see other approaches to this when we start to look at object-oriented programming. But it’s important to apply
basic principles of naming and clarity no matter whether you’re using assembly language or Java.

11	 To get versions of basic Python operations in the form of procedures, you need to do import operator. Now, you can
do addition with operator.add(3, 4). Because and already has special syntactic significance in Python, they had to
name the operator version of it something different, and so it is operator.and_.

41 Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011

The base case of the recursion is that a is the empty list; in that case, it’s clear that a is a subset of
b. Otherwise, we can define our answer in terms of isSubset, but asking a simpler question (in
this case, on a list for a which is one element smaller). So, we say that a is a subset of b if the first
element of a is a member of b and the set of rest of the elements of a is a subset of b.

We could go even farther in compressing the recursive solution:

def isSubset(a, b):
return a == None or a[0] in b and isSubset(a[1:], b)

Here, we are taking advantage of the fact that in Python (and most other languages), the or oper­
ator has the “early out” property. That is, if we are evaluating e1 or e2, we start by evaluating
e1, and if it is True, then we know the result of the expression has to be True, and therefore
we return without evaluating e2. So, or can act as a kind of conditional operator. Some people
would find this example too abstruse (shorter isn’t always better), and some would find it very
beautiful.

Here is another good solution, this time in the imperative style:

def isSubset(a, b):
for x in a:

if not x in b:
return False

return True

It works by going through the elements in a, in order. If any of those elements is not in b, then we
can immediately quit and return False. Otherwise, if we have gotten through all of the elements
in a, and each of them has been in b, then a really is a subset of b and we can return True.

Here is another good imperative example:

def isSubset(a, b):
result = True
for x in a:

result = result and x in b
return result

This procedure starts by initializing a result to True, which is the identity element for and (it
plays the same role as 0 for add). Then it goes all the way through the list a, and ands the old
result with x in b. This computation is very similar to the computation done in the functional
version, but rather than creating the whole list of Booleans and then reducing, we interleave the
individual membership tests with combining them into a result.

All of these examples are short and clear, and we’d be happy to see you write any of them. How­
ever, there are lots of versions of this procedure that students have written that we are not happy
with. Here are some examples of procedures that are correct, in the sense that they return the
right answer, but incorrect, in the sense that they are long or confused or hard to read.

42 Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011

Bad Example 1.

def isSubset(a,b):
list1=[]
for i in a:

for j in b:
if i==j:

list1.append(i)
break

if len(list1)==len(a):
return True

else:
return False

This procedure works by going through both lists and making a list of the
items that are in common (basically computing the intersection). Then, it
checks to see whether the intersection is of the same length as a. There are
several problems here:
• Using the idea of computing the intersection and then seeing whether

it is equal to a is a nice idea. But it’s hard to see that’s what this code
is doing. Much better would be to make a procedure to compute the
intersection, and then call it explicitly and compare the result to a.

• Comparing the length of the intersection and the length of a is danger­
ous. Because we allow repetitions of elements in the lists representing
sets, two sets that are equal, in the set sense, may not have the same
length.

• The break statement exits one level of the loop you are currently exe­
cuting. It is often hard to understand and best avoided.

• If you ever find yourself writing:

if condition:
return True

else:
return False

You could always replace that with

return condition

which is shorter and clearer.

43 Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011

Bad Example 2.

def isSubset(a,b):
itera = 0
okay = True
while itera < len(a):

iterb = 0
tempokay = False
while iterb < len(b):

if a[itera] == b[iterb]:
tempokay = True

iterb = iterb + 1
if tempokay == False:

okay = False
itera = itera + 1

return okay

This procedure is basically iterating over both lists, which is fine, but it is
using while rather than for to do so, which makes it hard to follow. We
can rewrite it with for:

def isSubset(a,b):
okay = True
for itera in range(len(a)):

tempokay = False
for iterb in range(len(b)):

if a[itera] == b[iterb]:
tempokay = True

if tempokay == False:
okay = False

return okay

continued

44 Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011

Bad Example 3. Previous bad example, being made over.
Now, the remaining lack of clarity is in the handling of the Booleans. We
can replace

if a[itera] == b[iterb]:
tempokay = True

with

tempokay = tempokay or (a[itera] == b[iterb])

which will set tempokay to True if a[itera] == b[iterb], and other­
wise leave it the same. And we can replace

if tempokay == False:
okay = False

with

okay = okay and tempokay

It still has the effect that if tempokay is false, then okay will be false, and
otherwise it will be as it was before. So, now we have:

def isSubset(a,b):
okay = True
for itera in range(len(a)):

tempokay = False
for iterb in range(len(b)):

tempokay = tempokay or a[itera] == b[iterb]
okay = okay and tempokay

return okay

The logical structure is becoming clearer. It might be even better if we were
to write:

def isSubset(a,b):
foundAllAsSoFar = True
for itera in range(len(a)):

foundThisA = False
for iterb in range(len(b)):

foundThisA = foundThisA or a[itera] == b[iterb]
foundAllAsSoFar = foundAllAsSoFar and foundThisA

return okay

45 Chapter 2 Learning to Program in Python 6.01— Spring 2011— April 25, 2011

Exercise 2.4. Now, see if you can, first, explain, and then improve this example!

def issubset(a,b):
i = 0
j = 0
while i < len(a):

c = False
while j < len(b):

if a[i] == b[j]:
c = True
j = j+1

if c:
c = False

else:
return False

j = 0
i = i+1

return True

46 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Chapter 3
Programs and Data

Object-oriented programming is a popular way of organizing programs, which groups together
data with the procedures that operate on them, thus facilitating some kinds of modularity and
abstraction. In the context of our PCAP framework, object-oriented programming will give us
methods for capturing common patterns in data and the procedures that operate on that data, via
classes, generic functions, and inheritance.

In this chapter, we will try to develop a deep understanding of object-oriented programming by
working through the mechanism by which an interpreter evaluates a computer program. The first
part of the chapter will focus on interpretation of typical expxressions, starting from the simplest
single-statement programs and working up through list structures and procedures. Many of the
observations made through this process apply to styles of program organization as well as object-
oriented programming. Once we understand how an interpreter evaluates standard expressions,
we will move to objects and classes. Although we use Python as an example, the discussion in
this chapter is intended to be illustrative of principles of computer languages, more generally.

In many computer languages, including Python, programs are understood and executed by a
computer program called an interpreter. Interpreters are surprisingly simple: the rules defining
the meaning or semantics of a programming language are typically short and compact; and the in­
terpreter basically encodes these rules and applies them to any legal expressionn in the language.
The enormous richness and complexity of computer programs comes from the composition of
primitive elements with simple rules. The interpreter, in essence, defines the semantics of the
language by capturing the rules governing the value or behavior of program primitives, and of
what it means to combine the primitives in various ways. We will study the meaning of computer
programs by understanding how the interpreter operates on them.

An interpreter is made up of four pieces:
•	 The reader or tokenizer takes as input a string of characters and divides them into tokens,

which are numbers (like -3.42), words (like while or a), and special characters (like :).
•	 The parser takes as input the string of tokens and understands them as constructs in the pro­

gramming language, such as while loops, procedure definitions, or return statements.
•	 The evaluator (which is also sometimes called the interpreter, as well) has the really interesting

job of determining the value and effects of the program that you ask it to interpret.
• The printer takes the value returned by the evaluator and prints it out for the user to see.

Programs should never be a mystery to you: you can learn the simple semantic rules of the lan­
guage and, if necessary, simulate what the interpreter would do, in order to understand any com­
puter program which you are facing. Of course, in general, one does not want to work through

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 47

the tedious process of simulating the interpreter, but this foundation of understanding the inter­
preter’s process enables you to reason about the evaluation of any program.

3.1 Primitives, Composition, Abstraction, and Patterns
We will start by thinking about how the PCAP framework applies to computer programs, in
general. We can do this by filling in table 3.1, exploring the PCAP ideas in data, procedures, and
objects.

Data
The primitive data items in most programming languages are things like integers, floating point
numbers, and strings. We can combine these into data structures (we discuss some basic Python
data structures in section 3.3) such as lists, arrays, dictionaries and records. Making a data struc­
ture allows us, at the most basic level, to think of a collection of primitive data elements as if
it were one thing, freeing us from details. Sometimes, we just want to think of a collection of
data, not in terms of its underlying representation, but in terms of what it represents. So, we
might want to think of a set of objects, or a family tree, without worrying whether it is an array
or a list in its basic representation. Abstract data types provide a way of abstracting away from
representational details and allowing us to focus on what the data really means.

Procedures
The primitive procedures of a language are things like built-in numeric operations and basic list
operations. We can combine these using the facilities of the language, such as if and while, or
by using function composition (f(g(x))). If we want to abstract away from the details of how
a particular computation is done, we can define a new function; defining a function allows us
to use it for computational jobs without thinking about the details of how those computational
jobs get done. You can think of this process as essentially creating a new primitive, which we
can then use while ignoring the details of how it is constructed. One way to capture common
patterns of abstraction in procedures is to abstract over procedures themselves, with higher-order
procedures, which we discuss in detail in section 3.4.6.

Objects
Object-oriented programming provides a number of methods of abstraction and pattern capture
in both data and procedures. At the most basic level, objects can be used as records, combining
together primitive data elements. More generally, they provide strategies for jointly abstracting a
data representation and the procedures that work on it. The features of inheritance and polymor­
phism are particularly important, and we will discuss them in detail later in this chapter.

48 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Procedures Data

Primitives
Means of combination
Means of abstraction
Means of capturing patterns

+, *, ==

if, while, f(g(x))

def

higher-order procedures

numbers, strings
lists, dictionaries, objects
ADTS, classes
generic functions, inheritance

Table 3.1 Primitives, combination, abstraction, patterns framework for computer programs

3.2 Expressions and assignment
We can think of most computer programs as performing some sort of transformation on data. Our
program might take as input the exam scores of everyone in the class and generate the average
score as output. Or, in a transducer model, we can think about writing the program that takes
the current memory state of the transducer and an input, and computes a new memory state and
output.

To represent data in a computer, we have to encode it, ultimately as sequences of binary digits (0s
and 1s). The memory of a computer is divided into ’words’, which typically hold 32 or 64 bits;
a word can be used to store a number, one or several characters, or a pointer to (the address of)
another memory location.

A computer program, at the lowest level, is a set of primitive instructions, also encoded into
bits and stored in the words of the computer’s memory. These instructions specify operations to
be performed on the data (and sometimes the program itself) that are stored in the computer’s
memory. In this class, we will not work at the level of these low-level instructions: a high-level
programming language such as Python lets us abstract away from these details. But it is important
to have an abstract mental model of what is going on within the computer.

3.2.1 Simple expressions
A cornerstone of a programming language is the ability to evaluate expressions. We will start
here with arithmetic expressions, just to get the idea. An expression consists of a sequence of
’tokens’ (words, special symbols, or numerals) that represent the application of operators to data
elements. Each expression has a value, which can be computed recursively by evaluating primi­
tive expressions, and then using standard rules to combine their values to get new values.

Numerals, such as 6 or -3.7 are primitive expressions, whose values are numeric constants.
Their values can be integers, within some fixed range dictated by the programming language,
or floating point numbers. Floating point numbers are used to represent non-integer values, but
they are different, in many important ways, from the real numbers. There are infinitely many
real numbers within a finite interval, but only finitely many floating-point numbers exist at all
(because they all must be representable in a fixed number of bits). In fact, the usual laws of real
arithmetic (transitivity, associativity, etc.) are violated in floating-point arithmetic, because the
results of any given sub-computation may not be representable in the given number of bits.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 49

We will illustrate the evaluation of expressions in Python by showing short transcripts of interac­
tive sessions with the Python shell : the shell is a computer program that
• Prompts the user for an expression, by typing »>,
• Reads what the user types in, and converts it into a set of tokens,
• Parses the tokens into a data structure representing the syntax of the expression,
• Evaluates the parsed expression using an interpreter, and
• Prints out the resulting value

So, for example, we might have this interaction with Python:

>>> 2 + 3

5

>>> (3 * 8) - 2

22

>>> ((3 * 8) - 2) / 11

2

>>> 2.0

2.0

>>> 0.1

0.10000000000000001

>>> 1.0 / 3.0

0.33333333333333331

>>> 1 / 3

0

There are a couple of things to observe here. First, we can see how floating point numbers only
approximately represent real numbers: when we type in 0.1, the closest Python can come to it in
floating point is 0.10000000000000001. The last interaction is particularly troubling: it seems
like the value of the expression 1 / 3 should be something like 0.33333. However, in Python, if
both operands to the / operator are integers, then it will perform an integer division, truncating
any remainder.12

These expressions can be arbitrarily deeply nested combinations of primitives. The rules used for
evaluation are essentially the same as the ones you learned in school; the interpreter proceeds by
applying the operations in precedence order13, evaluating sub-expressions to get new values, and
then evaluating the expressions those values participate in, until a single value results.

3.2.2 Variables
We cannot go very far without variables. A variable is a name that we can bind to have a partic­
ular value and then later use in an expression. When a variable is encountered in an expression,
it is evaluated by looking to see to what value it is bound.

An interpreter keeps track of which variables are bound to what values in binding environments.
An environment specifies a mapping between variable names and values. The values can be inte­
gers, floating-point numbers, characters, or pointers to more complex entities such as procedures
or larger collections of data.

Here is an example binding environment:

12 This behavior will no longer be the default in Python 3.0.

13 Please Excuse My Dear Aunt Sally (Parentheses, Exponentiation, Multiplication, Division, Addition, Subtraction)

50 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

-1012

2.2

3

foo

x

b

Each row represents a binding: the entry in the first column is the variable name and the entry in
the second column is the value it to which it is bound.

When you start up the Python shell, you immediately start interacting with a local binding en­
vironment. You can add a binding or change an existing binding by evaluating an assignment
statement of the form:

<var> = <expr>

where <var> is a variable name (a string of letters or digits or the character _, not starting with a
digit) and <expr> is a Python expression.14

Expressions are always evaluated in some environment.

We might have the following interaction in a fresh Python shell:

>>> a = 3

>>> a

3

>>> b

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’b’ is not defined

>>>

We started by assigning the variable a to have the value 3. That added a binding for a to the local
environment.

Next, we evaluated the expression a. The value of an expression with one or more variable names
in it cannot be determined unless we know with respect to what environment it is being evaluated.
Thus, we will always speak of evaluating expressions in an environment. During the process of
evaluating an expression in some environment E, if the interpreter comes to a variable, it looks up
that variable in E: if E contains a binding for the variable, then the associated value is returned;
if it does not, then an error is generated. In the Python shell interaction above, we can see that
the interpreter was able to find a binding for a and return a value, but it was not able to find a
binding for b.

Why do we bother defining values for variables? They allow us to re-use an intermediate value
in a computation. We might want to compute a formula in two steps, as in:

>>> c = 952**4

>>> c**2 + c / 2.0

6.7467650588636822e+23

14	 When we want to talk about the abstract form or syntax of a programming language construct, we will often use meta­
variables, written with angle brackets, like <var>. This is meant to signify that <var> could be any Python variable
name, for example.

51 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

They will also play a crucial role in abstraction and the definition of procedures. By giving a
name to a value, we can isolate the use of that value in other computations, so that if we decide
to change the value, we only have to change the definition (and not change a value several places
in the code).

It is fine to reassign the value of a variable; although we use the equality symbol = to stand for
assignment, we are not making a mathematical statement of equality. So, for example, we can
write:

>>> a = 3
>>> a = a + 1
>>> a
4

Exercise 3.1. What is the result of evaluating this sequence of assignment statements
and the last expression? Determine this by hand-simulating the Python
interpreter. Draw an environment and update the stored values as you
work through this example.

>>> a = 3
>>> b = a
>>> a = 4
>>> b

3.3 Structured data
We will often want to work with large collections of data. Rather than giving each number its
own name, we want to organize the data into natural structures: grocery lists, matrices, sets of
employee medical records. In this section, we will explore a simple but enormously useful and
flexible data structure, which is conveniently built into Python: the list. The precise details of how
lists are represented inside a computer vary from language to language. We will adopt an abstract
model in which we think of a list as an ordered sequence of memory locations that contain values.
So, for example, in Python, we can express a list of three integers as:

>>> [1, 7, -2]

[1, 7, -2]

which we will draw in an abstract memory diagram as:

-271

We can assign a list to a variable:

>>> a = [2, 4, 9]

52 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

A binding environment associates a name with a single fixed-size data item. So, if we want to
associate a name with a complex structure, we associate the name directly with a ’pointer’ to
(actually, the memory address of) the structure. So we can think of a as being bound to a ’pointer’
to the list:

a 942

Now that we have lists, we have some new kinds of expressions, which let us extract components
of a list by specifying their indices. An index of 0 corresponds to the first element of a list. An
index of -1 corresponds to the last element (no matter how many elements there are).15 So, if a is
bound as above, then we would have:

>>> a[0]

2

>>> a[2]

9

>>> a[-1]

9

>>> a[3]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

Note that if we attempt to access an element of the list that is not present (in this case, the fourth

element of a three-element list), then an error is generated.

Lists can be nested inside one another. The Python expression:

>>> c = [3, [1], [2, 1], [[4]]]

creates a list that looks, in memory, like this:

c 3

1 12 4

It is also possible to have an empty list, which is written in Python as []. We will draw it in our
memory diagrams as a small black box. So, for example, this list

>>> z = [3, [], [[]]]

looks like this in memory:

15 See the Python tutorial for much more on list indexing.

53 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

z 3

Python has a useful function, len, which takes a list as an argument and returns its length. It does
not look inside the elements of the list—it just returns the number of elements at the top level of
structure. So, we have

>>> len([1, 2, 3])

3

>>> len([[1, 2, 3]])

1

Exercise 3.2.	 Draw a diagram of the binding environment and memory structure after
the following statement has been evaluated:

a = [[1], 2, [3, 4]]

Exercise 3.3. Draw a diagram of the binding environment and memory structure after
the following statement has been evaluated:

a = [[[]]]

Exercise 3.4. Give a Python statement which, when evaluated, would give rise to this
memory structure:

c -2

1 2

4 -5

What is the value, in this environment, of the following expressions:
• c[1]
• c[-1]
• c[2][1]

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 54

3.3.1 List mutation and shared structure
Lists are mutable data structures, which means that we can actually change the values stored in
their elements. We do this by using element-selection expressions, like a[1] on the left-hand side
of an assignment statement. So, the assignment

a[1] = -3

assigns the second element of a to be -3. In more detail, the left-hand side of this expression
evaluates to a pointer to a specific location in memory (just as a’s value is a pointer to a location
in memory); then the assignment statement changes the value stored there by inserting the value
of the right-hand side of the expression. If that statement were evaluated in this environment,

a 942

then the resulting environment would be:

a 9-32

We have permanently changed the list named a.

In this section, we will explore the consequences of the mutability of lists; programs that change
list structure can become very confusing, but you can always work your way through what is
happening by drawing out the memory diagrams.

Continuing the previous example, let us remember that a is bound directly to a pointer to a list
(or a sequence of memory cells), and think about what happens if we do:

>>> b = a

Now, a and b are both names for the same list structure, resulting in a memory diagram like this:

b
a 9-32

Now, we can reference parts of the list through b, and even change the list structure that way:

>>> b[0]
2
>>> b[2] = 1

55 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Notice that, because a and b point to the same list, changing b changes a!

>>> a
[2, -3, 1]

Here is the memory picture now:

b
a 1-32

This situation is called aliasing : the name b has become an alias for a. Aliasing can be useful,
but it can also cause problems, because you might inadvertently change b (by passing it into a
procedure that changes one of its structured arguments, for example) when it is important to you
to keep a unmodified.

Another important way to change a list is to add or delete elements. We will demonstrate adding
elements to the end of a list, but see the Python documentation for more operations on lists. This
statement

>>> a.append(9)

causes a new element to be added to the end of the list name a. The resulting memory state is:

b
a 91-32

As before, because a and b are names for the same list (i.e., they point to the same memory
sequence), b is changed too. This is a side effect of the aliasing between a and b:

>>> b
[2, -3, 1, 9]

Often, it will be important to make a fresh copy of a list so that you can change it without affecting
the original one. Here are two equivalent ways to make a copy (use whichever one you can
remember):

>>> c = list(a)
>>> c = a[:]

Here is a picture of the memory at this point:

56 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

c
b
a 91-32

91-32

Now, if we change an element of c, it does not affect a (or b!):

>>> c[0] = 100
>>> c
[100, -3, 1, 9]
>>> a
[2, -3, 1, 9]

We can make crazy lists that share structure within a single list:

>>> f = [1, 2, 3]

>>> g = [1, f, [f]]

>>> g

[1, [1, 2, 3], [[1, 2, 3]]]

which results in this memory structure:

g
f 2 31

1

If you want to add an element to a list and get a new copy at the same time, you can do

>>> a + [1]

The + operator makes a new list that contains the elements of both of its arguments, but does not
share any top-level structure. All of our methods of copying only work reliably if your lists do
not contain other lists, because it only copies one level of list structure. So, for example, if we did:

>>> h = list(g)

we would end up with this picture:

h
g
f 2 31

1

1

57 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

It is clear that if we were to change f, it would change h, so this is not a completely new copy. If
you need to copy deep structures, that is, to make a copy not only of the top level list structure,
but of the structures of any lists that list contains, and the lists those lists contain, etc., you will
need to use the Python copy.deepcopy procedure.

Exercise 3.5. Give a sequence of Python statements which, when evaluated, would give
rise to this memory structure:

a
b

321

Exercise 3.6. Give a sequence of Python statements which, when evaluated, would give
rise to this memory structure:

a
b

3

21

Exercise 3.7. Show the memory structure after this sequence of expressions.

>>> a = [1, 2, 3]
>>> b = [a, a]
>>> a.append(100)

What will be the value of b at this point?

Exercise 3.8. Show the memory structure after this sequence of expressions.

>>> a = [5, 6]
>>> b = [1, 2]
>>> c = b + a

We will use this “curvy road” symbol to indicate sections of the notes or exercises that are some­
what more difficult and not crucial to understanding the rest of the notes. Feel free to skip them
on first reading; but, of course, we think they are cool.16

16 Thanks to Don Knuth’s Art of Computer Programming for the idea of the curvy road sign.

58 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Exercise 3.9.
Show the memory structure after this sequence of expressions.

>>> a = [1, 2, 3]
>>> a[1] = a

What will be the value of a at this point?

3.3.2 Tuples and strings
Python has two more list-like data types that are important to understand.

A tuple is a structure that is like a list, but is not mutable. You can make new tuples, but you
cannot change the contents of a tuple or add elements to it. A tuple is typically written like a list,
but with round parentheses instead of square ones:

>>> a = (1, 2, 3)

In fact, it is the commas and not the parentheses that matter here. So, you can write

>>> a = 1, 2, 3

>>> a

(1, 2, 3)

and still get a tuple. The only tricky thing about tuples is making a tuple with a single element.
We could try

>>> a = (1)

>>> a

1

but it does not work, because in the expression (1) the parentheses are playing the standard
grouping role (and, in fact, because parentheses do not make tuples). So, to make a tuple with a
single element, we have to use a comma:

>>> a = 1,

>>> a

(1,)

This is a little inelegant, but so it goes.

Tuples will be important in contexts where we are using structured objects as ’keys’, that is, to
index into another data structure, and where inconsistencies would occur if those keys could be
changed.

An important special kind of tuple is a string. A string can almost be thought of as a tuple of
characters. The details of what constitutes a character and how they are encoded is complicated,
because modern character sets include characters from nearly all the world’s languages. We will
stick to the characters we can type easily on our keyboards. In Python, you can write a string with
either single or double quotes: ’abc’ or "abc". You can select parts of it as you would a list:

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 59

>>> s = ’abc’

>>> s[0]

’a’

>>> s[-1]

’c’

The strange thing about this is that s is a string, and because Python has no special data type to

represent a single character, s[0] is also a string.

We will frequently use + to concatenate two existing strings to make a new one:

>>> to = ’Jody’

>>> fromP = ’Robin’

>>> letter = ’Dear ’ + to + ",\n It’s over.\n" + fromP

>>> print letter

Dear Jody,

It’s over.

Robin

As well as using + to concatenate strings, this example illustrates several other small but impor­
tant points:

•	 You can put a single quote inside a string that is delimited by double-quote characters (and vice
versa).
If you want a new line in your string, you can write \n. Or, if you delimit your string with a •
triple quote, it can go over multiple lines.

The print statement can be used to print out results in your program.
•

•	 Python, like most other programming languages, has some reserved words that have special
meaning and cannot be used as variables. In this case, we wanted to use from, but that has a
special meaning to Python, so we used fromP instead.

Structured assignment
Once we have lists and tuples, we can use a nice trick in assignment statements, based on the
packing and unpacking of tuples.

>>> a, b, c = 1, 2, 3
>>> a
1
>>> b
2
>>> c
3

Or, with lists,

>>> [a, b, c] = [1, 2, 3]
>>> a
1
>>> b
2
>>> c
3

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 60

When you have a list (or a tuple) on the left-hand side of an assignment statement, you have to
have a list (or tuple) of matching structure on the right-hand side. Then Python will “unpack”
them both, and assign to the individual components of the structure on the left hand side. You
can get fancier with this method:

>>> thing = [8, 9, [1, 2], ’John’, [33.3, 44.4]]

>>> [a, b, c, d, [e1, e2]] = thing

>>> c

[1, 2]

>>> e1

33.299999999999997

3.4 Procedures
Procedures are computer-program constructs that let us capture common patterns of computation
by:

•	 Gathering together sequences of statements

•	 Abstracting away from particular data items on which they operate.

Here is a procedure definition,17 and then its use:

def square(x):

return x * x

>>> square(6)

36

>>> square(2 - square(2))

4

We will work through, in detail, what happens when the interpreter evaluates a procedure defin­
ition, and then the application of that procedure.

3.4.1 Definition
A procedure definition has the abstract form:

def <name>(<fp1>, ..., <fpn>):

<statement1>

...

<statementk>

There are essentially three parts:

17	 In the code displayed in these notes, we will show procedures being defined and then used, as if the definitions were
happening in the Python shell (but without the prompts). In fact, you should not type procedure definitions into the
shell, because if you make a mistake, you will have to re-type the whole thing, and because multi-line objects are not
handled very well. Instead, type your procedure definitions into a file in Idle, and then test them by ’running’ the file in
Idle (which will actually evaluate all of the expressions in your file) and then evaluating test expressions in Idle’s shell.

61 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

•	 <name> is a name for the procedure, with the same restrictions as a variable name;

<fp1>, ..., <fpn> is a list of formal parameters, which will stand for the data items on •
which this procedure will operate; and

<statement1>, ..., <statementk>, known as the body of the procedure, is a list of Python •
statements (right now, we know about assignment statements, print statements, and basic ex­
pressions, but there will be more.)

When we evaluate a procedure definition in an environment,18 E, Python does two things:

1. Makes a procedure object19 that contains the formal parameters, the body of the procedure, and
a pointer to E; and then

2. Binds the name to have this procedure as its value.

Here is an example of an environment after we have evaluated

def square(x):
return x * x

2a
square

Procedure1
(x)
return x*x

E1

Note how the construct to which square points is a procedure object, with a list of formal para­
meters, a body, and a pointer to its environment.

3.4.2 Procedure calls
When you evaluate an expression of the form

<expr0>(<expr1>, ..., <exprn>)

the Python interpreter treats this as a procedure call. It will be easier to talk about a specific case
of calling a procedure, so we will illustrate with the example

>>> square(a + 3)

evaluated in environment E1. Here are the steps:

1.	 The expression that determines the procedure (<expr0>) is evaluated. In this case, we evaluate
square in E1 and get Procedure1.

2.	 The expressions that determine the arguments (<expr1>, ..., <exprn>) are evaluated. In
this case, we evaluate a + 3 in E1 and get 5.

18 Remember that every expression is always evaluated with respect to some environment.
19	 In our memory diagrams, we will show the procedure object as a box with the word Procedure<N>, where N is some

integer, at the top; we give the procedure objects these numbers so we can refer to them easily in the text.

62 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

3.	 A new environment (in this case E2) is created, which:

− binds the formal parameters of the procedure (in this case x) to the values of its arguments
(in this case, 5); and

− has as its parent the environment in which the procedure was defined (we find a pointer
to this environment stored in the procedure; in this case E1 is its parent).

At this point, our memory looks like this:

2a
square

Procedure1
(x)
return x*x

E1

x 5E2

The dotted line between E2 and E1 is intended to indicate that E1 is the parent environment
of E2.

4.	 The statements of the procedure body are evaluated in the new environment until either a
return statement or the end of the list of statements is reached. If a return statement is eval­
uated, the expression after the return is evaluated and its value is returned as the value of the
procedure-call expression. Otherwise, the procedure has no return value, and the expression
has the special Python value None.

In our example, the only statement in the body is a return statement. So, we evaluate the
expression x * x in E2, obtaining a value of 25. That value is returned as the value of the
entire procedure-call expression square(a + 3).

This basic mechanism can generate behavior of arbitrary complexity, when coupled with recur­
sion or other control structures, discussed in section 2.3.

Worked example 1
Let’s examine what happens when we evaluate the following Python code:

def p(x, y):
z = x*x - y
return z + 1/z

>>> p(1.0, 2.0)

Here is a picture of the calling environment (E1) and the procedure-call environment (E2) just
before the body of the procedure is evaluated:

-2.0

63 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

p
Procedure2
(x, y)
z = x*x-y
return z

E1

y 2.0
x 1.0E2

After evaluating z = x*x - y in E2, we have:

p

Procedure2
(x, y)
z = x*x-y
return z+1/z

E1

-1.0z
y 2.0
x 1.0E2

Finally, we evaluate z + 1/z in E2 and get -2.0, which we return.

Worked example 2
Here is another example:

def silly(a):
a = a + 1
return a

>>> b = 6
>>> silly(b)
7

Here is a picture of the calling environment (E1) and the procedure-call environment (E2) just
before the body of the procedure is evaluated:

6b
silly

Procedure3
(a)
a=a+1
return a

E1

a 6E2

After evaluating a = a + 1 in E2, we have:

64 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

b 6
silly

Procedure3
(a)
a=a+1
return a

E1

a 7E2

Finally, we evaluate a in E2 and get 7, which we return.

Convince yourself that the execution below works fine, and notice that having a binding for a in

E2 means that we leave the binding for a in E1 unmolested:

>>> a = 2
>>> silly(a)
3
>>> a
2

Exercise 3.10.	 Draw the environment diagram at the time the statement with the arrow
is being executed:

def fizz(x, y):
p = x + y
q = p*p
return q + x # <----------­

>>> fizz(2, 3)

Exercise 3.11. Draw the environment diagram at the time the statement with the arrow
is being executed:

def fuzz(a, b):
return a + b # <---------­

def buzz(a):
return fuzz(a, square(a))

>>> buzz(2)

3.4.3 Non-local references
So far, whenever we needed to evaluate a variable, there was a binding for that variable in the
’local’ environment (the environment in which we were evaluating the expression). But consider
this example:

def biz(a):

return a + b

65 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

>>> b = 6
>>> biz(2)

This actually works fine, and returns 8. Let’s see why. Here is the environment, E1, in which the
Python shell is working, after we execute the b = 6 statement:

b 6
biz

Procedure4
(a)
return a+b

E1

Now, when we evaluate biz(2) in E1, we make a new environment, E2, which binds a to 2 and
points to E1 as its parent environment.

b 6
biz

Procedure4
(a)
return a+b

E1

a 2E2

We need to elaborate, slightly, how it is that a variable v is evaluated in an environment E:

• We look to see if there is a binding for v in E; if so, we stop and return it.

• If not, we evaluate v in the parent environment of E. If E has no parent, we generate an error.

It is important to appreciate that this process will continue up an arbitrarily long chain of environ­
ments and their parents until either a binding for v is found or there are no more environments to
examine.

So, in our case, we will evaluate the expression a + b in environment E2. We start by evaluating
a and finding value 2 in E2. Then, we evaluate b and cannot find it in E2...but we don’t panic! We
follow the parent pointer to E1 and try again. We find a binding for b in E1 and get the value 6.
So, the value of a + b in E2 is 8.

Exercise 3.12.	 Draw a picture of the relevant binding environments when the statement
with the arrow is being executed. What value does the procedure return?

def f(a):

return a + g(a)

def g(b):
return a + b # <------------­

>>> f(3)

66 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Exercise 3.13. Draw a picture of the relevant binding environments when the statement
with the arrow is being executed. What value does the procedure return?

def f(a):
def g(b):

return a + b # <------------­
return a + g(a)

>>> f(3)

Exercise 3.14.	 Draw a picture of the relevant binding environments when the statement
with the arrow is being executed. What value does the procedure return?
Does it cause an error?

def a(a):

return a * a

>>> a(2)

3.4.4 Environments in Python
Generally, Python establishes the following binding environments:

1.	 __builtin__: the mother of all environments: it contains the definitions of all sorts of basic
symbols, like list and sum. It is the parent of all module environments.

2.	 Module: each separate file that contains Python code is called a module and establishes its
own environment, whose parent is __builtin__.

3.	 Procedure calls: as described in this section. A procedure that is defined at the ’top level’ of a
module (that is, not nested in the definition of another procedure) has the module’s environ­
ment as its parent, and has its name defined in the module’s environment. Procedures that
are defined inside other procedures have the procedure-call environment of the containing
procedure as their parent.

We have seen two operations that cause bindings to be created: assignments and procedure calls.
Bindings are also created when you evaluate an import statement. If you evaluate

import math

then a file associated with the math module is evaluated and the name math is bound, in the
current environment, to the math module, which is an environment. No other names are added
to the current environment, and if you want to refer to names in that module, you have to qualify
them, as in math.sqrt. (As we will see in a subsequent section, the evaluation of this expression
first evaluates math, which returns an environment. We can then evaluate sqrt with respect to
that environment, thus returning a pointer to the procedure stored there.) If you execute

from math import sqrt

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 67

then the math file is evaluated, and the name sqrt is bound, in the current environment, to
whatever the name sqrt is bound in the math module. But note that if you do this, the name
math is not bound to anything, and you cannot access any other procedures in the math module
unless you import them explicitly, as well.

3.4.5 Non-local references in procedures
There is an important subtlety in the way names are handled in the environment created by a
procedure call. When a name that is not bound in the local environment is referenced, then it is
looked up in the chain of parent environments. So, as we have seen, it is fine to have

a = 2
def b():

return a

When a name is assigned inside a procedure, a new binding is created for it in the environment
associated with the current call of that procedure. So, it is fine to have

a = 2
def b():

a = 3

c = 4

return a + c

Both assignments cause new bindings to be made in the local environment, and it is those bind­
ings that are used to supply values in the return expression. It will not change a in the global
environment.

But here is a code fragment that causes trouble:

a = 3
def b():

a = a + 1

print a

It seems completely reasonable, and you might expect b() to return 4. But, instead, it generates
an error. What is going on?? It all has to do with when Python decides to add a binding to the
local environment. When it sees this procedure definition, it sees that the name a occurs on the
left-hand-side of an assignment statement, and so, at the very beginning, it puts a new entry for a
in the local environment, but without any value bound to it. Now, when it is time to evaluate the
statement

a = a + 1

Python starts by evaluating the expression on the right hand side: a + 1. When it tries to look up
the name a in the procedure-call environment, it finds that a has been added to the environment,
but has not yet had a value specified. So it generates an error.

In Python, we can write code to increment a number named in the global environment, by using
the global declaration:

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 68

a = 3
def b():

global a

a = a + 1

print a

>>> b()

4

>>> b()

5

>>> a

5

The statement global a asks that a new binding for a not be made in the procedure-call envi­
ronment. Now, all references to a are to the binding in the module’s environment, and so this
procedure actually changes a.

In Python, we can only make assignments to names in the procedure-call environment or to the
module environment, but not to names in intermediate environments. So, for example,

def outer():

def inner():

a = a + 1

a = 0

inner()

In this example, we get an error, because Python has made a new binding for a in the environment
for the call to inner. We would really like inner to be able to see and modify the a that belongs
to the environment for outer, but there is no way to arrange this. Some other programming
languages, such as Scheme, offer more fine-grained control over how the scoping of variables is
handled.

3.4.6 Procedures as first-class objects
In Python, unlike many other languages, procedures are treated in much the same way as num­
bers: they can be stored as values of variables, can be passed as arguments to procedures, and
can be returned as results of procedure calls. Because of this, we say that procedures are treated
as “first-class” objects. We will explore this treatment of “higher-order” procedures (procedures
that manipulated procedures) throughout this section.

First of all, it is useful to see that we can construct (some) procedures without naming them using
the lambda constructor:

lambda <var1>, ..., <varn> : <expr>

The formal parameters are <var1>, ..., <varn> and the body is <expr>. There is no need for
an explicit return statement; the value of the expression is always returned. A single expression
can only be one line of Python, such as you could put on the right hand side of an assignment
statement. Here are some examples:

>>> f = lambda x: x*x

>>> f

<function <lambda> at 0x4ecf0>

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 69

>>> f(4)

16

Here is a procedure of two arguments defined with lambda:

>>> g = lambda x,y : x * y

>>> g(3, 4)

12

Using the expression-evaluation rules we have already established, we can do some fancy things
with procedures, which we will illustrate throughout the rest of this section.

>>> procs = [lambda x: x, lambda x: x + 1, lambda x: x + 2]

>>> procs[0]

<function <lambda> at 0x83d70>

>>> procs[1](6)

7

Here, we have defined a list of three procedures. We can see that an individual element of the list
(e.g., procs[0]) is a procedure.20 So, then procs[1](6) applies the second procedure in the list
to the argument 6. Since the second procedure returns its argument plus 1, the result is 7.

Here is a demonstration that procedures can be assigned to names in just the way other values
can.

>>> fuzz = procs[2]

>>> fuzz(3)

5

def thing(a):

return a * a

>>> thing(3)

9

>>> thang = thing

>>> thang(3)

9

Passing procedures as arguments
Just as we can pass numbers or lists into procedures as arguments, we can pass in procedures as
arguments, as well.

What if we find that we are often wanting to perform the same procedure twice on an argument?
That is, we seem to keep writing square(square(x)). If it were always the same procedure we
were applying twice, we could just write a new procedure

def squaretwice(x):

return square(square(x))

20	 In the programming world, people often use the words “function” and “procedure” either interchangeable or with
minor subtle distinctions. The Python interpreter refers to the objects we are calling procedures as “functions.”

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 70

But what if it is different procedures? We can write a new procedure that takes a procedure f as
an argument and applies it twice:

def doTwice(f, x):
return f(f(x))

So, if we wanted to square twice, we could do:

>>> doTwice(square,2)
16

Here is a picture of the environment structure in place when we are evaluating the return
f(f(x)) statement in doTwice:

doTwice

square

E1

2x
f

E2

Procedure5
(x)
return x * x

Procedure6
(f, x)
return f(f(x))

Environment E1 is the module environment, where procedures square and doTwice were de­
fined and where the expression doTwice(square, 2) is being evaluated. The interpreter:

Evaluates doTwice in E1 and gets Procedure6.•

Evaluates square in E1 and gets Procedure5.•

Evaluates 2 in E1 and gets 2. •

Makes the new binding environment E2, binding the formal parameters, f and x, of Procedure•
6, to actual arguments Procedure5 and 2.

Evaluates the body of Procedure6 in E2.
•

Now, let’s peek one level deeper into the process. To evaluate f(f(x)) in E2, the interpreter starts
by evaluating the inner f(x) expression. It

Evaluates f in E2 and gets Procedure5.•

•	 Evaluates x in E2 and gets 2.

Makes the new binding environment E3, binding the formal parameter x, of Procedure5, to 2. •
(Remember that the parent of E3 is E1 because Procedure5 has E1 as a parent.)

Evaluates the body of Procedure5 in E3, getting 4.
•

The environments at the time of this last evaluation step are:

71 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

doTwice

square

E1

2x
f

E2

Procedure5
(x)
return x * x

Procedure6
(f, x)
return f(f(x))

2xE3

A similar thing happens when we evaluate the outer application of f, but now with argument 4,
and a return value of 16.

Exercise 3.15. Here is the definition of a procedure sumOfProcs that takes two proce­
dures, f and g, as well as another value x, as arguments, and returns f(x)
+ g(x). The sumOfProcs procedure is then applied to two little test pro­
cedures:

def sumOfProcs(f, g, x):
return f(x) + g(x)

def thing1(a):
return a*a*a

def thing2(b):
return b+1 # <-------------------­

>>> sumOfProcs(thing1, thing2, 2)

Draw a picture of all of the relevant environments at the moment the state­
ment with the arrow is being evaluated. What is the return value of the
call to sumOfProcs?

Returning procedures as values
Another way to apply a procedure multiple times is this:

def doTwiceMaker(f):
return lambda x: f(f(x))

This is a procedure that returns a procedure! If you would rather not use lambda, you could write
it this way:

def doTwiceMaker(f):
def twoF(x):

return f(f(x))
return twoF

72 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Now, to use doTwiceMaker, we might start by calling it with a procedure, such as square, as an
argument and naming the resulting procedure.

>>> twoSquare = doTwiceMaker(square)

Here is a picture of the environments just before the return twoF statement in doTwiceMaker
is evaluated.

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

Here is a picture of the environments after the doTwiceMaker returns its value and it is assigned
to twoSquare in E1. It is important to see that Procedure8 is the return value of the call to
doTwiceMaker and that, because Procedure8 retains a pointer to the environment in which it
was defined, we need to keep E2 around. And it is E2 that remembers which procedure (via its
binding for f) is going to be applied twice.

twoSquare

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

Now, when we evaluate this expression in E1

>>> twoSquare(2)

we start by making a new binding environment, E3, for the procedure call. Note that, because the
procedure we are calling, Procedure8, has E2 stored in it, we set the parent of E3 to be E2.

73 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

twoSquare

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

2xE3

Next, we evaluate the body of Procedure8, which is return f(f(x)) in E3. Let’s just consider
evaluating the inner expression f(x) in E3. We evaluate f in E3 and get Procedure5, and eval­
uate x and get 2. Now, we make a new binding environment, E4, to bind the formal parameter
of Procedure5 to 2. Because Procedure5 has a stored pointer to E1, E4’s parent is E1, as shown
here:

twoSquare

doTwiceMaker

square

E1

twoF
f

E2

Procedure5
(x)
return x * x

Procedure7
(f)
def twoF(x):
 return f(f(x))
return twoF

Procedure8
(x)
return f(f(x))

2xE3

2xE4

Evaluating the body of Procedure5 in E4 yields 4. We will repeat this process to evaluate the
outer application of f, in f(f(x)), now with argument 4, and end with result 16.

Essentially the same process would happen when we evaluate

>>> doTwiceMaker(square)(2)

16

except the procedure that is created by the expression doTwiceMaker(square) is not assigned a
name; it is simply used as an intermediate result in the expression evaluation.

3.5 Object-oriented programming
We have seen structured data and interesting procedures that can operate on that data. It will of­
ten be useful to make a close association between collections of data and the operations that apply

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 74

to them. The style of programming that takes this point of view is object-oriented programming
(OOP). It requires adding some simple mechanisms to our interpreter, but is not a big conceptual
departure from the things we have already seen. It is, however, a different style of organizing
large programs.

3.5.1 Classes and instances
In OOP, we introduce the idea of classes and instances. An instance is a collection of data that
describe a single entity in our domain of interest, such as a person or a car or a point in 3D space.
If we have many instances that share some data values, or upon which we would want to perform
similar operations, then we can represent them as being members of a class and store the shared
information once with the class, rather than replicating it in the instances.

Consider the following staff database for a large undergraduate course:

name role age building room course

Pat Prof 60 34 501 6.01

Kelly TA 31 34 501 6.01

Lynn TA 29 34 501 6.01

Dana LA 19 34 501 6.01

Chris LA 20 34 501 6.01

There are lots of shared values here, so we might want to define a class. A class definition has the
form:

class <name>:

<statement1>

...

<statementn>

Here is the definition of simple class in our example domain:

class Staff601:

course = ’6.01’

building = 34

room = 501

From the implementation perspective, the most important thing to know is that classes and in­
stances are environments.

When we define a new class, we make a new environment. In this case, the act of defining class
Staff601 in an environment E1 results in a binding from Staff601 to E2, an empty environment
whose parent is E1, the environment in which the class definition was evaluated. Now, the state­
ments inside the class definition are evaluated in the new environment, resulting in a memory
state like this:21

21	 In fact, the string ’6.01’ should be shown as an external memory structure, with a pointer stored in the binding
environment; for compactness in the following diagrams we will sometimes show the strings themselves as if they
were stored directly in the environment.

75 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Staff601

E1

501room
34building

'6.01'course
E2

Note how the common values and names have been captured in a separate environment.

Caveat: when we discuss methods in section 3.5.2, we will see that the rules for evaluating proce­
dure definitions inside a class definition are slightly different from those for evaluating procedure
definitions that are not embedded in a class definition.

We will often call names that are bound in a class’s environment attributes of the class. We can
access these attributes of the class after we have defined them, using the dot notation:

<envExpr>.<var>

When the interpreter evaluates such an expression, it first evaluates <envExpr>; if the result is
not an environment, then an error is signaled. If it is an environment, E, then the name <var> is
looked up in E (using the general process of looking in the parent environment if it is not found
directly in E) and the associated value returned.

So, for example, we could do:

>>> Staff601.room

501

We can also use the dot notation on the left-hand side of an assignment statement, if we wish to

modify an environment. An assignment statement of the form

<envExpr>.<var> = <valExpr>

causes the name <var> in the environment that is the result of evaluating <envExpr> to be bound

to the result of evaluating <valExpr>.

So, we might change the room in which 6.01 meets with:

Staff601.room = Staff601.room - 100

or add a new attribute with

Staff601.coolness = 11 # out of 10, of course...

Now, we can make an instance of a class with an expression of the form:

<classExpr>()

This expression has as its value a new empty environment whose parent pointer is the environ­
ment obtained as a result of evaluating <classExpr>. 22

So, if we do:

>>> pat = Staff601()

we will end up with an environment state like this:

22	 Another way of thinking of this is that whenever you define a class, Python defines a procedure with the same name,
which is used to create a instance of that class.

76 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1

501room
34building

'6.01'course
E2

E3

At this point, given our standard rules of evaluation and the dot notation, we can say:

>>> pat.course
’6.01’

The interpreter evaluates pat in E1 to get the environment E3 and then looks up the name course.
It does not find it in E3, so it follows the parent pointer to E2, and finds there that it is bound to
’6.01’.

Similarly, we can set attribute values in the instance. So, if we were to do:

pat.name = ’Pat’

pat.age = 60

pat.role = ’Professor’

we would get this environment structure.

pat
Staff601

E1

501room
34building

'6.01'course
E2

'Professor'role
60age

'Pat'name
E3

Note that these names are bound in the instance environment, not the class.

These structures are quite flexible. If we wanted to say that Professor Pat is an exception, holding
office hours in a different place from the rest of the 6.01 staff, we could say:

pat.building = 32
pat.office = ’G492’

Here is the new environment state. Nothing is changed in the Staff601 class: these assignments
just make new bindings in pat’s environment, which ’shadow’ the bindings in the class, so that
when we ask for pat’s building, we get 32.

77 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1

501room
34building

'6.01'course
E2

'G492'room
32building

'Professor'role
60age

'Pat'name
E3

3.5.2 Methods
Objects and classes are a good way to organize procedures, as well as data. When we define a
procedure that is associated with a particular class, we call it a method of that class. Method
definition requires only a small variation on our existing evaluation rules.

So, imagine we want to be able to greet 6.01 staff members appropriately on the staff web site. We
might add the definition of a salutation method:

class Staff601:

course = ’6.01’

building = 34

room = 501

def salutation(self):

return self.role + ’ ’ + self.name

This procedure definition, made inside the class definition, is evaluated in almost the standard
way, resulting in a binding of the name salutation in the class environment to the new proce­
dure. The way in which this process deviates from the standard procedure evaluation process
is that the environment stored in the procedure is the module (file) environment, no matter how
deeply nested the class and method definitions are:

78 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1 salutation

501room
34building

'6.01'course
E2

'G492'room
32building

'Professor'role
60age

'Pat'name
E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

Now, for example, we could do:

Staff601.saluation(pat)

The interpreter finds that Staff601 is an environment, in which it looks up the name saluation
and finds Procedure9. To call that procedure we follow the same steps as in section 3.4.2 :

•	 Evaluate pat to get the instance E3.

Make a new environment, E4, binding self to E3. The parent of E4 is E1, because we are •
evaluating this procedure call in E1.

Evaluate self.role + ’ ’ + self.name in E4.•

In E4, we look up self and get E3, look up role in E3 and get ’Professor’, etc. •

Ultimately, we return ’Professor Pat’.•

Here is a picture of the binding environments while we are evaluating self.role + ’ ’ +
self.name.

79 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1 salutation

501room
34building

'6.01'course
E2

'G492'room
32building

'Professor'role
60age

'Pat'name
E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

self
E4

Note (especially for Java programmers!) that the way the body of salutation has access to the
attributes of the instance on which it is operating and to attributes of the class is via the instance
we passed to it as the parameter self. The parent environment is E1, which means that methods
cannot simply use the names of class attributes without accessing them through the instance.

The notation

Staff601.salutation(pat)

is a little clumsy; it requires that we remember to what class pat belongs, in order to get the
appropriate salutation method. We ought, instead, to be able to write

pat.salutation(pat) #### Danger: not legal Python

This should have exactly the same result. (Verify this for yourself if you do not see it, by tracing
through the environment diagrams. Even though the pat object has no binding for saluation,
the environment-lookup process will proceed to its parent environment and find a binding in the
class environment.)

But this is a bit redundant, having to mention pat twice. So, Python added a special rule that
says: If you access a class method by looking in an instance, then that instance is automatically
passed in as the first argument of the method.

So, we can write

pat.salutation()

This is exactly equivalent to

Staff601.salutation(pat)

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 80

A consequence of this decision is that every method must have an initial argument that is an
instance of the class to which the method belongs. That initial argument is traditionally called
self, but it is not necessary to do so.

Here is a new method. Imagine that Staff601 instances have a numeric salary attribute. So,
we might say

pat.salary = 100000

Now, we want to write a method that will give a 6.01 staff member a k-percent raise:

class Staff601:

course = ’6.01’

building = 34

room = 501

def salutation(self):

return self.role + ’ ’ + self.name

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

As before, we could call this method as

Staff601.giveRaise(pat, 0.5)

or we could use the short-cut notation and write:

pat.giveRaise(0.5)

This will change the salary attribute of the pat instance to 150000.23

3.5.3 Initialization
When we made the pat instance, we first made an empty instance, and then added attribute
values to it. Repeating this process for every new instance can get tedious, and we might wish
to guarantee that every new instance we create has some set of attributes defined. Python has a
mechanism to streamline the process of initializing new instances. If we define a class method
with the special name __init__, Python promises to call that method whenever a new instance
of that class is created.

We might add an initialization method to our Staff601 class:

class Staff601:

course = ’6.01’

building = 34

room = 501

23	 Something to watch out for!!! A common debugging error happens when you: make an instance of a class (such as
our pat above); then change the class definition and re-evaluate the file; then try to test your changes using your old
instance, pat. Instances remember the definitions of all the methods in their class when they were created. So if you
change the class definition, you need to make a new instance (it could still be called pat) in order to get the new
definitions.

81 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

def __init__(self, name, role, years, salary):

self.name = name

self.role = role

self.age = years

self.salary = salary

def salutation(self):

return self.role + ’ ’ + self.name

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

Now, to create an instance, we would do:24

pat = Staff601(’Pat’, ’Professor’, 60, 100000)

Here is a diagram of the environments when the body of the __init__ procedure is about to be
executed:

pat
Staff601

E1

__init__
giveRaise
salutation

501room
34building

'6.01'course
E2

E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

salary 100000
60years

role 'Professor'

name 'Pat'
self

E4

Procedure11
(self, name, role years, salary)
self.name = name
...

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

Note that the formal parameter self has been bound to the newly-created instance. Here is the
situation after the initialization method has finished executing:

24 We called the fourth formal parameter years, when age would have been clearer, just to illustrate that the names of
formal parameters do not have to match the attributes to which they are bound inside the object.

82 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Staff601

E1

__init__
giveRaise
salutation

501room
34building

'6.01'course
E2

salary 100000
age 60
role 'Professor'

'Pat'name
E3

Procedure9
(self)
return self.role + ' ' \
 + self.name

Procedure11
(self, name, role years, salary)
self.name = name
...

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

This method seems very formulaic, but it is frequently all we need to do. To see how initialization
methods may vary, we might instead do something like this, which sets the salary attribute based
on the role and age arguments passed into the initializer.

class Staff601:
def __init__(self, name, role, age):

self.name = name

self.role = role

if self.role == ’Professor’:

self.salary = 100000

elif self.role = ’TA’:

self.salary = 30000

else:

self.salary = 10000

self.salary = self.giveRaise((age - 18) * 0.03)

3.5.4 Inheritance
We see that we are differentiating among different groups of 6.01 staff members. We can gain
clarity in our code by building that differentiation into our object-oriented representation using
subclasses and inheritance.

At the mechanism level, the notion of a subclass is very simple: if we define a class in the following
way:

def class <className>(<superclassName):

<body>

then, when the interpreter makes the environment for this new class, it sets the parent pointer of
the class environment to be the environment named by <superclassName>.

This mechanism allows us to factor class definitions into related, interdependent aspects. For
example, in the 6.01 staff case, we might have a base class where aspects that are common to all
kinds of staff are stored, and then subclasses for different roles, such as professors:

83 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

class Staff601:
course = ’6.01’
building = 34
room = 501

def giveRaise(self, percentage):

self.salary = self.salary + self.salary * percentage

class Prof601(Staff601):
salary = 100000

def __init__(self, name, age):

self.name = name

self.giveRaise((age - 18) * 0.03)

def salutation(self):

return ’Professor’ + self.name

Let’s trace what happens when we make a new instance of Prof601 with the expression

Prof601(’Pat’, 60)

First a new environment, E4, is constructed, with E3 (the environment associated with the class
Prof601 as its parent). Here is the memory picture now:

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'courseE2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

E4

As soon as it is created, the __init__ method is called, with the new environment E4 as its
first parameter and the rest of its parameters obtained by evaluating the expressions that were
passed into to Prof601, in this case, ’Pat’ and 60. Now, we need to make the procedure-call
environment, binding the formal parameters of Procedure11; it is E5 in this figure:

84 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'course

E2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

E4
60age

name 'Pat'
self

E5

We evaluate the body of Procedure11 in E5. It starts straightforwardly by evaluating

self.name = name

which creates a binding from name to ’Pat’ in the object named self, which is E4. Now, it
evaluates

self.giveRaise((age - 18) * 0.03)

in E5. It starts by evaluating self.giveRaise. self is E4, so we look for a binding of
giveRaise. It is not bound in E4, so we look in the parent E3; it is not bound in E3 so we
look in E2 and find that it is bound to Procedure10. We are taking advantage of the fact that
raises are not handled specially for this individual or for the subclass of 6.01 professors, and
use the definition in the general class of 6.01 staff. The interpreter evaluates the argument to
Procedure10, (60 - 18) * 0.03, getting 1.26.

It is time, now, to call Procedure10. We have to remember that the first argument will be the
object through which the method was accessed: E4. So, we make a binding environment for the
parameters of Procedure10, called E6:

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'course

E2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

'Pat'nameE4
60age

name 'Pat'
self

E5

percentage 1.26
self

E6

85 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Now the fun really starts! We evaluate self.salary = self.salary + self.salary *
percentage in E6. We start by evaluating the right hand side: self is E4, self.salary is
100000, and percentage is 1.26, so the right-hand side is 226000. Now, we assign self.salary,
which means we make a binding in E4 for salary, to 22600. It is important to see that, within a
method call, all access to attributes of the object, class, or superclass goes through self. It is not
possible to ’see’ the definition of the building attribute directly from the giveRaise method:
if giveRaise needed to depend on the building attribute, it would need to access it via the
object, with self.building. This guarantees that we always get the definition of any attribute
or method that is appropriate for that particular object, which may have overridden its definition
in the class.

When the procedure calls are all done, the environments are finally like this:

pat
Prof601
Staff601

E1
giveRaise

501room
34building

'6.01'course

E2

E3

Procedure9
(self)
return 'Professor ' \
 + self.name

salutation

salary 100000
__init__

Procedure11
(self, name, age)
self.name = name
self.raise((age-18)*0.03)

Procedure10
(self, percentage)
self.salary = self.salary + \
 self.salary * percentage

'Pat'
salary 226000
nameE4

It is useful to back up and see the structure here:

•	 The instance pat is an environment, E4.

The parent of the instance is an environment,E3, which is the class Prof601.
•

The parent of the class is an environment, E2, which the superclass Staff601.•

3.5.5 Using Inheritance
Frequently when we’re using inheritance, we override some methods of a parent class, and use
some of its methods unchanged. Occasionally, we will want to modify or augment an existing
method from the parent class. In such a situation, we can ’wrap’ that method by writing our
own version of that method in the child class, but calling the method of the parent to do some of
the work. To call a method bar from a parent class named Foo, you can do something like the
following.

def SubclassOfFoo(Foo):

def bar(self, arg):

Foo.bar(self, arg)

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 86

When you call a method using the class name, rather than an object name, you need to pass the
object in explicitly to the method call.

Here is a concrete example. Imagine that you have a class for managing calendars. It has these
methods, plus possibly some others.

class Calendar:

def __init__(self):

self.appointments = []

def makeAppointment(self, name, dateTime):

self.appointments.append((name, dateTime))

def printCalendar(self, start, end):

complicated stuff

Now, you’d like to make a calendar that can handle appointments that are made in different time
zones. It should store all of the appointments in a single time zone, so that it can sort and display
appropriately.

class CalendarTimeZone(Calendar):
def __init__(self, zone):

Calendar.__init__(self)

self.zone = zone

def makeAppointment(self, name, dateTime):

Calendar.makeAppointment(self, name, dateTime + zone)

We make a subclass of Calendar which takes a time zone zone as an argument to its initialization
method. It starts by calling the Calendar initialization method, to set up whatever internal data
structures are necessary, and then sets the zone attribute of the new object. Now, when it’s time
to make an appointment, we add the time zone offset to the appointed time, and then call the
makeAppointment method of Calendar.

What is nice about this example is that we were able to take advantage of the Calendar class, and
even add to some of its methods, without knowing anything about its internal representation of
calendars.

3.6 Recursion
There are many control structures in Python, and other modern languages, which allow you write
short programs that do a lot of work. In this section, we discuss recursion, which is also a way to
write programs of arbitrary complexity. It is of particular importance here, because the structure
of a language interpreter is recursive, and in the next section we will explore, in detail, how to
construct an interpreter.

We have seen how we can define a procedure, and then can use it without remembering or caring
about the details of how it is implemented. We sometimes say that we can treat it as a black box,
meaning that it is unnecessary to look inside it to use it. This is crucial for maintaining sanity
when building complex pieces of software. An even more interesting case is when we can think
of the procedure that we are in the middle of defining as a black box. That is what we do when
we write a recursive procedure.

87 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

Recursive procedures are ways of doing a lot of work. The amount of work to be done is con­
trolled by one or more arguments to the procedure. The way we are going to do a lot of work
is by calling the procedure, over and over again, from inside itself! The way we make sure this
process actually terminates is by being sure that the argument that controls how much work we
do gets smaller every time we call the procedure again. The argument might be a number that
counts down to zero, or a string or list that gets shorter.

There are two parts to writing a recursive procedure: the base case(s) and the recursive case.
The base case happens when the thing that is controlling how much work you do has gotten to
its smallest value; usually this is 0 or the empty string or list, but it can be anything, as long as
you know it is sure to happen. In the base case, you just compute the answer directly (no more
calls to the recursive procedure!) and return it. Otherwise, you are in the recursive case. In the
recursive case, you try to be as lazy as possible, and foist most of the work off on another call to
this procedure, but with one of its arguments getting smaller. Then, when you get the answer
back from the recursive call, you do some additional work and return the result.

Another way to think about it is this: when you are given a problem of size n, assume someone
already gave you a way to solve problems of size n − 1. So, now, your job is only to figure out

•	 To which problem of size n − 1 you would like to know the answer, and

•	 How to do some simple operations to make that answer into the answer to your problem of
size n.

What if you wanted to add two positive numbers, but your computer only had the ability to
increment and decrement (add and subtract 1)? You could do this recursively, by thinking about
it like this. I need to add m and n:

•	 Presupposing the ability to solve simpler problems, I could get the answer to the problem m
plus n-1.

•	 Now, I just need to add 1 to that answer, to get the answer to my problem.

We further need to reason that when n is 0, then the answer is just m. This leads to the following
Python definition:

def slowAdd(m, n):
if n == 0:

return m
else:

return 1 + slowAdd(m, n-1)

Note how in the final return expression, we have reduced the answer to a problem of size n to a
simpler version of the same problem (of size n-1 plus some simple operations.

Here is an example recursive procedure that returns a string of n 1’s:

def bunchaOnes(n):
if n == 0:

return ’’
else:

return bunchaOnes(n-1) + ’1’

88 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

The thing that is getting smaller is n. In the base case, we just return the empty string. In the
recursive case, we get someone else to figure out the answer to the question of n-1 ones, and then
we just do a little additional work (adding one more ’1’ to the end of the string) and return it.

Exercise 3.16. What is the result of evaluating

bunchaOnes(-5)

Here is another example. It is kind of a crazy way to do multiplication, but logicians love it.

def mult(a,b):
if a==0:

return 0
else:

return b + mult(a-1,b)

Trace through an example of what happens when you call mult(3, 4), by adding a print state­
ment that prints arguments a and b as the first line of the procedure, and seeing what happens.

Here is a more interesting example of recursion. Imagine we wanted to compute the binary repre­
sentation of an integer. For example, the binary representation of 145 is ’10010001’. Our procedure
will take an integer as input, and return a string of 1’s and 0’s.

def bin(n):
if n == 0:

return ’0’
elif n == 1:

return ’1’
else:

return bin(n/2) + bin(n%2)

The easy cases (base cases) are when we are down to a 1 or a 0, in which case the answer is
obvious. If we do not have an easy case, we divide up our problem into two that are easier.
So, if we convert n/2 (the integer result of dividing n by 2, which by Python’s definition will be
a smaller number since it truncates the result, throwing away any remainder), into a string of
digits, we will have all but the last digit. And n%2 (n modulo 2) is 1 or 0 depending on whether
the number is even or odd, so one more call of bin will return a string of ’0’ or ’1’. The other thing
that is important to remember is that the + operation here is being used for string concatenation,
not addition of numbers.

How do we know that this procedure is going to terminate? We know that the number on which
it is operating is a positive integer that is getting smaller and smaller, and will eventually be either
a 1 or a 0, which can be handled by the base case.

You can also do recursion on lists. Here a way to add up the values of a list of numbers:

def addList(elts):
if elts == []:

return 0
else:

return elts[0] + addList(elts[1:])

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 89

The addList procedure consumed a list and produced a number. The incrementElements
procedure below shows how to use recursion to do something to every element of a list and make
a new list containing the results.

def incrementElements(elts):

if elts == []:

return []

else:

return [elts[0]+1] + incrementElements(elts[1:])

If the list of elements is empty, then there is no work to be done, and the result is just the empty
list. Otherwise, the result is a new list: the first element of the new list is the first element of the
old list, plus 1; the rest of the new list is the result of calling incrementElement recursively on
the rest of the input list. Because the list we are operating on is getting shorter on every recursive
call, we know we will reach the base case, and all will be well.

3.7 Implementing an interpreter
This section can be skipped unless you are interested. It’s very cool but a bit tricky.

From the preceding sections, you should have an informal understanding of what happens
when a Python program is evaluated. Now, we want to understand it formally enough to actually
implement an interpreter in Python.

3.7.1 Spy
We will study a simplified language, which we call Spy, because it is a mixture of Scheme and
Python. From Scheme, an elegant interpreted programming language with very simple syntax
and semantics, we take the syntax of the language, and from Python, we take the basic object-
oriented programming system. Spy has a small subset of the features of these languages, but it
is powerful enough to implement any computer program that can be implemented in any other
language (though it could be mighty tedious).

To learn more: Interestingly, very minimal versions of several different models of com­
putation (imperative, functional/recursive, rewrite systems) have been
shown to be formally equivalent. Some have theorized them to be com­
plete in the sense that there are no computations that cannot be expressed
this way. For more information, see:
http://plato.stanford.edu/entries/church-turing/

The syntax of Spy, like Scheme, is fully-parenthesized prefix syntax. Prefix means that the name
of the function or operation comes before its arguments, and fully-parenthesized means that there
are parentheses around every sub-expression. So, to write 1 + num * 4, we would write

(+ 1 (* num 4)) .

90 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

The reason for adopting this syntax is that it is very easy to manipulate with a computer program
(although some humans find it hard to read). In the following, we will assume that someone
has already written a tokenizer, which is a program that can consume a stream of characters and
break it into “words” for us. In particular, we will assume that the tokenizer can break an input
Spy program down into a list of lists (of lists...of elements that are strings or integers). So the
expression (+ 1 (* num 4)) would be converted by the tokenizer into a representation such as:
(’+’, 1, (’*’, ’num’, 4)).

Spy has the following features:

• Integer constants:

0, 1, -1, 2, -2, ...

Basic built-in functions: •

+, -, *, /, =, with meanings you would expect; note that in this language = is a test for equality
on two integers, which returns a Boolean.

• Assignment:

(set a 7) will set (or assign) the value of variable a to be 7

• Function application:

A list of expressions, the first of which is not a special word in Spy, is treated as function
application, or function call. So, (+ 3 a) would return 3 plus the value of variable a, and
(f) is a call of a function f with no arguments. Note that the first element can, itself, be an
expression, so

((myFunctionMaker 3) (+ 4 5))

is also a valid expression, as long as the value of (myFunctionMaker 3) is a function that will
consume a single argument (which, in this case, will be the value of the function application
(+ 4 5)).
Function definition: •

New functions can be defined, much as in Python or Scheme. So,

(def myFun (x y) (* (+ x y) y))

defines a new function named myFun of two arguments, which can be applied with an expres­
sion like (myFun 4 9).
If:•

(if a b c) will evaluate and return the value of expression b if the value of expression a is
equal to True, and otherwise will evaluate and return the value of expression c.

• Compound expression:

In Spy, the body of a function definition, and the branches of an if expression, are expected to
be a single expression; in order to evaluate multiple expressions in one of those locations, we
need to group them together with begin, like this:

91 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

(begin (set a 7) (set b 8) (+ a b)) .

(The reason we need begin to be a special word is so that we can distinguish this list of
expressions from a function application, which is also, syntactically, a list of expressions.) The
value of a compound expression is the value of its last component. So, in our example, the
value of the whole expression would be 15.

Note that the names begin, set, def, and if have special meaning in Spy and cannot be used as
the names of user-defined functions.

Spy also has some object-oriented features, but we will introduce those in section 3.7.3.

Exercise 3.17.	 Write a Spy procedure that takes two positive integers as input and returns
True if the first is greater than the second. Use only the primitive functions
= and + and recursion.

Exercise 3.18. Write a Spy procedure that takes n as input and returns the nth number in
the Fibonacci series.

3.7.2 Evaluating Spy expressions
In this section, we will describe, in complete detail, how it is that a program in Spy can be ex­
ecuted. The basic operations are evaluating expressions, and assigning values to names. In the
following sections, we will develop a recursive definition that allows us to compute the value
resulting from any Spy program. We will start with simple expressions, and work up to complex
ones.

The spyEval function will consume an expression and some additional information, and return
the value of the expression. It will have the structure of a long set of if-elif-else clauses, each of
which tests to see whether the expression has a particular form and performs the appropriate
evaluation.

To learn more: An interpreter is a program that takes in the text of a computer program
and executes it directly. We are going to build an interpreter for Spy in this
section, and when we use Python, we use an interpreter. A compiler is a
program that takes in the text of a computer program and turns it into low-
level instructions for a particular computer, which can later be executed.
A gross characterization of the difference is that it is easier to debug when
working with an interpreter, but that your program runs faster when com­
piled. For more information start with Wikipedia articles on Compiler and
Interpreter_(computing).

92 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

3.7.2.1 Numbers
What is the value of the program ’7’? It’s 7, of course. So, we can begin defining a function that
will consume a Spy expression (described as a list of lists of strings) and return a value.

Spy Eval def spyEval(form, env):
if isinstance(form, int):

return form

Here, we need to be able to examine an expression to see if it is an integer (the isinstance
procedure in Python takes any Python object and a type or class, and returns True if the object
is of that type or class, and False otherwise). If it is an integer, then we just return that integer
value. (You might have imagined that form would be a string, and that we’d have to convert that
string to an integer; in fact, the tokenizer, when it finds a token that is a number, converts it for us
in advance.)

For now, ignore the env argument; we’ll explain it soon.

3.7.2.2 Compound expressions
As we discussed above, a list of expressions, where the first one is the word ’begin’ is a com­
pound expression, whose value is the value of the last component. But, for reasons we will see in
section 3.7.2.3, it is important to evaluate all of the expressions, not just the last one. So, we can
extend our definition of spyEval by adding another clause (the ellipsis below is meant to include
the text from the previous spyEval code):

Spy Eval ...
elif form[0] == ’begin’:

val = None
for entry in form[1:]:

val = spyEval(entry, env)
return val

3.7.2.3 Symbols
We’ll use the term symbol to refer to any syntactic item that isn’t a number or parenthesis.

What is the value of the program ’a’? All by itself, it is an error, because ’a’ is undefined. So,
let’s consider a more complicated program:

(begin (set a 6)

a)

Why would we ever want to evaluate expressions and throw their values away? In a pure func­
tional language, the answer is that we wouldn’t. But in Spy, we have assignment expressions.

93 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

They don’t even have a value, but they make a change to the environment in which they are eval­
uated. Before we go any further, we’ll have to take a slight detour, in order to understand the idea
of environments.

Environments
An environment consists of two parts:
•	 a dictionary

a parent environment (can be None)•

The dictionary is a data structure that lets us associate values (numbers, functions, objects, etc.)
with symbols; a Python dictionary works perfectly for this purpose.

We will say that a symbol is bound in an environment if it exists as a key in the environment’s
dictionary. We’ll sometimes call the relationship between a key and a value in an environment’s
dictionary a binding.

There are three operations we can do on an environment: look up a symbol, add a binding, and
extend an environment. We’ll define the first two here, and return to environment extension later.

The lookup operation takes a symbol and an environment, and performs a slightly generalized
version of a dictionary lookup, looking in a parent environment if the symbol is not in the dictio­
nary:
•	 If the symbol is a key in the environment’s dictionary, then it returns the associated value;
•	 Otherwise, if this environment has a parent, then it returns the result of looking the symbol

up in the parent environment;
•	 Otherwise, it generates an error.

The add binding operation takes a symbol, an environment, and a value; it adds the value to the
dictionary associated with the environment, using the symbol as the key. If there was already a
value associated with that symbol in the dictionary, the old value is overwritten by the new value.

’a’ 9

’c’ 12

’a’ 6

’b’ 7

Figure 3.1 A simple environment.

Exercise 3.19. If e is the environment in Figure 3.1, what are the results of:
• e.lookup(’a’)
• e.lookup(’c’)
• e.lookup(’d’)
• e.add(’f’, 1)
• e.add(’c’, 2)
• e.add(’a’, 2)

94 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Where do environments come from? There is one environment that is made by the interpreter,
called global. It contains bindings for the primitive procedures, and is the environment in which
our main program is evaluated.

Assigning values
So, let’s go back to the expression

(set a 6)

We’ll refer to the second and third elements of this expression (the ’a’ and the 6) as the left-hand­
side (lhs) and right-hand-side (rhs) respectively.25 For now, the lhs will always be a symbol. Now,
to evaluate this expression in an environment, we evaluate the expression that is the rhs to get a
value, and then bind the symbol that is the lhs to that value in the environment.

So, here’s our augmented definition of eval. Note that it we have added the env argument, which
is the environment in which we’re evaluating the expression:

Spy Eval elif form[0] == ’set’:
(tag, lhs, rhs) = form
env.add(lhs, spyEval(rhs, env))

So, in our simple example, lhs is the symbol ’a’; expr is 6, which does not need further eval­
uation (the tokenizer has already turned the string ’6’) into an internal Python integer 6. More
generally, though, the expr can be an arbitrarily complicated expression which might take a great
deal of work to evaluate.

Now, finally, we can evaluate the expression ’a’. All we do to evaluate a symbol is look it up in
the environment. So, the return value of this whole program

(begin (set a 6)

a)

is the value 6.

25 That usage comes because a typical assignment statement has the form lhs = rhs.

After we have evaluated that expression, our global environment will look like this:

’a’ 6

’+’ <func>
...

global

Evaluating symbols

95 Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011

So, now, we can add another clause to spyEval:

Spy Eval ...

elif isinstance(form, str):

return env.lookup(form)

3.7.2.4 Functions
In the Spy language, any list of expressions, the first element of which is not a special symbol is
treated as a function call.26 Each of the expressions in the list is evaluated, yielding a function and
some number of values.

Before we go any further, we have to talk about functions in some detail. There are two types
of functions: primitive functions and user defined functions. Primitive functions come built into
the interpreter and are, ultimately, implemented as part of the interpreter. Spy provides several
primitive functions that are bound to names in the global environment. So, to call a primitive
function, all we have to do is pass the values we obtained by evaluating the rest of the expressions
in the function call into the primitive function.

Function definitions
Before we can talk about calling user-defined functions, we have to talk about how to define them.
Here is an example definition:

(def fizz (x y)

(+ x y))

It is a list of four elements:

1.	 def, which is a special symbol, indicating that this expression is not a function call, and there­
fore requires special handling;

2.	 the name of the function being defined (’fizz’ in this case);

3.	 a list of symbols, called the formal parameters (in this example, (’x’, ’y’); and

4.	 a function body, which is a Spy expression, in this case, ’(+ x y)’

Not very much happens at function definition time. We construct a data structure (typically an
instance of a Function class) that simply stores three components:

•	 the formal parameters

•	 the function body

the environment in which the function definition was evaluated •

Then, we add a binding in the environment in which the function was defined from the func­
tion name to this function structure. With this understanding of function definition, we can add
another clause to spyEval:

26 So far, our special symbols are begin and set, and we’ll add def and if.

96 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

Spy Eval ...
elif form[0] == ’def’:

(tag, name, params, body) = form
env.add(name, Function(params, body, env))

Here is a picture of the global environment after the definition of fizz is made. Note the binding
from the name ’fizz’ to a Function instance which, itself, contains a reference to the environ­
ment.

fizz

global Procedure1
(x, y)
(+ x y)

Function calls
Now, we can see what happens when we actually call a function. Let’s assume that the function
fizz from the previous section has been defined, and now we want to evaluate

(fizz 6 8)

in the environment env. This is the trickiest part of the whole interpreter. First, we evaluate each
of these expressions, getting: a Function instance (which we created when we defined the fizz
function), the number 6 and the number 8.

Now, we make a new environment. Let’s call it (imaginatively) newEnv. The dictionary part of
newEnv is used to associate the symbols that are the formal parameters of the function (in the
case of the fizz function, ’x’ and ’y’) with the actual values being passed into the function (in
this case, the numbers 6 and 8). The parent environment of newEnv is the environment that we
stored with the function when it was defined (not the environment in which the function is being
called!!). In this case, fizz was defined in the global environment. And so, the parent pointer is
also the global environment. (Later, we may see some examples where this pointer is different, in
a way that matters.)

Here is a diagram of the entire environment, at this point:

97 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

fizz

global Procedure1
(x, y)
(+ x y)

y 8
x 6

Now that we have this new environment, we evaluate the expression that is the body of the
function, in this case, ’(+ x y)’ in newEnv. This will all work out roughly as you would expect:
during the process of evaluating the body, we will have to evaluate the symbols ’+’, ’x’ and
’y’. We will find ’x’ and ’y’ in the dictionary of newEnv; and we will find ’+’ in its parent
environment, which is global. So, we’ll have the function object that is bound to ’+’, and the
number 6 and the number 8; then, we’ll call the primitive function on these values, and end up
with the result 14.

Here is our augmented definition of spyEval:

Spy Eval ...
elif isinstance(form, list):

f = spyEval(form[0], env)
return spyEval(f.body,

Environment(f.formal,
[spyEval(x, env) for x in form[1:]],
f.environment))

As required, this process evaluates the first expression in the list to get a function. Then it evalu­
ates the body of that function in a new environment that maps the function’s formal parameters
to the results of evaluating all the rest of the expressions in the list, and whose parent is the envi­
ronment stored in the function.

A good way to understand what is going on with spyEval is to show a trace of its behavior. So,
when we evaluate the following expression:

(begin (def fizz (a b)
(+ a b))

(fizz 3 4))

we can print out the arguments that are passed into spyEval (though we have left out the envi­
ronment, to keep things from being too cluttered), and the result of each call. Each time it is called
recursively, we print out the arguments and results with one level more of indentation:

args: [’begin’, [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]], [’fizz’, 3, 4]]

args: [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]]

result: None

args: [’fizz’, 3, 4]

98 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

args: fizz

result: <__main__.Function instance at 0x7b1e18>

args: 3

args: [’+’, ’a’, ’b’]

result: 3

args: 4

result: 4

args: +

result: Primitive <built-in function add>

args: a

result: 3

args: b

result: 4

result: 7

result: 7

result: 7

Here is another version, showing the basic part of the environment, but not the parent environ­
ment.

args: [’begin’, [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]], [’fizz’, 3, 4]] Env: global
args: [’def’, ’fizz’, [’a’, ’b’], [’+’, ’a’, ’b’]] Env: global
result: None
args: [’fizz’, 3, 4] Env: global

args: fizz Env: global

result: <__main__.Function instance at 0x7b1df0>

args: 3 Env: global

result: 3

args: 4 Env: global

args: [’+’, ’a’, ’b’] Env:{’a’: 3, ’b’: 4}

result: 4

args: + Env:{’a’: 3, ’b’: 4}

result: Primitive <built-in function add>

args: a Env:{’a’: 3, ’b’: 4}

result: 3

args: b Env:{’a’: 3, ’b’: 4}

result: 4

result: 7

result: 7

result: 7

3.7.2.5 If
The last special type of expression in Spy is a conditional, of the form:

(if (= x 3)

(fizz x 10)

(+ x 4))

It might seem, at first, that it would be okay to implement if as a primitive function, similar to +.
But there is an important reason not to do so. Consider the definition of the factorial function, in
Spy:

99 Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011

(def factorial (x)
(if (= x 1)

1
(* x (factorial (- x 1)))))

The most straightforward application of this function, (factorial 1) will get us into trouble.
Why? We would start by evaluating ’factorial’ and ’1’, and getting a function and 1. So
far so good. Now we make a new environment, and evaluate the body in that environment.
That requires evaluating all of the elements of the body in that environment. So, we’d find that
’if’ evaluates to a primitive function, that (= x 1) evaluates to True, and that 1 evaluates to 1.
Then, we’d need to evaluate that last expression, which is itself a function call. That, in itself, is no
problem. But we can see that eventually, we’ll have to evaluate factorial in an environment where
its argument is -1. And that will require evaluating factorial of -2, which will require evaluating
factorial of -3, and so on.

The most important thing about ’if’ is that it evaluates only one of its branches, depending on
whether its condition is True or False. Without this property, we cannot stop recursion.

So, now we can see what to do with an ’if’ expression. We’ll call the second, third, and fourth
elements the condition, then and else parts. We start by evaluating the condition part. If it is
True, we evaluate the then part, otherwise we evaluate the else part.

It is pretty straightforward to add this to our eval function; but note that we had to put it before
the function application clause, so that we can keep if expressions from being evaluated as if
they were function applications.

Here is the whole interpreter.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 100

Spy Eval def spyEval(form, env=globalEnv):

if isinstance(form, int):

return form

elif isinstance(form, str):

return env.lookup(form)

elif form[0] == ’begin’:

val = None
for entry in form[1:]:

val = spyEval(entry, env)
return val

elif form[0] == ’set’:
(tag, lhs, rhs) = form
env.add(lhs, spyEval(rhs, env))

elif form[0] == ’def’:
(tag, name, params, body) = form
env.add(name, Function(params, body, env))

elif form[0] == ’if’:
(tag, condition, ifBody, elseBody) = form
if spyEval(condition, env)

return spyEval(ifBody, env)
else:

return spyEval(elseBody, env)
elif isinstance(form, list):

f = spyEval(form[0], env)
return spyEval(f.body,

Environment(f.formal,
[spyEval(x, env) for x in form[1:]],
f.environment))

else:
Error("Illegal expression: "+str(form))

Yay! Now we have a complete Spy interpreter. Well, we still need implementations of the Envi­
ronment and Function classes, but that’s not very much more work. We can implement those
classes as exercises.

3.7.3 Object-Oriented Spy
We can add a simple object-oriented facility to Spy, which is modeled on Python’s OOP facility,
but is somewhat simpler. The crucial idea here is that classes and instances are both environments,
of exactly the same kind that we have been using to support binding and function calls in basic
Spy. The dictionary part of the environment supports the binding of attribute names to values
within the instance or class; and the parent environment part allows an instance to be connected
to its class, or a class to its superclass, so that attributes that are not defined within the instance
may be found in the class or superclass.

We only have to add two new syntactic features to the language: attribute lookup and class defi­
nition.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 101

3.7.3.1 Attribute lookup
In Python, when you want to get the value of an attribute a from an instance obj, you say obj.a.
In OOSpy, we’ll say (attr obj a). Remembering that an instance is an environment, all we
have to do to evaluate such an expression is to look up the symbol ’a’ in the environment ’obj’.

Referring to the second part of this form as the object part and the third as the name part, we can
add a clause for attr expressions to our interpreter. The name will always be a single symbol;
but the object part can be a general expression (we might, for example, call a function bigFun that
returns an object, yielding an expression like (attr (bigFun 3) x) to get the attribute named
x from the object returned by bigFun). This means that we have to evaluate the object part, using
our standard evaluation function. Now, we can add a clause for attr expressions to our spyEval:

Spy Eval ...
elif form[0] == ’attr’:

(tag, objectExpr, name) = form
return spyEval(objectExpr, env).lookup(name)

...

3.7.3.2 Class definition
All the rest of our work happens at class definition time. Here is a simple OOSpy class definition:

(class SimpleClass None

(begin (def init (self v)

(set (attr self v) v))

(def getV (self)

(attr self v))))

For reference, it is roughly equivalent to the Python:

class SimpleClass:

def init (self, v):

self.v = v

def getV (self):

return self.v

It has four parts: the special symbol ’class’, the class name SimpleClass, the name of a su­
perclass (in this case, there is no superclass, so we write None), and a class body, which is a Spy
expression. Our simple Spy implementation doesn’t have an equivalent to Python’s __init__
facility, in which the specially-named procedure is called automatically. So we call the method
init without underscores to make that clear.

Here is a picture of the environment that we would like to have result from this definition:

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 102

SimpleClass

global
init
getV

Procedure1
()
return Environment()

Procedure3
(self)
return self.v

Procedure2
(self,v)
self.v = v

Note that Spy differs from Python here in an important way: in Python, the environment stored
in a method is always the module environment; in Spy, to avoid having a special case, it is the
class environment in which it is defined.

Also, rather than binding SimpleClass directly to the environment for the class, we will bind
it to a procedure that makes a new environment whose parent is the class environment. This
procedure can be called directly to create a new instance of the class.

There are three steps involved in processing this class definition.

1.	 Make an environment for the class In this step, we just make a new empty environment, and
set its parent to be the class specified as the superclass of this class. If the superclass is None,
then we use global as the parent environment, so that global variables and primitive function
definitions will be accessible from the class body.

2.	 Evaluate the class body in the class environment In this step, we use our regular Spy eval­
uation mechanism, to evaluate the class body, in the new environment. In our SimpleClass
body, we define two methods; these definitions will appear in the class environment but will
not, for example, be accessible directly from the global environment.

3.	 Make a constructor function Finally, we define a new function, with the same name as the
class, in the environment in which the class definition is being evaluated (not the class envi­
ronment; if we did that, nobody would every be able to find the constructor!). The constructor
function has the job of making a new instance of this class. What is an instance? An environ­
ment. And a brand new instance of any class is simply an empty environment, whose parent
environment is the class environment.

After defining SimpleClass, we can use it as follows:

(begin
(set a (SimpleClass))
((attr a init) a 37)
((attr a getV) a))

This is roughly equivalent to the Python

a = SimpleClass()
a.init(37)
a.getV()

This may look a little bit strange. Let’s go step by step. First, we make an instance by calling the
constructor function. That’s pretty straightforward. Now, the value of variable a is an instance of
the SimpleClass class, which means that it is an environment.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 103

Now, what about this expression?

((attr a init) a 37)

Let’s try to work through it the way the interpreter would. It is a list, and the first element is not
a special symbol, so it must be a function call. That means we should evaluate each of the forms
in the list.

First we evaluate (attr a init), which is a list starting with the special symbol attr, so we
know it’s looking up an attribute in a class. It evaluates the expression a, getting the SimpleClass
instance, then looks for the init attribute, which yields the init function that we defined inside
the class body.

Evaluating the second and third elements of ((attr a init) a 37) yield our SimpleClass
instance and the number 37.

Now, we’re ready to do a function call. Let’s do it carefully. The formal parameters of the function
we’re calling are (’self’, ’v’). So, we make a new environment, in which those parameters
are bound to the SimpleClass instance and to 37, respectively, and whose parent environment
is the environment in which ((attr a init) a 37) is being evaluated. Now, we evaluate the
body of that function, which is

(set (attr self v) v)

in this new environment. Let’s call this environment E1. In order to understand what’s going on
here, we have to go slowly and carefully. Here’s E1:

a
SimpleClass

global
init
getV

Procedure1
()
return Environment()

Procedure3
(self)
return self.v

Procedure2
(self,v)
self.v = v

37v
self

E1

First, we recognize this as a set expression. But, so far, our set expressions have always had a
single symbol as their second element. Now, we will have to generalize it, so the second element
of a set expression can also be an attr expression. Let’s consider this kind of expression, in
general:

(set (attr x y) z)

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 104

In this form, x can be any expression that, when evaluated, yields an instance; y must be a single
symbol; and z can be any expression that, when evaluated, yields a value. The result of this
form is to set attribute y in the instance resulting from evaluating expression x to have the value
resulting from evaluating the expression z.

So, we need to evaluate (set (attr self v) v) in the environment E1. We start by evaluating
self, and getting the SimpleClass instance; we look for an attribute named v there and, not
finding one, make a new one. Now, we evaluate the third part of the set expression, which is v,
in the E1, and get the value 37. Finally, we set attribute v of our instance to 37. Yay. Here’s the
new state of the environment:

a
SimpleClass

global
init
getV

Procedure1
()
return Environment()

Procedure3
(self)
return self.v

Procedure2
(self,v)
self.v = v

37v
self

E1

One thing to notice is that Spy, as we have designed it, doesn’t have Python’s special facility that
automatically uses an object as the first argument of a method, when that method is accessed via
that object. So, we have to pass the object in again, explicitly, as the first argument.

Exercise 3.20.
Add this syntactic facility to OOSpy.
That is, make it so that we can write ((attr a init) 37) and ((attr
a getV)). This is a little bit tricky.

Evaluating the expression ((attr a getV) a) works similarly (you should be sure you under­
stand how), and returns the value 37.

So, after all that, we can add the last clause to our OOSpy interpreter, for handling class defin­
itions. Note that we also have to extend the code for handling set, so it can deal with setting
attributes of instances.

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 105

Spy Eval ...
elif form[0] == ’set’:

(tag, lhs, expr) = form
(targetEnv, name) = lhsEval(lhs, env)
targetEnv.add(name, spyEval(expr, env))

elif form[0] == ’class’:
(tag, name, super, body) = form
if super == ’None’:

super = globalEnv
classEnv = Environment(parent = super)
env.add(name, Primitive(lambda : Environment(parent = classEnv)))
spyEval(body, classEnv)

...

def lhsEval(lhs, env):
if isinstance(lhs, list):

(tag, objectExpr, name) = lhs
return (spyEval(objectExpr, env), name)

else:
return (env, lhs)

Primitive is a class that represents a primitive function in Spy. Its initializer just takes a proce­
dure as an argument: in this case, it is a procedure that makes a new environment whose parent
is the the class environment.

We’re done with a whole object-oriented language!

Exercise 3.21.	 Write an OOSpy class definition for an Averager class. It should have a
method addValue that allows you to “add” a numeric value to the set of
data it as seen and method getAverage that returns the average of all of
the values that have been added so far.

3.8 Object-Oriented Programming Examples
Here are some examples of object-oriented programming in Python.

3.8.1 A simple method example
Here’s an example to illustrate the definition and use of classes, instances, and methods.

class Square:

def __init__(self, initialDim):

self.dim = initialDim

def getArea (self):

return self.dim * self.dim

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 106

def setArea (self, area):

self.dim = area**0.5

def __str__(self):

return "Square of dim " + str(self.dim)

This class is meant to represent a square. Squares need to store, or remember, their dimension,
so we make an attribute for it, and assign it in the __init__ method. Now, we define a method
getArea that is intended to return the area of the square. There are a couple of interesting things
going on here.

Like all methods, getArea has an argument, self, which will stand for the instance that this
method is supposed to operate on. Now, the way we can find the dimension of the square is by
finding the value of the dim attribute of self.

We define another method, setArea, which will set the area of the square to a given value. In
order to change the square’s area, we have to compute a new dimension and store it in the dim
attribute of the square instance.27

Now, we can experiment with instances of class Square.

>>> s = Square(6)

>>> s.getArea()

36

>>> Square.getArea(s)

36

>>> s.dim

6

>>> s.setArea(100)

>>> s.dim

10.0

>>> s1 = Square(10)

>>> s1.dim

10

>>> s1.getArea()

100

>>> s2 = Square(100)

>>> s2.getArea()

10000

>>> print s1

Square of dim 10

Our class Square has the __str__ method defined, so it prints out nicely.

3.8.2 Superclasses and inheritance
What if we wanted to make a set of classes and instances that would help us to run a bank? We
could start like this:

27 We compute the square root of a value by raising to the power 0.5.

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 107

class Account:

def __init__(self, initialBalance):

self.currentBalance = initialBalance

def balance(self):

return self.currentBalance

def deposit(self, amount):

self.currentBalance = self.currentBalance + amount

def creditLimit(self):

return min(self.currentBalance * 0.5, 10000000)

>>> a = Account(100)

>>> b = Account(1000000)

>>> Account.balance(a)

100

>>> a.balance()

100

>>> Account.deposit(a, 100)

>>> a.deposit(100)

>>> a.balance()

300

>>> b.balance()

1000000

We’ve made an Account class28 that maintains a balance as an attribute. There are methods for
returning the balance, for making a deposit, and for returning the credit limit.

The Account class contains the procedures that are common to all bank accounts; the individual
instances contain state in the values associated with the names in their environments. That state
is persistent, in the sense that it exists for the lifetime of the program that is running, and doesn’t
disappear when a particular method call is over.

Now, imagine that the bank we’re running is getting bigger, and we want to have several different
kinds of accounts, with the credit limit depending on the account type. If we wanted to define
another type of account as a Python class, we could do it this way:

class PremierAccount:

def __init__(self, initialBalance):

self.currentBalance = initialBalance

def balance(self):

return self.currentBalance

def deposit(self, amount):

self.currentBalance = self.currentBalance + amount

def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)

>>> c = PremierAccount(1000)

>>> c.creditLimit()

1500.0

28	 A note on style. It is useful to adopt some conventions for naming things, just to help your programs be more read­
able. We’ve used the convention that variables and procedure names start with lower case letters and that class
names start with upper case letters. And we try to be consistent about using something called “camel caps” for
writing compound words, which is to write a compound name with the successiveWordsCapitalized. An alternative
is_to_use_underscores.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 108

This will let people with premier accounts have larger credit limits. And, the nice thing is that we
can ask for its credit limit without knowing what kind of an account it is, so we see that objects
support generic functions, which operate on different kinds of objects by doing different, but
type-appropriate operations.

However, this solution is still not satisfactory. In order to make a premier account, we had to
repeat a lot of the definitions from the basic account class, violating our fundamental principle of
laziness: never do twice what you could do once; instead, abstract and reuse.

Inheritance lets us make a new class that’s like an old class, but with some parts overridden or
new parts added. When defining a class, you can actually specify an argument, which is another
class. You are saying that this new class should be exactly like the parent class or superclass, but
with certain definitions added or overridden. So, for example, we can say

class PremierAccount(Account):

def creditLimit(self):

return min(self.currentBalance * 1.5, 10000000)

class EconomyAccount(Account):

def creditLimit(self):

return min(self.currentBalance*0.5, 20.00)

>>> a = Account(100)

>>> b = PremierAccount(100)

>>> c = EconomyAccount(100)

>>> a.creditLimit()

100.0

>>> b.creditLimit()

150.0

>>> c.creditLimit()

20.0

We automatically inherit the methods of our superclass (including __init__). So we still know
how to make deposits into a premier account:

>>> b.deposit(100)

>>> b.balance()

200

The fact that instances know what class they were derived from allows us to ask each instance
to do the operations appropriate to it, without having to take specific notice of what class it is.
Procedures that can operate on instances of different types or classes without explicitly taking
their types or classes into account are called polymorphic. Polymorphism is a very powerful
method for capturing common patterns.

3.8.3 A data type for times
Object-oriented programming is particularly useful when we want to define a new compositional
data type: that is, a representation for the data defining a class of objects and one or more oper­
ations for creating new instances of the class from old instances. We might do this with complex
numbers or points in a high-dimensional space.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 109

Here we demonstrate the basic ideas with a very simple class for representing times.

We’ll start by defining an initialization method, with default values specified for the parameters.

class Time:
def __init__(self, hours = 0, minutes = 0):

self.hours = hours
self. minutes = minutes

Here is a method for adding two time objects. If the summed minutes are greater than 60, it carries
into the hours. If the summed hours are greater than 24, then the excess is simply thrown away.
It is important that adding two Times returns a new Time object, and that it does not change any
aspect of either of the arguments.

def add(self, other):

newMinutes = (self.minutes + other.minutes) % 60

carryHours = (self.minutes + other.minutes) / 60

newHours = (self.hours + other.hours + carryHours) % 24

return Time(newHours, newMinutes)

Python has a special facility for making user-defined types especially cool: if, for instance, you
define a method called __add__ for your class Foo, then whenever it finds an expression of the
form <obj1> + <obj2>, and the expression <obj1> evaluates to an object of class Foo, it will
Foo’s __add__ method. So, here we set that up for times:

def __add__(self, other):

return self.add(other)

Additionally, defining methods called __str__ and __repr__ that convert elements of your class
into strings will mean that they can be printed out nicely by the Python shell.

def __str__(self):

return str(self.hours) + ’:’ + str(self.minutes)

def __repr__(self):

return str(self)

Here, we make some times. In the second case, we specify only the minutes, and so the hours
default to 0.

>>> t1 = Time(6, 30)
>>> t2 = Time(minutes = 45)
>>> t3 = Time(23, 59)

And now, we can do some operations on them. Note how our __str__ method allows them to
be printed nicely.

>>> t1
6:30
>>> t1 + t2
7:15
>>> t3 + t2
0:44
>>> t1 + t2 + t3

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 110

7:14

>>> (t1 + t2 + t3).minutes

14

3.8.4 Practice problem: argmax
Write a Python procedure argmax that takes two arguments: the first is a list of elements, and the
second is a function from elements to numerical values. It should return the element of the list
with the highest numerical score.

def argmax(elements, f):

bestScore = None

bestElement = None

for e in elements:

score = f(e)
if bestScore == None or score > bestScore:

bestScore = score

bestElement = e

return bestElement

def argmax(elements, f):

bestElement = elements[0]

for e in elements:

if f(e) > f(bestElement):

bestElement = e

return bestElement

def argmax(elements, f):

vals = [f(e) for e in elements]

return elements[vals.index(max(vals))]

def argmax(elements, f):

return max(elements, key=f])

There are many ways of writing this. Here are a few. It’s important to keep straight in your
head which variables contain scores and which contain elements. Any of these solutions
would have been fine; we wouldn’t expect most people to get the last one.

3.8.5 Practice problem: OOP
The following definitions have been entered into a Python shell:

class A:

yours = 0

def __init__(self, inp):

self.yours = inp
def give(self, amt):

self.yours = self.yours + amt

return self.yours

def howmuch(self):

return (A.yours, self.yours)

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 111

class B(A):
yours = 0
def give(self, amt):

B.yours = B.yours + amt
return A.howmuch(self)

def take(self, amt):
self.yours = self.yours - amt
return self.yours

def howmuch(self):
return (B.yours, A.yours, self.yours)

Write the values of the following expressions. Write None when there is no value; write Error
when an error results and explain briefly why it is an error. Assume that these expressions are
evaluated one after another (all of the left column first, then right column).

test = A(5) test = B(5)

test.take(2) test.take(2)

test.give(6) test.give(6)

test.howmuch() test.howmuch()

None: This makes test be equal to a new instance of A, with attribute yours equal to 5. •
Error: Instances of A don’t have a take method.•
11: This adds 6 to the value of test.yours and returns its value. •
(0, 11): At this point, we haven’t changed the class attribute A.yours, so it still has •
value 0.

None: This makes test be equal to a new instance of B; it inherits the init method from A,
•
so at this point test.yours is equal to 5.
3: Now, since test is an instance of B, the method test.take is defined; it changes •
test.yours to be 3 and returns its value.

(0, 3): Note that this refers to the give method defined in class B. So, first, the amount is
•
used to increment B.yours to have value 6. Then, we return A.yours and test.yours,

which are both unchanged.

(6, 0, 3): This just returns the current values of all three yours attributes, one in each
•
class definition as well as test.yours.

3.8.6 Practice problem: The Best and the Brightest
Here are some class definitions, meant to represent a collection of students making up the student
body of a prestigious university.

class Student:
def __init__(self, name, iq, salary, height):

self.name = name

self.iq = iq

self.salary = salary

self.height = height

Chapter 3 Programs and Data	 6.01— Spring 2011— April 25, 2011 112

class StudentBody:
def __init__(self):

self.students = []
def addStudent(self, student):

self.students.append(student)
def nameOfSmartest(self):

code will go here
def funOfBest(self, fun, feature):

code will go here

The StudentBody class is missing the code for two methods:

nameOfSmartest: returns the name attribute of the student with the highest IQ •

funOfBest: takes a procedure fun and a procedure feature as input, and returns the result •
of applying procedure fun to the student for whom the procedure feature yields the highest
value

For the first two problems below, assume that these methods have been implemented.

Here is a student body:

jody = Student(’Jody’, 100, 100000, 80)
chris = Student(’Chris’, 150, 40000, 62)
dana = Student(’Dana’, 120, 2000, 70)
aardvarkU = StudentBody()
aardvarkU.addStudent(jody)
aardvarkU.addStudent(chris)
aardvarkU.addStudent(dana)

1.	 What is the result of evaluating aardvarkU.nameOfSmartest()?

’Chris’

2. Write a Python expression that will compute the name of the person who has the greatest
value of IQ + height in aardvarkU (not just for the example student body above). You can
define additional procedures if you need them.

aardvarkU.funOfBest(lambda x: x.name, lambda x: x.iq + x.height)

The second lambda expression specifies how to evaluate an element (that is, to sum its iq
and height attributes) and the first lambda expression says what function to apply to the
element with the highest score.

3.	 Implement the nameOfSmartest method. For full credit, use util.argmax (defined below)
or the funOfBest method.

If l is a list of items and f is a procedure that maps an item into a numeric score, then
util.argmax(l, f) returns the element of l that has the highest score.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 113

def nameOfSmartest(self):

return util.argmax(self.students, lambda x: x.iq).name

or

def nameOfSmartest(self):

return funOfBest(lambda x: x.name, lambda x: x.iq)

Note that in the first solution, the expression util.argmax(self.students, lambda x:
x.iq) returns the object with the highest iq attribute; then we return the name attribute of
that object.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 114

4. Implement the funOfBest method. For full credit, use util.argmax.

def funOfBest(self, fun, feature):
return fun(util.argmax(self.students, feature))

3.8.7 Practice Problem: A Library with Class
Let’s build a class to represent a library; let’s call it Library. In this problem, we’ll deal with
some standard types of objects:

• A book is represented as a string – its title.
• A patron (person who uses the library) is represented as a string – his/her name.
• A date is represented by an integer – the number of days since the library opened.

The class should have an attribute called dailyFine that starts out as 0.25. The class should
have the following methods:

__init__: takes a list of books and initializes the library. •

checkOut: is given a book, a patron and a date on which the book is being checked out and it •
records this. Each book can be kept for 7 days before it becomes overdue, i.e. if checked out on

day x, it becomes due on day x + 7 and it will be considered overdue by one day on day x + 8.

It returns None.

checkIn: is given a book and a date on which the book is being returned and it updates the
•
records. It returns a number representing the fine due if the book is overdue and 0.0 otherwise.
The fine is the number of days overdue times the value of the dailyFine attribute.
overdueBooks: is given a patron and a date and returns the list of books which that patron has •
checked out which are overdue at the given date.

Here is an example of the operation of the library:

>>> lib = Library([’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

>>> lib.checkOut(’a’, ’T’, 1)

>>> lib.checkOut(’c’, ’T’, 1)

>>> lib.checkOut(’e’, ’T’, 10)

>>> lib.overdueBooks(’T’, 13)

[’a’, ’c’]

>>> lib.checkIn(’a’, 13)

1.25

>>> lib.checkIn(’c’, 18)

2.50

>>> lib.checkIn(’e’, 18)

0.25

In the boxes below, define the Library class as described above. Above each answer box we
repeat the specification for each of the attributes and methods given above. Make sure that you
enter complete definitions in the boxes, including complete class and def statements.

Use a dictionary to store the contents of the library. Do not repeat code if at all possible. You can
assume that all the operations are legal, for example, all books checked out are in the library and
books checked in have been previously checked out.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 115

Class definition:

Include both the start of the class definition and the method definition for __init__ in this first

answer box.

The class should have an attribute called dailyFine that starts out as 0.25.

__init__: takes a list of books and initializes the library.

class Library:

dailyFine = 0.25

def __init__(self, books):

self.shelf = {}

for book in books:

self.shelf[book] = (None, None) # (patron, dueDate)

The crucial part here is deciding what information to store. Here, for each book, we store a
tuple of who has checked it out, and when it is due.

checkOut: is given a book, a patron and a date on which the book is being checked out and it
records this. Each book can be kept for 7 days before it becomes overdue, i.e. if checked out on
day x, it becomes due on day x + 7 and it will be considered overdue by one day on day x + 8. It
returns None.

def checkOut(self, book, patron, date):
self.shelf[book] = (patron, date+7)

checkIn: is given a book and a date on which the book is being returned and it updates the
records. It returns a number representing the fine due if the book is overdue and 0.0 otherwise.
The fine is the number of days overdue times the value of the dailyFine attribute.

def checkIn(self, book, date):

patron, due = self.shelf[book]

self.shelf[book] = (None, None)

return max(0.0, (date - due))*self.dailyFine

Note the destructuring assignment in the first line. It’s not crucial, but it’s nice style, and
keeps us from having to refer to components like self.shelf[book][1], which are ugly,
long, and hard to get right. Instead of using a max, you could use an if statement to handle
the case of the book being overdue or not, but this is more compact and pretty clear.

overdueBooks: is given a patron and a date and returns the list of books which that patron has
checked out which are overdue at the given date.

Chapter 3 Programs and Data 6.01— Spring 2011— April 25, 2011 116

def overdueBooks(self, patron, date):

overdue = []

for book in self.shelf:

p, d = self.shelf[book]

if p and d and p == patron and date > d:

overdue.append(book)

return overdue

It’s not really necessary to check to be sure that p and d are not None, because p == patron
will only be true for a real patron, and if the patron is not None then d won’t be either. But
this code makes it clear that we’re only interested in books that have been checked out.

Define a new class called LibraryGrace that behaves just like the Library class except that it
provides a grace period (some number of days after the actual due date) before fines start being
accumulated. The number of days in the grace period is specified when an instance is created.
See the example below.

>>> lib = LibraryGrace(2, [’a’, ’b’, ’c’, ’d’, ’e’, ’f’])

>>> lib.checkOut(’a’, ’T’, 1)

>>> lib.checkIn(’a’, 13)

0.75

Write the complete class definition for LibraryGrace. To get full credit you should not repeat
any code that is already in the implementation of Library, in particular, you should not need to
repeat the computation of the fine.

Class definition:

class LibraryGrace(Library):
def __init__(self, grace, books):

self.grace = grace

Library.__init__(self, books)

def checkIn(self, book, date):

return Library.checkIn(self, book, date - self.grace)

The crucial things here are: remembering to call the __init__ method of the parent class
and doing something to handle the grace period. In this example, when we check a book
back in, we pretend we’re actually checking it in on an earlier date. Alternatively, we could
have changed the checkout method to pretend that the checkout was actually happening in
the future.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 117

Chapter 4
State Machines

State machines are a method of modeling systems whose output depends on the entire history
of their inputs, and not just on the most recent input. Compared to purely functional systems,
in which the output is purely determined by the input, state machines have a performance that
is determined by its history. State machines can be used to model a wide variety of systems,
including:

•	 user interfaces, with typed input, mouse clicks, etc.;

•	 conversations, in which, for example, the meaning of a word “it” depends on the history of
things that have been said;

•	 the state of a spacecraft, including which valves are open and closed, the levels of fuel and
oxygen, etc.; and

•	 the sequential patterns in DNA and what they mean.

State machine models can either be continuous time or discrete time. In continuous time models,
we typically assume continuous spaces for the range of values of inputs and outputs, and use
differential equations to describe the system’s dynamics. This is an interesting and important ap­
proach, but it is hard to use it to describe the desired behavior of our robots, for example. The
loop of reading sensors, computing, and generating an output is inherently discrete and too slow
to be well-modeled as a continuous-time process. Also, our control policies are often highly non­
linear and discontinuous. So, in this class, we will concentrate on discrete-time models, meaning
models whose inputs and outputs are determined at specific increments of time, and which are
synchronized to those specific time samples. Furthermore, in this chapter, we will make no as­
sumptions about the form of the dependence of the output on the time-history of inputs; it can be
an arbitrary function.

Generally speaking, we can think of the job of an embedded system as performing a transduction
from a stream (infinite sequence) of input values to a stream of output values. In order to specify
the behavior of a system whose output depends on the history of its inputs mathematically, you
could think of trying to specify a mapping from i1, . . . , it (sequences of previous inputs) to ot

(current output), but that could become very complicated to specify or execute as the history gets
longer. In the state-machine approach, we try to find some set of states of the system, which
capture the essential properties of the history of the inputs and are used to determine the current
output of the system as well as its next state. It is an interesting and sometimes difficult modeling
problem to find a good state-machine model with the right set of states; in this chapter we will
explore how the ideas of PCAP can aid us in designing useful models.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 118

One thing that is particularly interesting and important about state machine models is how many
ways we can use them. In this class, we will use them in three fairly different ways:
1.	 Synthetically: State machines can specify a “program” for a robot or other system embedded

in the world, with inputs being sensor readings and outputs being control commands.
2.	 Analytically: State machines can describe the behavior of the combination of a control system

and the environment it is controlling; the input is generally a simple command to the entire
system, and the output is some simple measure of the state of the system. The goal here is
to analyze global properties of the coupled system, like whether it will converge to a steady
state, or will oscillate, or will diverge.

3.	 Predictively: State machines can describe the way the environment works, for example, where
I will end up if I drive down some road from some intersection. In this case, the inputs are
control commands and the outputs are states of the external world. Such a model can be
used to plan trajectories through the space of the external world to reach desirable states, by
considering different courses of action and using the model to predict their results.

We will develop a single formalism, and an encoding of that formalism in Python classes, that
will serve all three of these purposes.

Our strategy for building very complex state machines will be, abstractly, the same strategy we
use to build any kind of complex machine. We will define a set of primitive machines (in this
case, an infinite class of primitive machines) and then a collection of combinators that allow us
to put primitive machines together to make more complex machines, which can themselves be
abstracted and combined to make more complex machines.

4.1 Primitive state machines
We can specify a transducer (a process that takes as input a sequence of values which serve as
inputs to the state machine, and returns as ouput the set of outputs of the machine for each input)
as a state machine (SM) by specifying:
•	 a set of states, S,
•	 a set of inputs, I, also called the input vocabulary,
•	 a set of outputs, O, also called the output vocabulary,
•	 a next-state function, n(it, st) 7→ st+1, that maps the input at time t and the state at time t to

the state at time t + 1,
•	 an output function, o(it, st) 7→ ot, that maps the input at time t and the state at time t to the

output at time t; and
• an initial state, s0, which is the state at time 0.

Here are a few state machines, to give you an idea of the kind of systems we are considering.

•	 A tick-tock machine that generates the sequence 1, 0, 1, 0, . . . is a finite-state machine that ig­

nores its input.
•	 The controller for a digital watch is a more complicated finite-state machine: it transduces a

sequence of inputs (combination of button presses) into a sequence of outputs (combinations
of segments illuminated in the display).

•	 The controller for a bank of elevators in a large office building: it transduces the current set
of buttons being pressed and sensors in the elevators (for position, open doors, etc.) into
commands to the elevators to move up or down, and open or close their doors.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 119

The very simplest kind of state machine is a pure function: if the machine has no state, and the
output function is purely a function of the input, for example, ot = it + 1, then we have an
immediate functional relationship between inputs and outputs on the same time step. Another
simple class of SMs are finite-state machines, for which the set of possible states is finite. The
elevator controller can be thought of as a finite-state machine, if elevators are modeled as being
only at one floor or another (or possibly between floors); but if the controller models the exact
position of the elevator (for the purpose of stopping smoothly at each floor, for example), then it
will be most easily expressed using real numbers for the state (though any real instantiation of it
can ultimately only have finite precision). A different, large class of SMs are describable as linear,
time-invariant (LTI) systems. We will discuss these in detail chapter ??.

4.1.1 Examples
Let’s look at several examples of state machines, with complete formal definitions.

4.1.1.1 Language acceptor
Here is a finite-state machine whose output is true if the input string adheres to a simple pattern,
and false otherwise. In this case, the pattern has to be a, b, c, a, b, c, a, b, c,

It uses the states 0, 1, and 2 to stand for the situations in which it is expecting an a, b, and c,
respectively; and it uses state 3 for the situation in which it has seen an input that was not the one
that was expected. Once the machine goes to state 3 (sometimes called a rejecting state), it never
exits that state.

S = {0, 1, 2, 3}

I = {a, b, c}

O = {true, false}

n(s, i) =

 {

1 if s = 0, i = a

2 if s = 1, i = b

0 if s = 2, i = c

3 otherwise

false if n(s, i) = 3
o(s, i) =

s0

true otherwise

= 0

Figure 4.1 shows a state transition diagram for this state machine. Each circle represents a state.
The arcs connecting the circles represent possible transitions the machine can make; the arcs are
labeled with a pair i, o, which means that if the machine is in the state denoted by a circle with
label s, and gets an input i, then the arc points to the next state, n(s, i) and the output generated
o(s, i) = o. Some arcs have several labels, indicating that there are many different inputs that will
cause the same transition. Arcs can only be traversed in the direction of the arrow.

For a state transition diagram to be complete, there must be an arrow emerging from each state
for each possible input i (if the next state is the same for some inputs, then we draw the graph
more compactly by using a single arrow with multiple labels, as you will see below).

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 120

0

3

21

c / True

a / False
b / False

b / False
c / False

a / True b / True

a / False
c / False

a / False
b / False
c / False

Figure 4.1 State transition diagram for language acceptor.

We will use tables like the following one to examine the evolution of a state machine:

time 0 1 2 ...

input i0 i1 i2 ...
state s0 s1 s2 ...

output o1 o2 o3 ...

For each column in the table, given the current input value and state we can use the output
function o to determine the output in that column; and we use the n function applied to that
input and state value to determine the state in the next column. Thus, just knowing the input
sequence and s0, and the next-state and output functions of the machine will allow you to fill in
the rest of the table.

For example, here is the state of the machine at the initial time point:

time 0 1 2 ...

input
state

output

i0

s0

...

...

...

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 121

Using our knowledge of the next state function n, we have:

time 0 1 2 ...

input i0 ...
state s0 s1 ...

output ...

and using our knowledge of the output function o, we have at the next input value

time 0 1 2 ...

input i0 i1 ...
state s0 s1 ...

output o1 ...

This completes one cycle of the statement machine, and we can now repeat the process.

Here is a table showing what the language acceptor machine does with input sequence (’a’, ’b’,
’c’, ’a’, ’c’, ’a’, ’b’):

time 0 1 2 3 4 5 6 7

input
state

output

’a’
0

True

’b’
1

True

’c’
2

True

’a’
0

True

’c’
1

False

’a’
3

False

’b’
3

False
3

The output sequence is (True, True, True, True, False, False, False).

Clearly we don’t want to analyze a system by considering all input sequences, but this table helps
us understand the state transitions of the system model.

To learn more: Finite-state machine language acceptors can be built for a class of patterns
called regular languages. There are many more complex patterns (such as
the set of strings with equal numbers of 1’s and 0’s) that cannot be rec­
ognized by finite-state machines, but can be recognized by a specialized
kind of infinite-state machine called a stack machine. To learn more about
these fundamental ideas in computability theory, start with the Wikipedia
article on Computability_theory_(computer_science)

4.1.1.2 Up and down counter
This machine can count up and down; its state space is the countably infinite set of integers. It
starts in state 0. Now, if it gets input u, it goes to state 1; if it gets u again, it goes to state 2. If it
gets d, it goes back down to 1, and so on. For this machine, the output is always the same as the
next state.

{

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 122

S = integers

I = {u, d}

O = integers

s + 1 if i = u
n(s, i) =

s − 1 if i = d

o(s, i) = n(s, i)

s0 = 0

Here is a table showing what the up and down counter does with input sequence u, u, u, d, d, u:

time 0 1 2 3 4 5 6

input
state

output

u
0
1

u
1
2

u
2
3

d
3
2

d
2
1

u
1
2

2

The output sequence is 1, 2, 3, 2, 1, 2.

4.1.1.3 Delay
An even simpler machine just takes the input and passes it through to the output, but with one
step of delay, so the kth element of the input sequence will be the k + 1st element of the output
sequence. Here is the formal machine definition:

S = anything

I = anything

O = anything

n(s, i) = i

o(s, i) = s

s0 = 0

Given an input sequence i0, i1, i2, . . ., this machine will produce an output sequence
0, i0, i1, i2, The initial 0 comes because it has to be able to produce an output before it
has even seen an input, and that output is produced based on the initial state, which is 0. This
very simple building block will come in handy for us later on.

Here is a table showing what the delay machine does with input sequence 3, 1, 2, 5, 9:

time 0 1 2 3 4 5

input
state

output

3
0
0

1
3
3

2
1
1

5
2
2

9
5
5

9

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 123

The output sequence is 0, 3, 1, 2, 5.

4.1.1.4 Accumulator
Here is a machine whose output is the sum of all the inputs it has ever seen.

S = numbers

I = numbers

O = numbers

n(s, i) = s + i

o(s, i) = n(s, i)

s0 = 0

Here is a table showing what the accumulator does with input sequence 100, −3, 4, −123, 10:

time 0 1 2 3 4 5

input
state

output

100
0

100

-3
100
97

4
97

101

-123
101
-22

10
-22
-12

-12

4.1.1.5 Average2
Here is a machine whose output is the average of the current input and the previous input. It
stores its previous input as its state.

S = numbers

I = numbers

O = numbers

n(s, i) = i

o(s, i) = (s + i)/2

s0 = 0

Here is a table showing what the average2 machine does with input sequence 100, −3, 4, −123, 10:

time 0 1 2 3 4 5

input
state

output

100
0

50

-3
100
48.5

4
-3
0.5

-123
4

-59.5

10
-123
-56.5

10

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 124

4.1.2 State machines in Python
Now, it is time to make computational implementations of state machine models. In this section
we will build up some basic Python infrastructure to make it straightforward to define primitive
machines; in later sections we will see how to combine primitive machines into more complex
structures.

We will use Python’s object-oriented facilities to make this convenient. We have an abstract class,
SM, which will be the superclass for all of the particular state machine classes we define. It does
not make sense to make an instance of SM, because it does not actually specify the behavior of
the machine; it just provides some utility methods. To specify a new type of state machine, you
define a new class that has SM as a superclass.

In any subclass of SM, it is crucial to define an attribute startState, which specifies the initial
state of the machine, and a method getNextValues which takes the state at time t and the input
at time t as input, and returns the state at time t + 1 and the output at time t. This is a choice
that we have made as designers of our state machine model; we will rely on these two pieces of
information in our underlying infrastructure for simulating state machines, as we will see shortly.

Here, for example, is the Python code for an accumulator state machine, which implements the
definition given in section 4.1.1.4. 29

class Accumulator(SM):

startState = 0

def getNextValues(self, state, inp):

return (state + inp, state + inp)

It is important to note that getNextValues does not change the state of the machine, in other
words, it does not mutate a state variable. Its job is to be a pure function: to answer the question
of what the next state and output would be if the current state were state and the current input
were inp. We will use the getNextValues methods of state machines later in the class to make
plans by considering alternative courses of action, so they must not have any side effects. As we
noted, this is our choice as designers of the state machine infrastructure We could have chosen to
implement things differently, however this choice will prove to be very useful. Thus, in all our
state machines, the function getNextValues will capture the transition from input and state to
output and state, without mutating any stored state values.

To run a state machine, we make an instance of the appropriate state-machine class, call its start
method (a built in method we will see shortly) to set the state to the starting state, and then ask
it to take steps; each step consists of generating an output value (which is printed) and updating
the state to the next state, based on the input. The abstract superclass SM defines the start and
step methods. These methods are in charge of actually initializing and then changing the state
of the machine as it is being executed. They do this by calling the getNextValues method for
the class to which this instance belongs. The start method takes no arguments (but, even so, we
have to put parentheses after it, indicating that we want to call the method, not to do something

29	 Throughout this code, we use inp, instead of input, which would be clearer. The reason is that the name input is
used by Python as a function. Although it is legal to re-use it as the name of an argument to a procedure, doing so is a
source of bugs that are hard to find (if, for instance, you misspell the name input in the argument list, your references
to input later in the procedure will be legal, but will return the built-in function.)

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 125

with the method itself); the step method takes one argument, which is the input to the machine
on the next step. So, here is a run of the accumulator, in which we feed it inputs 3, 4, and -2:

>>> a = Accumulator()

>>> a.start()

>>> a.step(3)

3

>>> a.step(4)

7

>>> a.step(-2)

5

The class SM specifies how state machines work in general; the class Accumulator specifies how
accumulator machines work in general; and the instance a is a particular machine with a particu­
lar current state. We can make another instance of accumulator:

>>> b = Accumulator()
>>> b.start()
>>> b.step(10)
10
>>> b.state
10
>>> a.state
5

Now, we have two accumulators, a, and b, which remember, individually, in what states they
exist. Figure 4.2 shows the class and instance structures that will be in place after creating these
two accumulators.

b
a

Accumulator
SM

global run

step
start

transduce

getNextValues

startState 0

5state10state

Figure 4.2 Classes and instances for an Accumulator SM. All of the dots represent procedure
objects.

4.1.2.1	 Defining a type of SM
Let’s go back to the definition of the Accumulator class, and study it piece by piece.

First, we define the class and say that it is a subclass of SM:

class Accumulator(SM):

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 126

Next, we define an attribute of the class, startState, which is the starting state of the machine.
In this case, our accumulator starts up with the value 0.

startState = 0

Note that startState is required by the underlying SM class, so we must either define it in our
subclass definition or use a default value from the SM superclass.

The next method defines both the next-state function and the output function, by taking the cur­
rent state and input as arguments and returning a tuple containing both the next state and the
output.

For our accumulator, the next state is just the sum of the previous state and the input; and the
output is the same thing:

def getNextValues(self, state, inp):

return (state + inp, state + inp)

It is crucial that getNextValues be a pure function; that is, that it not change the state of the
object (by assigning to any attributes of self). It must simply compute the necessary values and
return them. We do not promise anything about how many times this method will be called and
in what circumstances.

Sometimes, it is convenient to arrange it so that the class really defines a range of machines with
slightly different behavior, which depends on some parameters that we set at the time we create
an instance. So, for example, if we wanted to specify the initial value for an accumulator at the
time the machine is created, we could add an __init__ method30 to our class, which takes an
initial value as a parameter and uses it to set an attribute called startState of the instance.31

class Accumulator(SM):

def __init__(self, initialValue):

self.startState = initialValue

def getNextValues(self, state, inp):

return state + inp, state + inp

Now we can make an accumulator and run it like this:

>>> c = Accumulator(100)

>>> c.start()

>>> c.step(20)

120

>>> c.step(2)

122

30	 Remember that the __init__ method is a special feature of the Python object-oriented system, which is called when­
ever an instance of the associated class is created.

31	 Note that in the original version of Accumulator, startState was an attribute of the class, since it was the same for
every instance of the class; now that we want it to be different for different instances, we need startState to be an
attribute of the instance rather than the class, which is why we assign it in the __init__ method, which modifies the
already-created instance.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 127

4.1.2.2 The SM Class
The SM class contains generally useful methods that apply to all state machines. A state machine
is an instance of any subclass of SM, that has defined the attribute startState and the method
getNextValues, as we did for the Accumulator class. Here we examine these methods in more
detail.

Running a machine
The first group of methods allows us to run a state machine. To run a machine is to provide it with
a sequence of inputs and then sequentially go forward, computing the next state and generating
the next output, as if we were filling in a state table.

To run a machine, we have to start by calling the start method. All it does is create an attribute
of the instance, called state, and assign to it the value of the startState attribute. It is crucial
that we have both of these attributes: if we were to just modify startState, then if we wanted
to run this machine again, we would have permanently forgotten what the starting state should
be. Note that state becomes a repository for the state of this instance; however we should not
mutate it directly. This variable becomes the internal representation of state for each instance of
this class.

class SM:

def start(self):

self.state = self.startState

Once it has started, we can ask it to take a step, using the step method, which, given an input,
computes the output and updates the internal state of the machine, and returns the output value.

def step(self, inp):

(s, o) = self.getNextValues(self.state, inp)

self.state = s

return o

To run a machine on a whole sequence of input values, we can use the transduce method, which
will return the sequence of output values that results from feeding the elements of the list inputs
into the machine in order.

def transduce(self, inputs):

self.start()

return [self.step(inp) for inp in inputs]

Here are the results of running transduce on our accumulator machine. We run it twice, first
with a simple call that does not generate any debugging information, and simply returns the
result. The second time, we ask it to be verbose, resulting in a print-out of what is happening on
the intermediate steps.32

32 In fact, the second machine trace, and all the others in this section were generated with a call like:

>>> a.transduce([100, -3, 4, -123, 10], verbose = True, compact = True)

See the Infrastructure Guide for details on different debugging options. To simplify the code examples we show in
these notes, we have omitted parts of the code that are responsible for debugging printouts.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 128

a = Accumulator()

>>> a.transduce([100, -3, 4, -123, 10])

[100, 97, 101, -22, -12]

>>> a.transduce([100, -3, 4, -123, 10], verbose = True)

Start state: 0

In: 100 Out: 100 Next State: 100

In: -3 Out: 97 Next State: 97

In: 4 Out: 101 Next State: 101

In: -123 Out: -22 Next State: -22

In: 10 Out: -12 Next State: -12

[100, 97, 101, -22, -12]

Some machines do not take any inputs; in that case, we can simply call the SM run method, which
is equivalent to doing transduce on an input sequence of [None, None, None, ...].

def run(self, n = 10):

return self.transduce([None]*n)

4.1.2.2.1 Default methods
This section is optional.

In order to make the specifications for the simplest machine types as short as possible, we have
also provided a set of default methods in the SM class. These default methods say that, unless they
are overridden in a subclass, as they were when we defined Accumulator, we will assume that a
machine starts in state None and that its output is the same as its next state.

startState = None
def getNextValues(self, state, inp):

nextState = self.getNextState(state, inp)

return (nextState, nextState)

Because these methods are provided in SM, we can define, for example, a state machine whose out­
put is always k times its input, with this simple class definition, which defines a getNextState
procedure that simply returns a value that is treated as both the next state and the output.

class Gain(SM):

def __init__(self, k):

self.k = k

def getNextState(self, state, inp):

return inp * self.k

We can use this class as follows:

>>> g = Gain(3)

>>> g.transduce([1.1, -2, 100, 5])

[3.3000000000000003, -6, 300, 15]

The parameter k is specified at the time the instance is created. Then, the output of the machine
is always just k times the input.

We can also use this strategy to write the Accumulator class even more succinctly:

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 129

class Accumulator(SM):

startState = 0

def getNextState(self, state, inp):

return state + inp

The output of the getNextState method will be treated both as the output and the next state of
the machine, because the inherited getNextValues function uses it to compute both values.

4.1.2.3 More examples
Here are Python versions of the rest of the machines we introduced in the first section.

Language acceptor
Here is a Python class for a machine that “accepts” the language that is any prefix of the infinite
sequence [’a’, ’b’, ’c’, ’a’, ’b’, ’c’,].

class ABC(SM):

startState = 0

def getNextValues(self, state, inp):

if state == 0 and inp == ’a’:

return (1, True)

elif state == 1 and inp == ’b’:

return (2, True)

elif state == 2 and inp == ’c’:

return (0, True)

else:

return (3, False)

It behaves as we would expect. As soon as it sees a character that deviates from the desired
sequence, the output is False, and it will remain False for ever after.

>>> abc = ABC()

>>> abc.transduce([’a’,’a’,’a’], verbose = True)

Start state: 0

In: a Out: True Next State: 1

In: a Out: False Next State: 3

In: a Out: False Next State: 3

[True, False, False]

>>> abc.transduce([’a’, ’b’, ’c’, ’a’, ’c’, ’a’, ’b’], verbose = True)

Start state: 0

In: a Out: True Next State: 1

In: b Out: True Next State: 2

In: c Out: True Next State: 0

In: a Out: True Next State: 1

In: c Out: False Next State: 3

In: a Out: False Next State: 3

In: b Out: False Next State: 3

[True, True, True, True, False, False, False]

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 130

Count up and down
This is a direct translation of the machine defined in section 4.1.1.2.

class UpDown(SM):
startState = 0
def getNextState(self, state, inp):

if inp == ’u’:

return state + 1

else:

return state - 1

We take advantage of the default getNextValues method to make the output the same as the
next state.

>>> ud = UpDown()
>>> ud.transduce([’u’,’u’,’u’,’d’,’d’,’u’], verbose = True)
Start state: 0
In: u Out: 1 Next State: 1
In: u Out: 2 Next State: 2
In: u Out: 3 Next State: 3
In: d Out: 2 Next State: 2
In: d Out: 1 Next State: 1
In: u Out: 2 Next State: 2
[1, 2, 3, 2, 1, 2]

Delay
In order to make a machine that delays its input stream by one time step, we have to specify what
the first output should be. We do this by passing the parameter, v0, into the __init__ method
of the Delay class. The state of a Delay machine is just the input from the previous step, and the
output is the state (which is, therefore, the input from the previous time step).

class Delay(SM):
def __init__(self, v0):

self.startState = v0
def getNextValues(self, state, inp):

return (inp, state)

>>> d = Delay(7)

>>> d.transduce([3, 1, 2, 5, 9], verbose = True)

Start state: 7

In: 3 Out: 7 Next State: 3

In: 1 Out: 3 Next State: 1

In: 2 Out: 1 Next State: 2

In: 5 Out: 2 Next State: 5

In: 9 Out: 5 Next State: 9

[7, 3, 1, 2, 5]

>>> d100 = Delay(100)

>>> d100.transduce([3, 1, 2, 5, 9], verbose = True)

Start state: 100

In: 3 Out: 100 Next State: 3

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 131

In: 1 Out: 3 Next State: 1
In: 2 Out: 1 Next State: 2
In: 5 Out: 2 Next State: 5
In: 9 Out: 5 Next State: 9
[100, 3, 1, 2, 5]

We will use this machine so frequently that we put its definition in the sm module (file), along
with the class.

R
We can use R as another name for the Delay class of state machines. It will be an important
primitive in a compositional system of linear time-invariant systems, which we explore in the
next chapter.

Average2
Here is a state machine whose output at time t is the average of the input values from times t − 1

and t.

class Average2(SM):
startState = 0
def getNextValues(self, state, inp):

return (inp, (inp + state) / 2.0)

It needs to remember the previous input, so the next state is equal to the input. The output is the
average of the current input and the state (because the state is the previous input).

>>> a2 = Average2()
>>> a2.transduce([10, 5, 2, 10], verbose = True, compact = True)
Start state: 0
In: 10 Out: 5.0 Next State: 10
In: 5 Out: 7.5 Next State: 5
In: 2 Out: 3.5 Next State: 2
In: 10 Out: 6.0 Next State: 10
[5.0, 7.5, 3.5, 6.0]

Sum of last three inputs
Here is an example of a state machine where the state is actually a list of values. Generally speak­
ing, the state can be anything (a dictionary, an array, a list); but it is important to be sure that
the getNextValues method does not make direct changes to components of the state, instead
returning a new copy of the state with appropriate changes. We may make several calls to the
getNextValues function on one step (or, later in our work, call the getNextValues function
with several different inputs to see what would happen under different choices); these function
calls are made to find out a value of the next state, but if they actually change the state, then the
same call with the same arguments may return a different value the next time.

This machine generates as output at time t the sum of it−2, it−1 and it; that is, of the last three
inputs. In order to do this, it has to remember the values of two previous inputs; so the state is
a pair of numbers. We have defined it so that the initial state is (0, 0). The getNextValues

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 132

method gets rid of the oldest value that it has been remembering, and remembers the current
input as part of the state; the output is the sum of the current input with the two old inputs that
are stored in the state. Note that the first line of the getNextValues procedure is a structured
assignment (see section 3.3).

class SumLast3 (SM):

startState = (0, 0)

def getNextValues(self, state, inp):

(previousPreviousInput, previousInput) = state

return ((previousInput, inp),

previousPreviousInput + previousInput + inp)

>>> sl3 = SumLast3()

>>> sl3.transduce([2, 1, 3, 4, 10, 1, 2, 1, 5], verbose = True)

Start state: (0, 0)

In: 2 Out: 2 Next State: (0, 2)

In: 1 Out: 3 Next State: (2, 1)

In: 3 Out: 6 Next State: (1, 3)

In: 4 Out: 8 Next State: (3, 4)

In: 10 Out: 17 Next State: (4, 10)

In: 1 Out: 15 Next State: (10, 1)

In: 2 Out: 13 Next State: (1, 2)

In: 1 Out: 4 Next State: (2, 1)

In: 5 Out: 8 Next State: (1, 5)

[2, 3, 6, 8, 17, 15, 13, 4, 8]

Selector
A simple functional machine that is very useful is the Select machine. You can make many
different versions of this, but the simplest one takes an input that is a stream of lists or tuples of
several values (or structures of values) and generates the stream made up only of the kth elements
of the input values. Which particular component this machine is going to select is determined by
the value k, which is passed in at the time the machine instance is initialized.

class Select (SM):

def __init__(self, k):

self.k = k

def getNextState(self, state, inp):

return inp[self.k]

4.1.3 Simple parking gate controller
As one more demonstration, here is a simple example of a finite-state controller for a gate leading
out of a parking lot.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 133

The gate has three sensors:
gatePosition has one of three values ’top’, ’middle’, ’bottom’, signi­•
fying the position of the arm of the parking gate.

carAtGate is True if a car is waiting to come through the gate and False
•
otherwise.

carJustExited is True if a car has just passed through the gate; it is true
•
for only one step before resetting to False.

Pause to try 4.1. How many possible inputs are there?

A: 12.

The gate has three possible outputs (think of them as controls to the motor for the gate arm):

’raise’, ’lower’, and ’nop’. (Nop means “no operation.”)

Roughly, here is what the gate needs to do:

•	 If a car wants to come through, the gate needs to raise the arm until it is at the top position.
•	 Once the gate is at the top position, it has to stay there until the car has driven through the

gate.
•	 After the car has driven through the gate needs to lower the arm until it reaches the bottom

position.

So, we have designed a simple finite-state controller with a state transition diagram as shown
in figure 4.3. The machine has four possible states: ’waiting’ (for a car to arrive at the gate),
’raising’ (the arm), ’raised’ (the arm is at the top position and we’re waiting for the car to
drive through the gate), and ’lowering’ (the arm). To keep the figure from being too cluttered,
we do not label each arc with every possible input that would cause that transition to be made:
instead, we give a condition (think of it as a Boolean expression) that, if true, would cause the
transition to be followed. The conditions on the arcs leading out of each state cover all the possible
inputs, so the machine remains completely well specified.

raising

lowering

raisedwaiting

not top / raise

carAtGate / raise
top / nop

carJustExited / lowerbottom / nop

not bottom / lower

not carJustExited / nopnot carAtGate / nop

Figure 4.3 State transition diagram for parking gate controller.

Figure by MIT OpenCourseWare.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 134

Here is a simple state machine that implements the controller for the parking gate. For com­
pactness, the getNextValues method starts by determining the next state of the gate. Then,
depending on the next state, the generateOutput method selects the appropriate output.

class SimpleParkingGate (SM):
startState = ’waiting’

def generateOutput(self, state):

if state == ’raising’:

return ’raise’

elif state == ’lowering’:

return ’lower’

else:

return ’nop’

def getNextValues(self, state, inp):

(gatePosition, carAtGate, carJustExited) = inp

if state == ’waiting’ and carAtGate:

nextState = ’raising’

elif state == ’raising’ and gatePosition == ’top’:

nextState = ’raised’

elif state == ’raised’ and carJustExited:

nextState = ’lowering’

elif state == ’lowering’ and gatePosition == ’bottom’:

nextState = ’waiting’

else:

nextState = state

return (nextState, self.generateOutput(nextState))

In the situations where the state does not change (that is, when the arcs lead back to the same
state in the diagram), we do not explicitly specify the next state in the code: instead, we cover it in
the else clause, saying that unless otherwise specified, the state stays the same. So, for example,
if the state is raising but the gatePosition is not yet top, then the state simply stays raising
until the top is reached.

>>> spg = SimpleParkingGate()
>>> spg.transduce(testInput, verbose = True)
Start state: waiting
In: (’bottom’, False, False) Out: nop Next State: waiting
In: (’bottom’, True, False) Out: raise Next State: raising
In: (’bottom’, True, False) Out: raise Next State: raising
In: (’middle’, True, False) Out: raise Next State: raising
In: (’middle’, True, False) Out: raise Next State: raising
In: (’middle’, True, False) Out: raise Next State: raising
In: (’top’, True, False) Out: nop Next State: raised
In: (’top’, True, False) Out: nop Next State: raised
In: (’top’, True, False) Out: nop Next State: raised
In: (’top’, True, True) Out: lower Next State: lowering
In: (’top’, True, True) Out: lower Next State: lowering
In: (’top’, True, False) Out: lower Next State: lowering
In: (’middle’, True, False) Out: lower Next State: lowering
In: (’middle’, True, False) Out: lower Next State: lowering
In: (’middle’, True, False) Out: lower Next State: lowering

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 135

In: (’bottom’, True, False) Out: nop Next State: waiting

In: (’bottom’, True, False) Out: raise Next State: raising

[’nop’, ’raise’, ’raise’, ’raise’, ’raise’, ’raise’, ’nop’, ’nop’, ’nop’, ’lower’, ’lower’,

’lower’, ’lower’, ’lower’, ’lower’, ’nop’, ’raise’]

Exercise 4.1. What would the code for this machine look like if it were written without
using the generateOutput method?

4.2 Basic combination and abstraction of state machines
In the previous section, we studied the definition of a primitive state machine, and saw a number
of examples. State machines are useful for a wide variety of problems, but specifying complex
machines by explicitly writing out their state transition functions can be quite tedious. Ultimately,
we will want to build large state-machine descriptions compositionally, by specifying primitive
machines and then combining them into more complex systems. We will start here by looking at
ways of combining state machines.

We can apply our PCAP (primitive, combination, abstraction, pattern) methodology, to build
more complex SMs out of simpler ones. In the rest of this section we consider “dataflow” com­
positions, where inputs and outputs of primitive machines are connected together; after that, we
consider “conditional” compositions that make use of different sub-machines depending on the
input to the machine, and finally “sequential” compositions that run one machine after another.

4.2.1 Cascade composition
In cascade composition, we take two machines and use the output of the first one as the input
to the second, as shown in figure 4.4. The result is a new composite machine, whose input vo­
cabulary is the input vocabulary of the first machine and whose output vocabulary is the output
vocabulary of the second machine. It is, of course, crucial that the output vocabulary of the first
machine be the same as the input vocabulary of the second machine.

m1 m2o1 = i2i1 o2

Cascade(m1, m2)

Figure 4.4 Cascade composition of state machines

Recalling the Delay machine from the previous section, let’s see what happens if we make the
cascade composition of two delay machines. Let m1 be a delay machine with initial value 99

and m2 be a delay machine with initial value 22. Then Cascade(m1, m2) is a new state machine,
constructed by making the output of m1 be the input of m2. Now, imagine we feed a sequence of
values, 3, 8, 2, 4, 6, 5, into the composite machine, m. What will come out? Let’s try to understand
this by making a table of the states and values at different times:

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 136

time 0 1 2 3 4 5 6

m1 input 3 8 2 4 6 5
m1 state 99 3 8 2 4 6 5

m1 output 99 3 8 2 4 6
m2 input 99 3 8 2 4 6
m2 state 22 99 3 8 2 4 6

m2 output 22 99 3 8 2 4

The output sequence is 22, 99, 3, 8, 2, 4, which is the input sequence, delayed by two time steps.

Another way to think about cascade composition is as follows. Let the input to m1 at time t be
called i1[t] and the output of m1 at time t be called o1[t]. Then, we can describe the workings of
the delay machine in terms of an equation:

o1[t] = i1[t − 1] for all values of t > 0;

o1[0] = init1

that is, that the output value at every time t is equal to the input value at the previous time step.
You can see that in the table above. The same relation holds for the input and output of m2:

o2[t] = i2[t − 1] for all values of t > 0.

o2[0] = init2

Now, since we have connected the output of m1 to the input of m2, we also have that i2[t] = o1[t]

for all values of t. This lets us make the following derivation:

o2[t] = i2[t − 1]

= o1[t − 1]

= i1[t − 2]

This makes it clear that we have built a “delay by two” machine, by cascading two single delay
machines.

As with all of our systems of combination, we will be able to form the cascade composition not
only of two primitive machines, but of any two machines that we can make, through any set of
compositions of primitive machines.

Here is the Python code for an Increment machine. It is a pure function whose output at time t
is just the input at time t plus the constant incr. The safeAdd function is the same as addition, if
the inputs are numbers. We will see, later, why it is important.

class Increment(SM):
def __init__(self, incr):

self.incr = incr
def getNextState(self, state, inp):

return safeAdd(inp, self.incr)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 137

Exercise 4.2. Derive what happens when you cascade two delay-by-two machines?

Exercise 4.3. What is the difference between these two machines?

>>> foo1 = sm.Cascade(sm.Delay(100), Increment(1))
>>> foo2 = sm.Cascade(Increment(1), sm.Delay(100))

Demonstrate by drawing a table of their inputs, states, and outputs, over
time.

4.2.2 Parallel composition
In parallel composition, we take two machines and run them “side by side”. They both take the
same input, and the output of the composite machine is the pair of outputs of the individual
machines. The result is a new composite machine, whose input vocabulary is the same as the
input vocabulary of the component machines (which is the same for both machines) and whose
output vocabulary is pairs of elements, the first from the output vocabulary of the first machine
and the second from the output vocabulary of the second machine. Figure 4.5 shows two types
of parallel composition; in this section we are talking about the first type.

m1

m2

i

o2

Parallel(m1, m2)

o1 m1

m2

i1

o2

Parallel2(m1, m2)

o1

i2

Figure 4.5 Parallel and Parallel2 compositions of state machines.

In Python, we can define a new class of state machines, called Parallel, which is a subclass of
SM. To make an instance of Parallel, we pass two SMs of any type into the initializer. The state of
the parallel machine is a pair consisting of the states of the constituent machines. So, the starting
state is the pair of the starting states of the constituents.

class Parallel (SM):
def __init__(self, sm1, sm2):

self.m1 = sm1
self.m2 = sm2
self.startState = (sm1.startState, sm2.startState)

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 138

To get a new state of the composite machine, we just have to get new states for each of the con­
stituents, and return the pair of them; similarly for the outputs.

def getNextValues(self, state, inp):

(s1, s2) = state

(newS1, o1) = self.m1.getNextValues(s1, inp)

(newS2, o2) = self.m2.getNextValues(s2, inp)

return ((newS1, newS2), (o1, o2))

Parallel2
Sometimes we will want a variant on parallel combination, in which rather than having the input
be a single item which is fed to both machines, the input is a pair of items, the first of which is
fed to the first machine and the second to the second machine. This composition is shown in the
second part of figure 4.5.

Here is a Python class that implements this two-input parallel composition. It can inherit the
__init__ method from Parallel, so use Parallel as the superclass, and we only have to define
two methods.

class Parallel2 (Parallel):
def getNextValues(self, state, inp):

(s1, s2) = state

(i1, i2) = splitValue(inp)

(newS1, o1) = self.m1.getNextValues(s1, i1)

(newS2, o2) = self.m2.getNextValues(s2, i2)

return ((newS1, newS2), (o1, o2))

Later, when dealing with feedback systems (section section 4.2.3), we will need to be able to deal
with ’undefined’ as an input. If the Parallel2 machine gets an input of ’undefined’, then
we want to pass ’undefined’ into the constituent machines. We make our code more beautiful
by defining the helper function below, which is guaranteed to return a pair, if its argument is
either a pair or ’undefined’. 33

def splitValue(v):

if v == ’undefined’:

return (’undefined’, ’undefined’)

else:

return v

ParallelAdd
The ParallelAdd state machine combination is just like Parallel, except that it has a single
output whose value is the sum of the outputs of the constituent machines. It is straightforward to
define:

33	 We are trying to make the code examples we show here as simple and clear as possible; if we were writing code for
actual deployment, we would check and generate error messages for all sorts of potential problems (in this case, for
instance, if v is neither None nor a two-element list or tuple.)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 139

class ParallelAdd (Parallel):
def getNextValues(self, state, inp):

(s1, s2) = state

(newS1, o1) = self.m1.getNextValues(s1, inp)

(newS2, o2) = self.m2.getNextValues(s2, inp)

return ((newS1, newS2), o1 + o2)

4.2.3 Feedback composition

m

Feedback(m)

o m

Feedback2(m)

oi

Figure 4.6 Two forms of feedback composition.

Another important means of combination that we will use frequently is the feedback combinator,
in which the output of a machine is fed back to be the input of the same machine at the next step,
as shown in figure 4.6. The first value that is fed back is the output associated with the initial state
of the machine on which we are operating. It is crucial that the input and output vocabularies of
the machine are the same (because the output at step t will be the input at step t + 1). Because
we have fed the output back to the input, this machine does not consume any inputs; but we will
treat the feedback value as an output of this machine.

Here is an example of using feedback to make a machine that counts. We can start with a simple
machine, an incrementer, that takes a number as input and returns that same number plus 1 as
the output. By itself, it has no memory. Here is its formal description:

S = numbers

I = numbers

O = numbers

n(s, i) = i + 1

o(s, i) = n(s, i)

s0 = 0

What would happen if we performed the feedback operation on this machine? We can try to
understand this in terms of the input/output equations. From the definition of the increment
machine, we have

o[t] = i[t] + 1 .

And if we connect the input to the output, then we will have

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 140

i[t] = o[t] .

And so, we have a problem; these equations cannot be satisfied.

A crucial requirement for applying feedback to a machine is: that machine must not have a direct
dependence of its output on its input.

Incr Delay(0)

Counter

Figure 4.7 Counter made with feedback and serial combination of an incrementer and a delay.

We have already explored a Delay machine, which delays its output by one step. We can delay
the result of our incrementer, by cascading it with a Delay machine, as shown in figure 4.7. Now,
we have the following equations describing the system:

oi[t] = ii[t] + 1

od[t] = id[t − 1]

ii[t] = od[t]

id[t] = oi[t]

The first two equations describe the operations of the increment and delay boxes; the second two
describe the wiring between the modules. Now we can see that, in general,

oi[t] = ii[t] + 1

oi[t] = od[t] + 1

oi[t] = id[t − 1] + 1

oi[t] = oi[t − 1] + 1

that is, that the output of the incrementer is going to be one greater on each time step.

Exercise 4.4.	 How could you use feedback and a negation primitive machine (which
is a pure function that takes a Boolean as input and returns the negation
of that Boolean) to make a machine whose output alternates between true
and false.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 141

4.2.3.1 Python Implementation
Following is a Python implementation of the feedback combinator, as a new subclass of SM that
takes, at initialization time, a state machine.

class Feedback (SM):
def __init__(self, sm):

self.m = sm

self.startState = self.m.startState

The starting state of the feedback machine is just the state of the constituent machine.

Generating an output for the feedback machine is interesting: by our hypothesis that the output
of the constituent machine cannot depend directly on the current input, it means that, for the
purposes of generating the output, we can actually feed an explicitly undefined value into the
machine as input. Why would we do this? The answer is that we do not know what the input
value should be (in fact, it is defined to be the output that we are trying to compute).

We must, at this point, add an extra condition on our getNextValues methods. They have to
be prepared to accept ’undefined’ as an input. If they get an undefined input, they should
return ’undefined’ as an output. For convenience, in our files, we have defined the procedures
safeAdd and safeMul to do addition and multiplication, but passing through ’undefined’ if it
occurs in either argument.

So: if we pass ’undefined’ into the constituent machine’s getNextValues method, we must
not get ’undefined’ back as output; if we do, it means that there is an immediate dependence
of the output on the input. Now we know the output o of the machine.

To get the next state of the machine, we get the next state of the constituent machine, by taking
the feedback value, o, that we just computed and using it as input for getNextValues. This
will generate the next state of the feedback machine. (Note that throughout this process inp is
ignored—a feedback machine has no input.)

def getNextValues(self, state, inp):

(ignore, o) = self.m.getNextValues(state, ’undefined’)

(newS, ignore) = self.m.getNextValues(state, o)

return (newS, o)

Now, we can construct the counter we designed. The Increment machine, as we saw in its
definition, uses a safeAdd procedure, which has the following property: if either argument is
’undefined’, then the answer is ’undefined’; otherwise, it is the sum of the inputs.

def makeCounter(init, step):

return sm.Feedback(sm.Cascade(Increment(step), sm.Delay(init)))

>>> c = makeCounter(3, 2)

>>> c.run(verbose = True)

Start state: (None, 3)

Step: 0

Feedback_96

Cascade_97

Increment_98 In: 3 Out: 5 Next State: 5

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 142

Delay_99 In: 5 Out: 3 Next State: 5
Step: 1
Feedback_96

Cascade_97

Increment_98 In: 5 Out: 7 Next State: 7

Delay_99 In: 7 Out: 5 Next State: 7

Step: 2
Feedback_96

Cascade_97

Increment_98 In: 7 Out: 9 Next State: 9

Delay_99 In: 9 Out: 7 Next State: 9

Step: 3
Feedback_96

Cascade_97

Increment_98 In: 9 Out: 11 Next State: 11

Delay_99 In: 11 Out: 9 Next State: 11

Step: 4
Feedback_96

Cascade_97

Increment_98 In: 11 Out: 13 Next State: 13

Delay_99 In: 13 Out: 11 Next State: 13

...

[3, 5, 7, 9, 11, 13, 15, 17, 19, 21]

(The numbers, like 96 in Feedback_96 are not important; they are just tags generated internally
to indicate different instances of a class.)

Exercise 4.5. Draw state tables illustrating whether the following machines are differ­
ent, and if so, how:

m1 = sm.Feedback(sm.Cascade(sm.Delay(1),Increment(1)))
m2 = sm.Feedback(sm.Cascade(Increment(1), sm.Delay(1)))

4.2.3.2 Fibonacci
Now, we can get very fancy. We can generate the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21, etc),
in which the first two outputs are 1, and each subsequent output is the sum of the two previous
outputs, using a combination of very simple machines. Basically, we have to arrange for the
output of the machine to be fed back into a parallel combination of elements, one of which delays
the value by one step, and one of which delays by two steps. Then, those values are added, to
compute the next output. Figure 4.8 shows a diagram of one way to construct this system.

The corresponding Python code is shown below. First, we have to define a new component ma­
chine. An Adder takes pairs of numbers (appearing simultaneously) as input, and immediately
generates their sum as output.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 143

Delay(1) Delay(0)

Fibonacci

Delay(1)

+

Figure 4.8 Machine to generate the Fibonacci sequence.

class Adder(SM):
def getNextState(self, state, inp):

(i1, i2) = splitValue(inp)

return safeAdd(i1, i2)

Now, we can define our fib machine. It is a great example of building a complex machine out of
very nearly trivial components. In fact, we will see in the next module that there is an interesting
and important class of machines that can be constructed with cascade and parallel compositions
of delay, adder, and gain machines. It is crucial for the delay machines to have the right values
(as shown in the figure) in order for the sequence to start off correctly.

>>> fib = sm.Feedback(sm.Cascade(sm.Parallel(sm.Delay(1),
sm.Cascade(sm.Delay(1), sm.Delay(0))),

Adder()))

>>> fib.run(verbose = True)
Start state: ((1, (1, 0)), None)
Step: 0
Feedback_100

Cascade_101

Parallel_102

Delay_103 In: 1 Out: 1 Next State: 1

Cascade_104

Delay_105 In: 1 Out: 1 Next State: 1
Delay_106 In: 1 Out: 0 Next State: 1

Adder_107 In: (1, 0) Out: 1 Next State: 1
Step: 1
Feedback_100

Cascade_101
Parallel_102

Delay_103 In: 2 Out: 1 Next State: 2

Cascade_104

Delay_105 In: 2 Out: 1 Next State: 2
Delay_106 In: 1 Out: 1 Next State: 1

Adder_107 In: (1, 1) Out: 2 Next State: 2
Step: 2
Feedback_100

Cascade_101
Parallel_102

Delay_103 In: 3 Out: 2 Next State: 3

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 144

Cascade_104

Delay_105 In: 3 Out: 2 Next State: 3

Delay_106 In: 2 Out: 1 Next State: 2

Adder_107 In: (2, 1) Out: 3 Next State: 3
Step: 3
Feedback_100

Cascade_101
Parallel_102

Delay_103 In: 5 Out: 3 Next State: 5

Cascade_104

Delay_105 In: 5 Out: 3 Next State: 5
Delay_106 In: 3 Out: 2 Next State: 3

Adder_107 In: (3, 2) Out: 5 Next State: 5
...

[1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

Exercise 4.6. What would we have to do to this machine to get the sequence [1, 1, 2,
3, 5, ...]?

Exercise 4.7. Define fib as a composition involving only two delay components and an
adder. You might want to use an instance of the Wire class.
A Wire is the completely passive machine, whose output is always in­
stantaneously equal to its input. It is not very interesting by itself, but
sometimes handy when building things.

class Wire(SM):
def getNextState(self, state, inp):

return inp

Exercise 4.8. Use feedback and a multiplier (analogous to Adder) to make a machine
whose output doubles on every step.

Exercise 4.9. Use feedback and a multiplier (analogous to Adder) to make a machine
whose output squares on every step.

4.2.3.3 Feedback2
The second part of figure 4.6 shows a combination we call feedback2 : it assumes that it takes a
machine with two inputs and one output, and connects the output of the machine to the second
input, resulting in a machine with one input and one output.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 145

Feedback2 is very similar to the basic feedback combinator, but it gives, as input to the constituent
machine, the pair of the input to the machine and the feedback value.

class Feedback2 (Feedback):
def getNextValues(self, state, inp):

(ignore, o) = self.m.getNextValues(state, (inp, ’undefined’))
(newS, ignore) = self.m.getNextValues(state, (inp, o))
return (newS, o)

4.2.3.4 FeedbackSubtract and FeedbackAdd
In feedback addition composition, we take two machines and connect them as shown below:

m1

m2

+

If m1 and m2 are state machines, then you can create their feedback addition composition with

newM = sm.FeedbackAdd(m1, m2)

Now newM is itself a state machine. So, for example,

newM = sm.FeedbackAdd(sm.R(0), sm.Wire())

makes a machine whose output is the sum of all the inputs it has ever had (remember that sm.R is

shorthand for sm.Delay). You can test it by feeding it a sequence of inputs; in the example below,
it is the numbers 0 through 9:

>>> newM.transduce(range(10))
[0, 0, 1, 3, 6, 10, 15, 21, 28, 36]

Feedback subtraction composition is the same, except the output of m2 is subtracted from the
input, to get the input to m1.

m1

m2

+
−

Note that if you want to apply one of the feedback operators in a situation where there is only one
machine, you can use the sm.Gain(1.0) machine (defined section 4.1.2.2.1), which is essentially
a wire, as the other argument.

4.2.3.5 Factorial

We will do one more tricky example, and illustrate the use of Feedback2. What if we
wanted to generate the sequence of numbers {1!, 2!, 3!, 4!, . . .} (where k! = 1 2 3 . . . k)?· · ·
We can do so by multiplying the previous value of the sequence by a number equal to the

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 146

“index” of the sequence. Figure 4.9 shows the structure of a machine for solving this problem. It
uses a counter (which is, as we saw before, made with feedback around a delay and increment)
as the input to a machine that takes a single input, and multiplies it by the output value of the
machine, fed back through a delay.

Incr Delay(1)

Factorial

* Delay(1)

Counter

Figure 4.9 Machine to generate the Factorial sequence.

Here is how to do it in Python; we take advantage of having defined counter machines to abstract
away from them and use that definition here without thinking about its internal structure. The
initial values in the delays get the series started off in the right place. What would happen if we
started at 0?

fact = sm.Cascade(makeCounter(1, 1),
sm.Feedback2(sm.Cascade(Multiplier(), sm.Delay(1))))

>>> fact.run(verbose = True)
Start state: ((None, 1), (None, 1))
Step: 0
Cascade_1

Feedback_2

Cascade_3

Increment_4 In: 1 Out: 2 Next State: 2

Delay_5 In: 2 Out: 1 Next State: 2

Feedback2_6
Cascade_7

Multiplier_8 In: (1, 1) Out: 1 Next State: 1

Delay_9 In: 1 Out: 1 Next State: 1

Step: 1
Cascade_1

Feedback_2
Cascade_3

Increment_4 In: 2 Out: 3 Next State: 3

Delay_5 In: 3 Out: 2 Next State: 3

Feedback2_6
Cascade_7

Multiplier_8 In: (2, 1) Out: 2 Next State: 2

Delay_9 In: 2 Out: 1 Next State: 2

Step: 2
Cascade_1

Feedback_2
Cascade_3

Increment_4 In: 3 Out: 4 Next State: 4

Delay_5 In: 4 Out: 3 Next State: 4

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 147

Feedback2_6
Cascade_7

Multiplier_8 In: (3, 2) Out: 6 Next State: 6

Delay_9 In: 6 Out: 2 Next State: 6

Step: 3

Cascade_1

Feedback_2

Cascade_3

Increment_4 In: 4 Out: 5 Next State: 5

Delay_5 In: 5 Out: 4 Next State: 5

Feedback2_6
Cascade_7

Multiplier_8 In: (4, 6) Out: 24 Next State: 24

Delay_9 In: 24 Out: 6 Next State: 24

...

[1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880]

It might bother you that we get a 1 as the zeroth element of the sequence, but it is reasonable
as a definition of 0!, because 1 is the multiplicative identity (and is often defined that way by
mathematicians).

4.2.4 Plants and controllers
One common situation in which we combine machines is to simulate the effects of coupling a
controller and a so-called “plant”. A plant is a factory or other external environment that we
might wish to control. In this case, we connect two state machines so that the output of the plant
(typically thought of as sensory observations) is input to the controller, and the output of the
controller (typically thought of as actions) is input to the plant. This is shown schematically in
figure 4.10. For example, when you build a Soar brain that interacts with the robot, the robot (and
the world in which it is operating) is the “plant” and the brain is the controller. We can build a
coupled machine by first connecting the machines in a cascade and then using feedback on that
combination.

Plant

Controller

Figure 4.10 Two coupled machines.

As a concrete example, let’s think about a robot driving straight toward a wall. It has a distance
sensor that allows it to observe the distance to the wall at time t, d[t], and it desires to stop at
some distance ddesired. The robot can execute velocity commands, and we program it to use the
following rule to set its velocity at time t, based on its most recent sensor reading:

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 148

v[t] = K(ddesired − d[t − 1]) .

This controller can also be described as a state machine, whose input sequence is the observed
values of d and whose output sequence is the values of v.

S = numbers

I = numbers

O = numbers

n(s, i) = K(ddesired − i)

o(s) = s

s0 = dinit

Now, we can think about the “plant”; that is, the relationship between the robot and the world.
The distance of the robot to the wall changes at each time step depending on the robot’s forward
velocity and the length of the time steps. Let δT be the length of time between velocity commands
issued by the robot. Then we can describe the world with the equation:

d[t] = d[t − 1] − δTv[t − 1] .

which assumes that a positive velocity moves the robot toward the wall (and therefore decreases
the distance). This system can be described as a state machine, whose input sequence is the values
of the robot’s velocity, v, and whose output sequence is the values of its distance to the wall, d.

Finally, we can couple these two systems, as for a simulator, to get a single state machine with no
inputs. We can observe the sequence of internal values of d and v to understand how the system
is behaving.

In Python, we start by defining the controller machine; the values k and dDesired are constants
of the whole system.

k = -1.5
dDesired = 1.0
class WallController(SM):

def getNextState(self, state, inp):
return safeMul(k, safeAdd(dDesired, safeMul(-1, inp)))

The output being generated is actually k * (dDesired - inp), but because this method is go­
ing to be used in a feedback machine, it might have to deal with ’undefined’ as an input. It has
no delay built into it.

Think about why we want k to be negative. What happens when the robot is closer to the wall
than desired? What happens when it is farther from the wall than desired?

Now, we can define a class that describes the behavior of the “plant”:

deltaT = 0.1
class WallWorld(SM):

startState = 5
def getNextValues(self, state, inp):

return (state - deltaT * inp, state)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 149

Setting startState = 5 means that the robot starts 5 meters from the wall. Note that the output
of this machine does not depend instantaneously on the input; so there is a delay in it.

Now, we can defined a general combinator for coupling two machines, as in a plant and controller:

def coupledMachine(m1, m2):

return sm.Feedback(sm.Cascade(m1, m2))

We can use it to connect our controller to the world, and run it:

>>> wallSim = coupledMachine(WallController(), WallWorld())

>>> wallSim.run(30)

[5, 4.4000000000000004, 3.8900000000000001, 3.4565000000000001,

3.088025, 2.77482125, 2.5085980624999999, 2.2823083531249999,

2.0899621001562498, 1.9264677851328122, 1.7874976173628905,

1.6693729747584569, 1.5689670285446884, 1.483621974262985,

1.4110786781235374, 1.3494168764050067, 1.2970043449442556,

1.2524536932026173, 1.2145856392222247, 1.1823977933388909,

1.1550381243380574, 1.1317824056873489, 1.1120150448342465,

1.0952127881091096, 1.0809308698927431, 1.0687912394088317,

1.058472553497507, 1.049701670472881, 1.0422464199019488,

1.0359094569166565]

Because WallWorld is the second machine in the cascade, its output is the output of the whole
machine; so, we can see that the distance from the robot to the wall is converging monotonically
to dDesired (which is 1).

Exercise 4.10. What kind of behavior do you get with different values of k?

4.2.5 Conditionals
We might want to use different machines depending on something that is happening in the out­
side world. Here we describe three different conditional combinators, that make choices, at the
run-time of the machine, about what to do.

4.2.6 Switch
We will start by considering a conditional combinator that runs two machines in parallel, but
decides on every input whether to send the input into one machine or the other. So, only one of
the parallel machines has its state updated on each step. We will call this switch, to emphasize the
fact that the decision about which machine to execute is being re-made on every step.

Implementing this requires us to maintain the states of both machines, just as we did for parallel
combination. The getNextValues method tests the condition and then gets a new state and
output from the appropriate constituent machine; it also has to be sure to pass through the old
state for the constituent machine that was not updated this time.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 150

class Switch (SM):
def __init__(self, condition, sm1, sm2):

self.m1 = sm1

self.m2 = sm2

self.condition = condition

self.startState = (self.m1.startState, self.m2.startState)

def getNextValues(self, state, inp):

(s1, s2) = state

if self.condition(inp):

(ns1, o) = self.m1.getNextValues(s1, inp)

return ((ns1, s2), o)

else:

(ns2, o) = self.m2.getNextValues(s2, inp)

return ((s1, ns2), o)

Multiplex
The switch combinator takes care to only update one of the component machines; in some other
cases, we want to update both machines on every step and simply use the condition to select the
output of one machine or the other to be the current output of the combined machine.

This is a very small variation on Switch, so we will just implement it as a subclass.

class Mux (Switch):
def getNextValues(self, state, inp):

(s1, s2) = state

(ns1, o1) = self.m1.getNextValues(s1, inp)

(ns2, o2) = self.m2.getNextValues(s2, inp)

if self.condition(inp):

return ((ns1, ns2), o1)

else:

return ((ns1, ns2), o2)

Exercise 4.11. What is the result of running these two machines

m1 = Switch(lambda inp: inp > 100,
Accumulator(),
Accumulator())

m2 = Mux(lambda inp: inp > 100,
Accumulator(),
Accumulator())

on the input

[2, 3, 4, 200, 300, 400, 1, 2, 3]

Explain why they are the same or are different.

If

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 151

Feel free to skip this example; it is only useful in fairly complicated contexts.

The If combinator. It takes a condition, which is a function from the input to true or false,

and two machines. It evaluates the condition on the first input it receives. If the value

is true then it executes the first machine forever more; if it is false, then it executes the second

machine.

This can be straightforwardly implemented in Python; we will work through a slightly simplified
version of our code below. We start by defining an initializer that remembers the conditions and
the two constituent state machines.

class If (SM):
startState = (’start’, None)
def __init__(self, condition, sm1, sm2):

self.sm1 = sm1
self.sm2 = sm2
self.condition = condition

Because this machine does not have an input available at start time, it can not decide whether it
is going to execute sm1 or sm2. Ultimately, the state of the If machine will be a pair of values:
the first will indicate which constituent machine we are running and the second will be the state
of that machine. But, to start, we will be in the state (’start’, None), which indicates that the
decision about which machine to execute has not yet been made.

Now, when it is time to do a state update, we have an input. We destructure the state into its
two parts, and check to see if the first component is ’start’. If so, we have to make the decision
about which machine to execute. The method getFirstRealState first calls the condition on
the current input, to decide which machine to run; then it returns the pair of a symbol indicating
which machine has been selected and the starting state of that machine. Once the first real state is
determined, then that is used to compute a transition into an appropriate next state, based on the
input.

If the machine was already in a non-start state, then it just updates the constituent state, using the
already-selected constituent machine. Similarly, to generate an output, we have use the output
function of the appropriate machine, with special handling of the start state.

startState = (’start’, None)

def __init__(self, condition, sm1, sm2):

self.sm1 = sm1

self.sm2 = sm2

self.condition = condition

def getFirstRealState(self, inp):

if self.condition(inp):

return (’runningM1’, self.sm1.startState)

else:

return (’runningM2’, self.sm2.startState)

def getNextValues(self, state, inp):
(ifState, smState) = state
if ifState == ’start’:

(ifState, smState) = self.getFirstRealState(inp)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 152

if ifState == ’runningM1’:

(newS, o) = self.sm1.getNextValues(smState, inp)

return ((’runningM1’, newS), o)

else:

(newS, o) = self.sm2.getNextValues(smState, inp)

return ((’runningM2’, newS), o)

4.3 Terminating state machines and sequential compositions
So far, all the machines we have discussed run forever; or, at least, until we quit giving them
inputs. But in some cases, it is particularly useful to think of a process as consisting of a sequence
of processes, one executing until termination, and then another one starting. For example, you
might want to robot to clean first room A, and then clean room B; or, for it to search in an area
until it finds a person and then sound an alarm.

Temporal combinations of machines form a new, different PCAP system for state machines. Our
primitives will be state machines, as described above, but with one additional property: they will
have a termination or done function, d(s), which takes a state and returns true if the machine has
finished execution and false otherwise.

Rather than defining a whole new class of state machines (though we could do that), we will
just augment the SM class with a default method, which says that, by default, machines do not
terminate.

def done(self, state):

return False

Then, in the definition of any subclass of SM, you are free to implement your own done method
that will override this base one. The done method is used by state machine combinators that, for
example, run one machine until it is done, and then switch to running another one.

Here is an example terminating state machine (TSM) that consumes a stream of numbers; its
output is None on the first four steps and then on the fifth step, it generates the sum of the numbers
it has seen as inputs, and then terminates. It looks just like the state machines we have seen before,
with the addition of a done method. Its state consists of two numbers: the first is the number of
times the machine has been updated and the second is the total input it has accumulated so far.

class ConsumeFiveValues(SM):

startState = (0, 0) # count, total

def getNextValues(self, state, inp):

(count, total) = state

if count == 4:

return ((count + 1, total + inp), total + inp)

else:

return ((count + 1, total + inp), None)

def done(self, state):

(count, total) = state

return count == 5

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 153

Here is the result of running a simple example. We have modified the transduce method of SM
to stop when the machine is done.

>>> c5 = ConsumeFiveValues()

>>> c5.transduce([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], verbose = True)

Start state: (0, 0)

In: 1 Out: None Next State: (1, 1)

In: 2 Out: None Next State: (2, 3)

In: 3 Out: None Next State: (3, 6)

In: 4 Out: None Next State: (4, 10)

In: 5 Out: 15 Next State: (5, 15)

[None, None, None, None, 15]

Now we can define a new set of combinators that operate on TSMs. Each of these combina­
tors assumes that its constituent machines are terminating state machines, and are, themselves,
terminating state machines. We have to respect certain rules about TSMs when we do this. In
particular, it is not legal to call the getNextValues method on a TSM that says it is done. This
may or may not cause an actual Python error, but it is never a sensible thing to do, and may result
in meaningless answers.

4.3.1 Repeat
The simplest of the TSM combinators is one that takes a terminating state machine sm and repeats
it n times. In the Python method below, we give a default value of None for n, so that if no value
is passed in for n it will repeat forever.

class Repeat (SM):
def __init__(self, sm, n = None):

self.sm = sm

self.startState = (0, self.sm.startState)

self.n = n

The state of this machine will be the number of times the constituent machine has been executed
to completion, together with the current state of the constituent machine. So, the starting state is
a pair consisting of 0 and the starting state of the constituent machine.

Because we are going to, later, ask the constituent machine to generate an output, we are going
to adopt a convention that the constituent machine is never left in a state that is done, unless
the whole Repeat is itself done. If the constituent machine is done, then we will increment the
counter for the number of times we have repeated it, and restart it. Just in case the constituent
machine “wakes up” in a state that is done, we use a while loop here, instead of an if: we will
keep restarting this machine until the count runs out. Why? Because we promised not to leave
our constituent machine in a done state (so, for example, nobody asks for its output, when its
done), unless the whole repeat machine is done as well.

def advanceIfDone(self, counter, smState):
while self.sm.done(smState) and not self.done((counter, smState)):

counter = counter + 1
smState = self.sm.startState

return (counter, smState)

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 154

To get the next state, we start by getting the next state of the constituent machine; then, we check
to see if the counter needs to be advanced and the machine restarted; the advanceIfDone method
handles this situation and returns the appropriate next state. The output of the Repeat machine
is just the output of the constituent machine. We just have to be sure to destructure the state of
the overall machine and pass the right part of it into the constituent.

def getNextValues(self, state, inp):

(counter, smState) = state

(smState, o) = self.sm.getNextValues(smState, inp)

(counter, smState) = self.advanceIfDone(counter, smState)

return ((counter, smState), o)

We know the whole Repeat is done if the counter is equal to n.

def done(self, state):

(counter, smState) = state

return counter == self.n

Now, we can see some examples of Repeat. As a primitive, here is a silly little example TSM. It
takes a character at initialization time. Its state is a Boolean, indicating whether it is done. It starts
up in state False (not done). Then it makes its first transition into state True and stays there. Its
output is always the character it was initialized with; it completely ignores its input.

class CharTSM (SM):
startState = False
def __init__(self, c):

self.c = c

def getNextValues(self, state, inp):

return (True, self.c)

def done(self, state):

return state

>>> a = CharTSM(’a’)

>>> a.run(verbose = True)

Start state: False

In: None Out: a Next State: True

[’a’]

See that it terminates after one output. But, now, we can repeat it several times.

>>> a4 = sm.Repeat(a, 4)

>>> a4.run()

[’a’, ’a’, ’a’, ’a’]

Exercise 4.12. Would it have made a difference if we had executed:

>>> sm.Repeat(CharTSM(’a’), 4).run()

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 155

Exercise 4.13. Monty P. thinks that the following call

>>> sm.Repeat(ConsumeFiveValues(), 3).transduce(range(100))

will generate a sequence of 14 Nones followed by the sum of the first 15
integers (starting at 0). R. Reticulatis disagrees. Who is right and why?

4.3.2 Sequence
Another useful thing to do with TSMs is to execute several different machines sequentially. That
is, take a list of TSMs, run the first one until it is done, start the next one and run it until it is done,
and so on. This machine is similar in style and structure to a Repeat TSM. Its state is a pair of
values: an index that says which of the constituent machines is currently being executed, and the
state of the current constituent.

Here is a Python class for creating a Sequence TSM. It takes as input a list of state machines; it
remembers the machines and number of machines in the list.

class Sequence (SM):
def __init__(self, smList):

self.smList = smList

self.startState = (0, self.smList[0].startState)

self.n = len(smList)

The initial state of this machine is the value 0 (because we start by executing the 0th constituent
machine on the list) and the initial state of that constituent machine.

The method for advancing is also similar that for Repeat. The only difference is that each time,
we start the next machine in the list of machines, until we have finished executing the last one.

def advanceIfDone(self, counter, smState):
while self.smList[counter].done(smState) and counter + 1 < self.n:

counter = counter + 1
smState = self.smList[counter].startState

return (counter, smState)

To get the next state, we ask the current constituent machine for its next state, and then, if it is
done, advance the state to the next machine in the list that is not done when it wakes up. The
output of the composite machine is just the output of the current constituent.

def getNextValues(self, state, inp):
(counter, smState) = state
(smState, o) = self.smList[counter].getNextValues(smState, inp)
(counter, smState) = self.advanceIfDone(counter, smState)
return ((counter, smState), o)

We have constructed this machine so that it always advances past any constituent machine that is
done; if, in fact, the current constituent machine is done, then the whole machine is also done.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 156

def done(self, state):

(counter, smState) = state

return self.smList[counter].done(smState)

We can make good use of the CharTSM to test our sequential combinator. First, we will try some­
thing simple:

>>> m = sm.Sequence([CharTSM(’a’), CharTSM(’b’), CharTSM(’c’)])

>>> m.run()

Start state: (0, False)

In: None Out: a Next State: (1, False)

In: None Out: b Next State: (2, False)

In: None Out: c Next State: (2, True)

[’a’, ’b’, ’c’]

Even in a test case, there is something unsatisfying about all that repetitive typing required to
make each individual CharTSM. If we are repeating, we should abstract. So, we can write a func­
tion that takes a string as input, and returns a sequential TSM that will output that string. It uses
a list comprehension to turn each character into a CharTSM that generates that character, and then
uses that sequence to make a Sequence.

def makeTextSequenceTSM(str):
return sm.Sequence([CharTSM(c) for c in str])

>>> m = makeTextSequenceTSM(’Hello World’)

>>> m.run(20, verbose = True)

Start state: (0, False)

In: None Out: H Next State: (1, False)

In: None Out: e Next State: (2, False)

In: None Out: l Next State: (3, False)

In: None Out: l Next State: (4, False)

In: None Out: o Next State: (5, False)

In: None Out: Next State: (6, False)

In: None Out: W Next State: (7, False)

In: None Out: o Next State: (8, False)

In: None Out: r Next State: (9, False)

In: None Out: l Next State: (10, False)

In: None Out: d Next State: (10, True)

[’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’]

We can also see that sequencing interacts well with the Repeat combinator.

>>> m = sm.Repeat(makeTextSequenceTSM(’abc’), 3)

>>> m.run(verbose = True)

Start state: (0, (0, False))

In: None Out: a Next State: (0, (1, False))

In: None Out: b Next State: (0, (2, False))

In: None Out: c Next State: (1, (0, False))

In: None Out: a Next State: (1, (1, False))

In: None Out: b Next State: (1, (2, False))

In: None Out: c Next State: (2, (0, False))

In: None Out: a Next State: (2, (1, False))

In: None Out: b Next State: (2, (2, False))

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 157

In: None Out: c Next State: (3, (0, False))

[’a’, ’b’, ’c’, ’a’, ’b’, ’c’, ’a’, ’b’, ’c’]

It is interesting to understand the state here. The first value is the number of times the constituent
machine of the Repeat machine has finished executing; the second value is the index of the se­
quential machine into its list of machines, and the last Boolean is the state of the CharTSM that is
being executed, which is an indicator for whether it is done or not.

4.3.3 RepeatUntil and Until
In order to use Repeat, we need to know in advance how many times we want to execute the
constituent TSM. Just as in ordinary programming, we often want to terminate when a particular
condition is met in the world. For this purpose, we can construct a new TSM combinator, called
RepeatUntil. It takes, at initialization time, a condition, which is a function from an input to
a Boolean, and a TSM. It runs the TSM to completion, then tests the condition on the input; if
the condition is true, then the RepeatUntil terminates; if it is false, then it runs the TSM to
completion again, tests the condition, etc.

Here is the Python code for implementing RepeatUntil. The state of this machine has two parts:
a Boolean indicating whether the condition is true, and the state of the constituent machine.

class RepeatUntil (SM):
def __init__(self, condition, sm):

self.sm = sm

self.condition = condition

self.startState = (False, self.sm.startState)

def getNextValues(self, state, inp):

(condTrue, smState) = state

(smState, o) = self.sm.getNextValues(smState, inp)

condTrue = self.condition(inp)

if self.sm.done(smState) and not condTrue:

smState = self.sm.getStartState()

return ((condTrue, smState), o)

def done(self, state):

(condTrue, smState) = state

return self.sm.done(smState) and condTrue

One important thing to note is that, in the RepeatUntil TSM the condition is only evaluated
when the constituent TSM is done. This is appropriate in some situations; but in other cases, we
would like to terminate the execution of a TSM if a condition becomes true at any single step of
the machine. We could easily implement something like this in any particular case, by defining
a special-purpose TSM class that has a done method that tests the termination condition. But,
because this structure is generally useful, we can define a general-purpose combinator, called
Until. This combinator also takes a condition and a constituent machine. It simply executes
the constituent machine, and terminates either when the condition becomes true, or when the
constituent machine terminates. As before, the state includes the value of the condition on the
last input and the state of the constituent machine.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 158

Note that this machine will never execute the constituent machine more than once; it will either
run it once to completion (if the condition never becomes true), or terminate it early.

Here are some examples of using RepeatUntil and Until. First, we run the ConsumeFive-
Values machine until the input is greater than 10. Because it only tests the condition when
ConsumeFiveValues is done, and the condition only becomes true on the 11th step, the Con­
sumeFiveValues machine is run to completion three times.

def greaterThan10 (x):
return x > 10

>>> m = sm.RepeatUntil(greaterThan10, ConsumeFiveValues())
>>> m.transduce(range(20), verbose = True)
Start state: (0, 0)
In: 0 Out: None Next State: (1, 0)
In: 1 Out: None Next State: (2, 1)
In: 2 Out: None Next State: (3, 3)
In: 3 Out: None Next State: (4, 6)
In: 4 Out: 10 Next State: (0, 0)
In: 5 Out: None Next State: (1, 5)
In: 6 Out: None Next State: (2, 11)
In: 7 Out: None Next State: (3, 18)
In: 8 Out: None Next State: (4, 26)
In: 9 Out: 35 Next State: (0, 0)
In: 10 Out: None Next State: (1, 10)
In: 11 Out: None Next State: (2, 21)
In: 12 Out: None Next State: (3, 33)
In: 13 Out: None Next State: (4, 46)
In: 14 Out: 60 Next State: (5, 60)
[None, None, None, None, 10, None, None, None, None, 35, None, None, None, None, 60]

If we do Until on the basic ConsumeFiveValues machine, then it just runs ConsumeFiveValues
until it terminates normally, because the condition never becomes true during this time.

>>> m = sm.Until(greaterThan10, ConsumeFiveValues())

>>> m.transduce(range(20), verbose = True)

Start state: (False, (0, 0))

In: 0 Out: None Next State: (False, (1, 0))

In: 1 Out: None Next State: (False, (2, 1))

In: 2 Out: None Next State: (False, (3, 3))

In: 3 Out: None Next State: (False, (4, 6))

In: 4 Out: 10 Next State: (False, (5, 10))

[None, None, None, None, 10]

However, if we change the termination condition, the execution will be terminated early. Note
that we can use a lambda expression directly as an argument; sometimes this is actually clearer
than defining a function with def, but it is fine to do it either way.

>>> m = sm.Until(lambda x: x == 2, ConsumeFiveValues())

>>> m.transduce(range(20), verbose = True)

Start state: (False, (0, 0))

In: 0 Out: None Next State: (False, (1, 0))

In: 1 Out: None Next State: (False, (2, 1))

In: 2 Out: None Next State: (True, (3, 3))

[None, None, None]

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 159

If we actually want to keep repeating ConsumeFiveValues() until the condition becomes true,
we can combine Until with Repeat. Now, we see that it executes the constituent machine mul­
tiple times, but terminates as soon as the condition is satisfied.

>>> m = sm.Until(greaterThan10, sm.Repeat(ConsumeFiveValues()))

>>> m.transduce(range(20), verbose = True)

Start state: (False, (0, (0, 0)))

In: 0 Out: None Next State: (False, (0, (1, 0)))

In: 1 Out: None Next State: (False, (0, (2, 1)))

In: 2 Out: None Next State: (False, (0, (3, 3)))

In: 3 Out: None Next State: (False, (0, (4, 6)))

In: 4 Out: 10 Next State: (False, (1, (0, 0)))

In: 5 Out: None Next State: (False, (1, (1, 5)))

In: 6 Out: None Next State: (False, (1, (2, 11)))

In: 7 Out: None Next State: (False, (1, (3, 18)))

In: 8 Out: None Next State: (False, (1, (4, 26)))

In: 9 Out: 35 Next State: (False, (2, (0, 0)))

In: 10 Out: None Next State: (False, (2, (1, 10)))

In: 11 Out: None Next State: (True, (2, (2, 21)))

[None, None, None, None, 10, None, None, None, None, 35, None, None]

4.4 Using a state machine to control the robot
This section gives an overview of how to control the robot with a state machine. For a much more
detailed description, see the Infrastructure Guide, which documents the io and util modules
in detail. The io module provides procedures and methods for interacting with the robot; the
util module provides procedures and methods for doing computations that are generally useful
(manipulating angles, dealing with coordinate frames, etc.)

We can implement a robot controller as a state machine whose inputs are instances of class
io.SensorInput, and whose outputs are instances of class io.Action.

Here is Python code for a brain that is controlled by the most basic of state machines. This machine
always emits the default action, io.Action(), which sets all of the output values to zero. When
the brain is set up, we create a “behavior”, which is a name we will use for a state machine that
transduces a stream of io.SensorInputs to a stream of io.Actions. Finally, we ask the behavior
to start.

Then, all we do in the step method of the robot is:

Read the sensors, by calling io.SensorInput() to get an instance that contains sonar and •
odometry readings;

• Feed that sensor input to the brain state machine, by calling its step method with that as input;
and

Take the io.Action that is generated by the brain as output, and call its execute method,
•
which causes it to actually send motor commands to the robot.

You can set the verbose flag to True if you want to see a lot of output on each step for debugging.

Inside a Soar brain, we have access to an object robot, which persists during the entire execution
of the brain, and gives us a place to store important objects (like the state machine that will be
doing all the work).

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 160

import sm

import io

class StopSM(sm.SM):

def getNextValues(self, state, inp):

return (None, io.Action())

def setup():

robot.behavior = StopSM()

robot.behavior.start()

def step():

robot.behavior.step(io.SensorInput(), verbose = False).execute()

In the following sections we will develop two simple machines for controlling a robot to move a
fixed distance or turn through a fixed angle. Then we will put them together and explore why it
can be useful to have the starting state of a machine depend on the input.

4.4.1 Rotate
Imagine that we want the robot to rotate a fixed angle, say 90 degrees, to the left of where it
is when it starts to run a behavior. We can use the robot’s odometry to measure approximately
where it is, in an arbitrary coordinate frame; but to know how much it has moved since we started,
we have to store some information in the state.

Here is a class that defines a Rotate state machine. It takes, at initialization time, a desired change
in heading.

class RotateTSM (SM):

rotationalGain = 3.0

angleEpsilon = 0.01

startState = ’start’

def __init__(self, headingDelta):

self.headingDelta = headingDelta

When it is time to start this machine, we would like to look at the robot’s current heading (theta),
add the desired change in heading, and store the result in our state as the desired heading. Then,
in order to test whether the behavior is done, we want to see whether the current heading is close
enough to the desired heading. Because the done method does not have access to the input of the
machine (it is a property only of states), we need to include the current theta in the state. So, the
state of the machine is (thetaDesired, thetaLast).

Thus, the getNextValues method looks at the state; if it is the special symbol ’start’, it means
that the machine has not previously had a chance to observe the input and see what its current
heading is, so it computes the desired heading (by adding the desired change to the current head­
ing, and then calling a utility procedure to be sure the resulting angle is between plus and minus
π), and returns it and the current heading. Otherwise, we keep the thetaDesired component
of the state, and just get a new value of theta out of the input. We generate an action with a

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 161

rotational velocity that will rotate toward the desired heading with velocity proportional to the
magnitude of the angular error.

def getNextValues(self, state, inp):

currentTheta = inp.odometry.theta

if state == ’start’:

thetaDesired = \

util.fixAnglePlusMinusPi(currentTheta + self.headingDelta)

else:

(thetaDesired, thetaLast) = state

newState = (thetaDesired, currentTheta)

action = io.Action(rvel = self.rotationalGain * \

util.fixAnglePlusMinusPi(thetaDesired - currentTheta))

return (newState, action)

Finally, we have to say which states are done. Clearly, the ’start’ state is not done; but we are
done if the most recent theta from the odometry is within some tolerance, self.angleEpsilon,
of the desired heading.

def done(self, state):

if state == ’start’:

return False

else:

(thetaDesired, thetaLast) = state
return util.nearAngle(thetaDesired, thetaLast, self.angleEpsilon)

Exercise 4.14. Change this machine so that it rotates through an angle, so you could give
it 2 pi or minus 2 pi to have it rotate all the way around.

4.4.2 Forward
Moving the robot forward a fixed distance is similar. In this case, we remember the robot’s x
and y coordinates when it starts, and drive straight forward until the distance between the initial
position and the current position is close to the desired distance. The state of the machine is the
robot’s starting position and its current position.

class ForwardTSM (SM):

forwardGain = 1.0

distTargetEpsilon = 0.01

startState = ’start’

def __init__(self, delta):

self.deltaDesired = delta

def getNextValues(self, state, inp):

currentPos = inp.odometry.point()

if state == ’start’:

print "Starting forward", self.deltaDesired

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 162

startPos = currentPos

else:

(startPos, lastPos) = state
newState = (startPos, currentPos)
error = self.deltaDesired - startPos.distance(currentPos)
action = io.Action(fvel = self.forwardGain * error)
return (newState, action)

def done(self, state):

if state == ’start’:

return False

else:

(startPos, lastPos) = state
return util.within(startPos.distance(lastPos),

self.deltaDesired,
self.distTargetEpsilon)

4.4.3 Square Spiral
Imagine we would like to have the robot drive in a square spiral, similar to the one shown in
figure 4.11. One way to approach this problem is to make a “low-level” machine that can consume
a goal point and the sensor input and drive (in the absence of obstacles) to the goal point; and
then make a “high-level” machine that will keep track of where we are in the figure and feed goal
points to the low-level machine.

4.4.3.1 XYDriver
Here is a class that describes a machine that takes as input a series of pairs of goal points (ex­
pressed in the robot’s odometry frame) and sensor input structures. It generates as output a
series of actions. This machine is very nearly a pure function machine, which has the following
basic control structure:

• If the robot is headed toward the goal point, move forward.
• If it is not headed toward the goal point, rotate toward the goal point.

This decision is made on every step, and results in a robust ability to drive toward a point in
two-dimensional space.

For many uses, this machine does not need any state. But the modularity is nicer, in some cases,
if it has a meaningful done method, which depends only on the state. So, we will let the state
of this machine be whether it is done or not. It needs several constants to govern rotational and
forward speeds, and tolerances for deciding whether it is pointed close enough toward the target
and whether it has arrived close enough to the target.

class XYDriver(SM):

forwardGain = 2.0

rotationGain = 2.0

angleEps = 0.05

distEps = 0.02

startState = False

The getNextValues method embodies the control structure described above.

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 163

-0.756 0.904

-0.756

0.903

Figure 4.11 Square spiral path of the robot using the methods in this section.

def getNextValues(self, state, inp):

(goalPoint, sensors) = inp

robotPose = sensors.odometry

robotPoint = robotPose.point()

robotTheta = robotPose.theta

if goalPoint == None:

return (True, io.Action())

headingTheta = robotPoint.angleTo(goalPoint)
if util.nearAngle(robotTheta, headingTheta, self.angleEps):

Pointing in the right direction, so move forward
r = robotPoint.distance(goalPoint)
if r < self.distEps:

We’re there
return (True, io.Action())

else:
return (False, io.Action(fvel = r * self.forwardGain))

else:

Rotate to point toward goal

headingError = util.fixAnglePlusMinusPi(\

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 164

headingTheta - robotTheta)
return (False, io.Action(rvel = headingError * self.rotationGain))

The state of the machine is just a boolean indicating whether we are done.

def done(self, state):

return state

4.4.3.2 Cascade approach
We make a spiral by building a machine that takes SensorInput objects as input and generates
pairs of subgoals and sensorinputs; such a machine can be cascaded with XYDriver to generate
a spiral.

Our implementation of this is a class called SpyroGyra. It takes the increment (amount that each
new side is larger than the previous) at initialization time. Its state consists of three components:

direction: one of ’north’, ’south’, ’east’, or ’west’, indicating which way the robot is traveling •

length: length in meters of the current line segment being followed •

subGoal: the point in the robot’s odometry frame that defines the end of the current line •
segment

It requires a tolerance to decide when the current subgoal point has been reached.

class SpyroGyra(SM):

distEps = 0.02

def __init__(self, incr):

self.incr = incr

self.startState = (’south’, 0, None)

If the robot is close enough to the subgoal point, then it is time to change the state. We increment
the side length, pick the next direction (counter clockwise around the cardinal compass direc­
tions), and compute the next subgoal point. The output is just the subgoal and the sensor input,
which is what the driver needs.

def getNextValues(self, state, inp):

(direction, length, subGoal) = state

robotPose = inp.odometry

robotPoint = robotPose.point()

if subGoal == None:

subGoal = robotPoint
if robotPoint.isNear(subGoal, self.distEps):

Time to change state

length = length + self.incr

if direction == ’east’:

direction = ’north’

subGoal.y += length

elif direction == ’north’:

direction = ’west’

subGoal.x -= length

elif direction == ’west’:

direction = ’south’

subGoal.y -= length

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 165

else: # south

direction = ’east’

subGoal.x += length

print ’new:’, direction, length, subGoal

return ((direction, length, subGoal),

(subGoal, inp))

Finally, to make the spiral, we just cascade these two machines together.

def spiroFlow(incr):
return sm.Cascade(SpyroGyra(incr), XYDriver())

Exercise 4.15. What explains the rounded sides of the path in figure 4.11?

4.5 Conclusion

State machines
State machines are such a general formalism, that a huge class of discrete-time systems can be
described as state machines. The system of defining primitive machines and combinations gives
us one discipline for describing complex systems. It will turn out that there are some systems
that are conveniently defined using this discipline, but that for other kinds of systems, other
disciplines would be more natural. As you encounter complex engineering problems, your job
is to find the PCAP system that is appropriate for them, and if one does not exist already, invent
one.

State machines are such a general class of systems that although it is a useful framework for
implementing systems, we cannot generally analyze the behavior of state machines. That is, we
can’t make much in the way of generic predictions about their future behavior, except by running
them to see what will happen.

In the next module, we will look at a restricted class of state machines, whose state is representable
as a bounded history of their previous states and previous inputs, and whose output is a linear
function of those states and inputs. This is a much smaller class of systems than all state machines,
but it is nonetheless very powerful. The important lesson will be that restricting the form of the
models we are using will allow us to make stronger claims about their behavior.

Knuth on Elevator Controllers
Donald E. Knuth is a computer scientist who is famous for, among other things, his series of
textbooks (as well as for TEX, the typesetting system we use to make all of our handouts), and a
variety of other contributions to theoretical computer science.

“It is perhaps significant to note that although the author had used the elevator system for years
and thought he knew it well, it wasn’t until he attempted to write this section that he realized
there were quite a few facts about the elevator’s system of choosing directions that he did not
know. He went back to experiment with the elevator six separate times, each time believing he

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 166

had finally achieved a complete understanding of its modus operandi. (Now he is reluctant to
ride it for fear some new facet of its operation will appear, contradicting the algorithms given.)
We often fail to realize how little we know about a thing until we attempt to simulate it on a
computer.”

The Art of Computer Programming, Donald E., Knuth, Vol 1. page 295. On the elevator system
in the Mathematics Building at Cal Tech. First published in 1968

4.6 Examples

4.6.1 Practice problem: Things
Consider the following program

def thing(inputList):

output = []

i = 0

for x in range(3):

y = 0
while y < 100 and i < len(inputList):

y = y + inputList[i]

output.append(y)

i = i + 1

return output

A.	 What is the value of

thing([1, 2, 3, 100, 4, 9, 500, 51, -2, 57, 103, 1, 1, 1, 1, -10, 207, 3, 1])

[1, 3, 6, 106, 4, 13, 513, 51, 49, 106]

It’s important to understand the loop structure of the Python program: It goes through (at
most) three times, and adds up the elements of the input list, generating a partial sum as
output on each step, and terminating the inner loop when the sum becomes greater than 100.

B.	 Write a single state machine class MySM such that MySM().transduce(inputList) gives the
same result as thing(inputList), if inputList is a list of numbers. Remember to include a
done method, that will cause it to terminate at the same time as thing.

Chapter 4 State Machines	 6.01— Spring 2011— April 25, 2011 167

class MySM(sm.SM):

startState = (0,0)

def getNextValues(self, state, inp):

(x, y) = state

y += inp

if y >= 100:

return ((x + 1, 0), y)

return ((x, y), y)

def done(self, state):

(x, y) = state

return x >= 3

The most important step, conceptually, is deciding what the state of the machine will be.
Looking at the original Python program, we can see that we had to keep track of how many
times we had completed the outer loop, and then what the current partial sum was of the
inner loop.
The getNextValues method first increments the partial sum by the input value, and then
checks to see whether it’s time to reset. If so, it increments the ’loop counter’ (x) component
of the state and resets the partial sum to 0. It’s important to remember that the output of the
getNextValues method is a pair, containing the next state and the output.
The done method just checks to see whether we have finished three whole iterations.

C.	 Recall the definition of sm.Repeat(m, n): Given a terminating state machine m, it returns
a new terminating state machine that will execute the machine m to completion n times, and
then terminate.

Use sm.Repeat and a very simple state machine that you define to create a new state machine
MyNewSM, such that MyNewSM is equivalent to an instance of MySM.

class Sum(sm.SM):

startState = 0

def getNextValues(self, state, inp):

return (state + inp, state + inp)

def done(self, state):

return state > 100

myNewSM = sm.Repeat(Sum(), 3)

4.6.2 Practice problem: Inheritance and State Machines
Recall that we have defined a Python class sm.SM to represent state machines. Here we consider
a special type of state machine, whose states are always integers that start at 0 and increment by
1 on each transition. We can represent this new type of state machines as a Python subclass of
sm.SM called CountingStateMachine.

We wish to use the CountingStateMachine class to define new subclasses that each provide a
single new method getOutput(self, state, inp) which returns just the output for that state

Chapter 4 State Machines 6.01— Spring 2011— April 25, 2011 168

and input; the CountingStateMachine will take care of managing and incrementing the state,
so its subclasses don’t have to worry about it.

Here is an example of a subclass of CountingStateMachine.

class CountMod5(CountingStateMachine):
def getOutput(self, state, inp):

return state % 5

Instances of CountMod5 generate output sequences of the form 0, 1, 2, 3, 4, 0, 1, 2, 3,
4, 0,

Part a. Define the CountingStateMachine class. Since CountingStateMachine is a subclass
of sm.SM, you will have to provide definitions of the startState instance variable and get-
NextValues method, just as we have done for other state machines. You can assume that every
subclass of CountingStateMachine will provide an appropriate getOutput method.

class CountingStateMachine(sm.SM):

def __init__(self):

self.startState = 0

def getNextState(self, state, inp):

return(state + 1, self.getOutput(state, inp))

Part b. Define a subclass of CountingStateMachine called AlternateZeros. Instances of
AlternateZeros should be state machines for which, on even steps, the output is the same as
the input, and on odd steps, the output is 0. That is, given inputs, i0, i1, i2, i3, . . ., they generate
outputs, i0, 0, i2, 0,

class AlternateZeros(CountingStateMachine):
def getOutput(self, state, inp):

if not state % 2:
return inp

return 0

steer left

steer left

straight ahead?

steer right

steer right

steer right

straight ahead?

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 169

Chapter 5
Signals and Systems

Imagine that you are asked to design a system to steer a car straight down the middle of a lane.
It seems easy, right? You can figure out some way to sense the position of the car within its lane.
Then, if the car is right of center, turn the steering wheel to the left. As the car moves so that it
is less to the right, turn the steering wheel less to the left. If it is left of center, turn the steering
wheel to the right. This sort of proportional controller works well for many applications – but not
for steering, as can be seen below.

Figure 5.1 Simple (but poor) algorithm for steering: steer to the left in proportion to how far the
car is to the right, and vice versa.

It is relatively easy to describe better algorithms in terms that humans would understand: e.g.,
Stop turning back and forth! It is not so easy to specify exactly what one might mean by that, in
a way that it could be automated.

In this chapter, we will develop a Signals and Systems framework to facilitate reasoning about the
dynamic behaviors of systems. This framework will enable construction of simple mathematical
models that are useful in both analysis and design of a wide range of systems, including the
car-steering system.

5.1 The signals and systems abstraction
To think about dynamic behaviors of systems, we need to think not only about how to describe
the system but also about how to describe the signals that characterize the inputs and outputs of
the system, as illustrated below.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 170

system
signal

in

signal

out

Figure 5.2 Signals and Systems: the system transforms an input signal into an output signal.

This diagram represents a system with one input and one output. Both the input and output
are signals. A signal is a mathematical function with an independent variable (most often it will
be time for the problems that we will study) and a dependent variable (that depends on the
independent variable). The system is described by the way that it transforms the input signal
into the output signal. In the simplest case, we might imagine that the input signal is the time
sequence of steering-wheel angles (assuming constant speed) and that the output signal is the
time sequence of distances between the center of the car and the midline of the lane.

Representing a system with a single input signal and a single output signal seems too simplistic
for any real application. For example, the car in the steering example (figure 5.1) surely has more
than one possible output signal.

Exercise 5.1. List at least four possible output signals for the car-steering problem.

Possible output signals include

•	 its three-dimensional position (which could be represented by a 3D vector p̂(t) or by three
scalar functions of time),

•	 its angular position,

•	 the rotational speeds of the wheels,

•	 the temperature of the tires, and many other possibilities.

The important point is that the first step in using the signals and systems representation is ab­
straction : we must choose the output(s) that are most relevant to the problem at hand and abstract
away the rest.

To understand the steering of a car, one vital output signal is the lateral position po(t) within the
lane, where po(t) represents the distance (in meters) from the center of the lane. That signal alone

(t) that corresponds to

(t) as a function of time correspond to the oscillations of the car within its

tells us a great deal about how well we are steering. Consider a plot of po

figure 5.1, as follows.

po(t)

t

The oscillations in po

lane. Thus, this signal clearly represents an important failure mode of our car steering system.

Is po(t) the only important output signal from the car-steering system? The answer to this ques­
tion depends on your goals. Analyzing a system with this single output is likely to give important
insights into some systems (e.g., low-speed robotic steering) but not others (e.g., NASCAR). More

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 171

complicated applications may require more complicated models. But all useful models focus on
the most relevant signals and ignore those of lesser significance.34

Throughout this chapter, we will focus on systems with one input signal and one output signal (as
illustrated figure 5.2). When multiple output signals are important for understanding a problem,
we will find that it is possible to generalize the methods and results developed here for single-
input and single-output systems to systems with multiple inputs and outputs.

The signals and systems approach has very broad applicability: it can be applied to mechanical
systems (such as mass-spring systems), electrical systems (such as circuits and radio transmis­
sions), financial systems (such as markets), and biological systems (such as insulin regulation or
population dynamics). The fundamental notion of signals applies no matter what physical sub­
strate supports them: it could be sound or electromagnetic waves or light or water or currency
value or blood sugar levels.

5.1.1 Modularity, primitives, and composition
The car-steering system can be analyzed by thinking of it as the combination of car and steering
sub-systems. The input to the car is the angle of the steering wheel. Let’s call that angle φ(t). The

position in the lane, pi(t) (which is zero since we would like to be in the center of the lane), and

to the car. The car generates po(t), which is subtracted from pi(t) to get e(t) (which is the input
to the steering controller). The triangular component is called a gain or scale of −1: its output
is equal to −1 times its input. More generally, we will use a triangle symbol to indicate that we
are multiplying all the values of the signal by a numerical constant, which is shown inside the
triangle.

The dashed-red box in figure 5.3 illustrates modularity of the signals and systems abstraction.
Three single-input, single-output sub-systems (steering controller, car, and inverter) and an adder
(two inputs and 1 output) are combined to generate a new single-input (pi(t)), single-output
(po(t)) system. By abstraction, we could treat this new system as a primitive (represented by
a single-input single-output box) and combine it with other subsystems to create a new, more

34 There are always unimportant outputs. Think about the number of moving parts in a car. They are not all important
for steering!

output of the car is its position in the lane, po(t), measured as the lateral distance to the center of
the lane.

carφ(t) po(t)

The steering controller turns the steering wheel to compensate for differences between our desired

our actual position in the lane po(t). Let e(t) = pi(t) − po(t). Thus we can think about the
steering controller as having an input e(t) and output φ(t).

steering
controller

e(t) φ(t)

In the composite system (in figure 5.3), the steering controller determines φ(t), which is the input

+ car

−1

steering
controller

φ[n]e[n]
pi[n] po[n]

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 172

+ car

−1

steering
controller

φ(t)e(t)
pi(t) po(t)

Figure 5.3 Modularity of systems

complex, system. A principal goal of this chapter is to develop methods of analysis for the sub­
systems that can be combined to analyze the overall system.

5.1.2 Discrete-time signals and systems
This chapter focuses on signals whose independent variables are discrete (e.g., take on only inte­
ger values). Some such signals are found in nature. For example, the primary structure of DNA
is described by a sequence of base-pairs. However, we are primarily interested in discrete-time
signals, not so much because they are found in nature, but because they are found in computers.
Even though we focus on interactions with the real world, these interactions will primarily oc­
cur at discrete instants of time. For example, the difference between our desired position pi(t)

and our actual position po(t) is an error signal e(t), which is a function of continuous time t.
If the controller only observes this signal at regular sampling intervals T , then its input could
be regarded as a sequence of values x[n] that is indexed by the integer n. The relation between
the discrete-time sequence x[n] (note square brackets) and the continuous signal x(t) (note round
brackets) is given by

x[n] = x(nT) ,

which we call the sampling relation. Sampling converts a signal of continuous domain to one of

discrete domain.

While our primary focus will be on time signals, sampling works equally well in other domains.

For example, images are typically represented as arrays of pixels accessed by integer-valued rows

and columns, rather than as continuous brightness fields, indexed by real-valued spatial coordi­

nates.

If the car-steering problem in figure 5.1 were modeled in discrete time, we could describe the

system with a diagram that is very similar to the continuous-time diagram in figure 5.3. However,

only discrete time instants are considered

and the output position is now only defined at discrete times, as shown below.

Chapter 5 Signals and Systems

po[n]

n

5.1.3 Linear time-invariant systems

6.01— Spring 2011— April 25, 2011 173

We already have a great way of specifying systems that operate on discrete-time signals: a state
machine transduces a discrete-time input signal into a discrete-time output signal. State ma­
chines, as we have defined them, allow us to specify any discrete-time system whose output is
computable from its history of previous inputs.

The representation of systems as state machines allows us to execute a machine on any input
we’d like, in order to see what happens. Execution lets us examine the behavior of the system for
any particular input for any particular finite amount of time, but it does not let us characterize
any general properties of the system or its long-term behavior. Computer programs are such a
powerful specification language that we cannot, in general, predict what a program will do (or
even whether it will ever stop and return a value) without running it. In the rest of this chapter,
we will concentrate on a small but powerful subclass of the whole class of state machines, called
discrete-time linear time-invariant (LTI) systems, which will allow deeper forms of analysis.

In an LTI system:

•	 Inputs and outputs are real numbers;

•	 The state is some fixed number of previous inputs to the system as well as a fixed number of
previous outputs of the system; and

•	 The output is a fixed, linear function of the current input and any of the elements of the state.

In general, each input could be a fixed-length vector of numbers, and each output could also be
a fixed-length vector of numbers; we will restrict our attention to the case where the input is a
single real number and the output is a single real number.

We are particularly interested in LTI systems because they can be analyzed mathematically, in a
way that lets us characterize some properties of their output signal for any possible input signal.
This is a much more powerful kind of insight than can be gained by trying a machine out with
several different inputs.

Another important property of LTI systems is that they are compositional: the cascade, parallel,
and feedback combinations (introduced in section 4.2) of LTI system are themselves LTI systems.

5.2 Discrete-time signals
In this section, we will work through the PCAP system for discrete time signals, by introducing
a primitive and three methods of composition, and the ability to abstract by treating composite
signals as if they themselves were primitive.

A signal is an infinite sequence of sample values at discrete time steps. We will use the following
common notational conventions: A capital letter X stands for the whole input signal and x[n]

stands for the value of signal X at time step n. It is conventional, if there is a single system under
discussion, to use X for the input signal to that system and Y for the output signal.

{

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 174

system
signal

in

signal

out

We will say that systems transduce input signals into output signals.

5.2.1 Unit sample signal
We will work with a single primitive, called the unit sample signal, ∆. It is defined on all positive
and negative integer indices as follows35:

1 if n = 0
δ[n] = .

0 otherwise

0 and 0 otherwise, as shown below:

Our first operation will be scaling, or multiplication by a scalar. A scalar is any real number. The
result of multiplying any signal X by a scalar c is a signal, so that,

if Y = c X then y[n] = c x[n] .· ·

such that:

if Y = RX then y[n] = x[n − 1] .

That is, the resulting signal has the same values as the original signal, but delayed by one step
in time. You can also think of this, graphically, as shifting the signal one step to the R ight. Here
is the unit sample delayed by 1 and by 3 steps. We can describe the second signal as RRR∆, or,
using shorthand, as R3∆.

35 Note that δ is the lowercase version of ∆, both of which are the Greek letter ’delta’.

That is, it has value 1 at index n =

n

δ

1
0

5.2.2 Signal combinators

That is, the resulting signal has a value at every index n that is c times the value of the original
signal at that location. Here are the signals 4∆ and −3.3∆.

n

4 δ
4

0

n

−3.3 δ

−3.3

0

The next operation is the delay operation. The result of delaying a signal X is a new signal RX

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 175

n

Rδ
1

0 n

R3δ
1

0

Finally, we can add two signals together. Addition of signals is accomplished component-wise,
so that

if Y = X1 + X2 then y[n] = x1[n] + x2[n] .

ments in new combinations, showing that our system has true compositionality. In addition, we
= 3∆ + 4R∆ − 2R2∆, and

That is, the value of the composite signal at step n is the sum of the values of the component sig­
nals. Here are some new signals constructed by summing, scaling, and delaying the unit sample.

n

δ +R2δ +R4δ

1
0

n

3δ + 4Rδ − 2R2δ

4

0

Note that, because each of our operations returns a signal, we can use their results again as ele­

can abstract, by naming signals. So, for example, we might define Y

then make a new signal Z = Y + 0.3RY, which would look like this:

n

Z = Y + 0.3RY
5

0

Be sure you understand how the heights of the spikes are determined by the definition of Z.

Exercise 5.2. Draw a picture of samples −1 through 4 of Y − RY.

It is important to remember that, because signals are infinite objects, these combination opera­
tions are abstract mathematical operations. You could never somehow ’make’ a new signal by
calculating its value at every index. It is possible, however, to calculate the value at any particular
index, as it is required.

∑ ∑

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 176

Advancing

If we allow ourselves one more operation, that of ’advancing’ the signal one step (just
like delaying, but in the other direction, written L for left-shift), then any signal can be
composed from the unit sample, using a (possibly infinite) number of these operations.
We can demonstrate this claim by construction: to define a signal V with value vn at index n, for
any set of integer n, we simply set

∞ ∞

V = v0∆ + vnRn∆ + v−nLn∆ ,

n=1 n=1

where Rn and Ln are shorthand for applying R and L, respectively, n times.

If n represents time, then physical systems are always causal : inputs that arrive after time n0

cannot affect the output before time n0. Such systems cannot advance signals: they can be written
without L.

5.2.3 Algebraic properties of operations on signals
Adding and scaling satisfy the familiar algebraic properties of addition and multiplication: ad­
dition is commutative and associative, scaling is commutative (in the sense that it doesn’t matter
whether we pre- or post-multiply) and scaling distributes over addition:

c (X1 + X2) = c X1 + c X2 ,· · ·

which can be verified by defining Y = c (X1 + X2) and Z = c X1 + c X2 and checking that · · ·
y[n] = z[n] for all n:

y[n] = z[n]

c (x1[n] + x2[n]) = (c x1[n]) + (c x2[n])· · ·

which clearly holds based on algebraic properties of arithmetic on real numbers.

In addition, R distributes over addition and scaling, so that:

R(X1 + X2) = RX1 + RX2

R(c X) = c RX . · ·

Exercise 5.3. Verify that R distributes over addition and multiplication by checking that
the appropriate relations hold at some arbitrary step n.

These algebraic relationships mean that we can take any finite expression involving ∆, R, + and ·
and convert it into the form

(ao + a1R1 + a2R2 + . . . + aNRN)∆ .

That is, we can express the entire signal as a polynomial in R, applied to the unit sample.

In our previous example, it means that we can rewrite 3∆ + 4R∆ − 2R2∆ as (3 + 4R − 2R2)∆.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 177

5.2.4 Sinusoidal primitives
We just saw how to construct complicated signals by summing unit sample signals that
are appropriately scaled and shifted. We could similarly start with a family of discretely-
sampled sinusoids as our primitives, where

x[n] = cos(Ωn) .

Here are plots of two primitives in this family:

cos(0.2n) cos(1.0n)

The second plot may seem confusing, but it is just a sparsely sampled sinusoid. Note that signals
constructed from even a single sinusoid have non-zero values defined at an infinity of steps; this
is in contrast to signals constructed from a finite sum of scaled and shifted unit samples.

Exercise 5.4. If x[n] = cos(0.2n), what would be the values of RX at steps −3 and 5?

Here are two sinusoids and their sum, made as follows:

s1[n] = cos(0.2n − π/2)

S2 = R10S1

S3 = S1 + S2

The blue line is the S1, the green line is the same signal, delayed by 10, which is S2, and the red
line is their sum.

1.099

-1.09
0 100

0

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 178

5.3 Feedforward systems
We will start by looking at a subclass of discrete-time LTI system, which are exactly those that can
be described as performing some combination of scaling, delay, and addition operations on the
input signal. We will develop several ways of representing such systems, and see how to combine
them to get more complex systems in this same class.

5.3.1 Representing systems
We can represent systems using operator equations, difference equations, block diagrams, and
Python state machines. Each makes some things clearer and some operations easier. It is impor­
tant to understand how to convert between the different representations.

Operator equation
An operator equation is a description of how signals are related to one another, using the opera­
tions of scaling, delay, and addition on whole signals.

Consider a system that has an input signal X, and whose output signal is X−RX. We can describe
that system using the operator equation

Y = X − RX .

Using the algebraic properties of operators on signals described in section 5.2.3, we can rewrite
this as

Y = (1 − R)X ,

which clearly expresses a relationship between input signal X and output signal Y, whatever X

may be.

Feedforward systems can always be described using an operator equation of the form

Y = ΦX ,

where Φ is a polynomial in R.

Difference Equation
An alternative representation of the relationship between signals is a difference equation. A dif­
ference equation describes a relationship that holds among samples (values at particular times)
of signals. We use an index n in the difference equation to refer to a particular time index, but the
specification of the corresponding system is that the difference equation hold for all values of n.

The operator equation

Y = X − RX .

can be expressed as this equivalent difference equation:

y[n] = x[n] − x[n − 1] .

{

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 179

The operation of delaying a signal can be seen here as referring to a sample of that signal at time
step n − 1.

Difference equations are convenient for step-by-step analysis, letting us compute the value of an
output signal at any time step, given the values of the input signal.

So, if the input signal X is the unit sample signal,

1	 if n = 0
x[n] = δ[n] =	 .

0 otherwise

then using a difference equation, we can compute individual values of the output signal Y:

y[n] = x[n] − x[n − 1]

y[0] = x[0] − x[−1] = 1 − 0 = 1

y[1] = x[1] − x[0] = 0 − 1 = −1

y[2] = x[2] − x[1] = 0 − 0 = 0

y[3] = x[3] − x[2] = 0 − 0 = 0

· · ·

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Block diagrams
Another way of describing a system is by drawing a block diagram, which is made up of com­
ponents, connected by lines with arrows on them. The lines represent signals; all lines that are
connected to one another (not going through a round, triangular, or circular component) represent
the same signal.

The components represent systems. There are three primitive components corresponding to our
operations on signals:

•	 Delay components are drawn as rectangles, labeled Delay, with two lines connected to them,
one with an arrow coming in and one going out. If X is the signal on the line coming into the
delay, then the signal coming out is RX.

•	 Scale (or gain) components are drawn as triangles, labeled with a positive or negative number
c, with two lines connected to them, one with an arrow coming in and one going out. If X is
the signal on the line coming into the gain component, then the signal coming out is c X.·

•	 Adder components are drawn as circles, labeled with +, three lines connected to them, two
with arrows coming in and one going out. If X1 and X2 are the signals on the lines point into
the adder, then the signal coming out is X1 + X2.

The system

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 180

Y = X − RX

can be represented with this block diagram.

Delay−1

+X Y

State machines
Of course, since feedforward LTI systems are a type of state machine, we can make an equivalent
definition using our Python state-machine specification language. So, our system

Y = X − RX

can be specified in Python as a state machine by:

class Diff(sm.SM):

def __init__(self, previousInput):

self.startState = previousInput

def getNextValues(self, state, inp):

return (inp, inp-state)

Here, the state is the value of the previous input. One important thing to notice is that, since
we have to be able to run a state machine and generate outputs, it has to start with a value for its
internal state, which is the input signal’s value at time −1. If we were to run:

Diff(0).transduce([1, 0, 0, 0])

we would get the result

[1, -1, 0, 0]

This same state machine can also be expressed as a combination of primitive state machines (as
defined in sections 4.1.2 and 4.2).

diff = sm.ParallelAdd(sm.Wire(),

sm.Cascade(sm.Gain(-1), sm.R(0)))

Note that sm.R is another name for sm.Delay and that the desired initial output value for the
system appears as the initialization argument to the sm.R machine.

5.3.2 Combinations of systems
To combine LTI systems, we will use the same cascade and parallel-add operations as we had for
state machines.

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 181

Cascade multiplication
When we make a cascade combination of two systems, we let the output of one system be the
input of another. So, if the system M1 has operator equation Y = Φ1X and system M2 has
operator equation Z = Φ2W, and then we compose M1 and M2 in cascade by setting Y = W,
then we have a new system, with input signal X, output signal Z, and operator equation Z =

(Φ2 Φ1)X.·

The product of polynomials is another polynomial, so Φ2 Φ1 is a polynomial in R. Furthermore, ·
because polynomial multiplication is commutative, cascade combination is commutative as well
(as long as the systems are at rest, which means that their initial states are 0).

So, for example,

R(1 − R) X = (1 − R)RX

and these two corresponding block diagrams are equivalent (the algebraic equivalence justifies
the diagram equivalence):

Delay−1

+ DelayX Y

Delay−1

+DelayX Y

Cascade combination, because it results in multiplication, is also associative, which means that
any grouping of cascade operations on systems has the same result.

Exercise 5.5.	 Remembering that the condition on commutativity of cascading is that the
systems start at rest, explain why machines m3 and m4 do not generate the
same output sequence in response to the unit sample signal as input.

m1 = sm.ParallelAdd(sm.Wire(), sm.Cascade(sm.Gain(-1), sm.R(2)))

m2 = sm.R(3)

m3 = sm.Cascade(m1, m2)

m4 = sm.Cascade(m2, m1)

Parallel addition
When we make a parallel addition combination of two systems, the output signal is the sum of
the output signals that would have resulted from the individual systems. So, if the system M1 has
system function Y = Φ1X and system M2 has system function Z = Φ2X, and then we compose
M1 and M2 with parallel addition by setting output W = Y + Z, then we have a new system,
with input signal X, output signal W, and operator equation W = (Φ1 + Φ2)X.

Because addition of polynomials is associative and commutative, then so is parallel addition of
feed-forward linear systems.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 182

Combining cascade and parallel operations
Finally, the distributive law applies for cascade and parallel combination, for systems at rest, in
the same way that it applies for multiplication and addition of polynomials, so that if we have
three systems, with operator equations:

Y = Φ1X

U = Φ2V

W = Φ3Z ,

and we form a cascade combination of the sum of the first two, with the third, then we have a
system describable as:

B = (Φ3 (Φ1 + Φ2))A . ·

We can rewrite this, using the distributive law, as:

B = ((Φ3 Φ1) + (Φ3 Φ2))A . · ·

So, for example,

R(1 − R) = R − R2 ,

and these two corresponding block diagrams are equivalent:

Delay−1

+ DelayX Y

−1

+

Delay Delay

DelayX Y

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 183

Exercise 5.6.	 The first machine in the diagram above can be described, for certain initial
output values as:

m1 = sm.Cascade(sm.ParallelAdd(sm.Wire(),
sm.Cascade(sm.Gain(-1), Delay(2))),

sm.Delay(3))

The second machine can be described as:

m2 = sm.ParallelAdd(sm.Delay(d1),
sm.Cascade(sm.Gain(-1),

sm.Cascade(sm.Delay(d2), sm.Delay(d3))))

Provide values of d1, d2, and d3 that will cause m2 to generate the same
output sequence as m1 in response to the unit sample signal as input.

Here is another example of two equivalent operator equations

(R − R2)(2 − R)X = (1 − R)(2R − R2)X

and these two corresponding block diagrams are equivalent if the systems start at rest:

Delay

Delay Delay Delay−1

2

−1

+ +X Y

Delay

Delay

Delay Delay−1

2

−1

+ +X Y

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 184

Exercise 5.7. Convince yourself that all of these systems are equivalent. One strategy is
to convert them all to operator equation representation.

Delay 2 + Delay 2 +X Y

Delay + Delay 4 +X Y

Delay 4 +

Delay

+X Y

5.4 Feedback Systems
So far, all of our example systems have been feedforward : the dependencies have all flowed from
the input through to the output, with no dependence of an output on previous output values. In
this section, we will extend our representations and analysis to handle the general class of LTI
systems in which the output can depend on any finite number of previous input or output values.

5.4.1 Accumulator example
Consider this block diagram, of an accumulator :

Delay

+X Y

It’s reasonably straightforward to look at this block diagram and see that the associated difference
equation is

y[n] = x[n] + y[n − 1] ,

because the output on any give step is the sum of the the input on that step and the output from
the previous step.

Let’s use the difference equation to understand what the output of this system is when the input
is the unit sample signal. To compute the output at step n, we need to evaluate

y[n] = x[n] + y[n − 1] .

We immediately run up against a question: what is the value of y[n − 1]? The answer clearly
has a profound effect on the output of the system. In our treatment of feedback systems, we will

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 185

generally assume that they start ’at rest’, which means that all values of the inputs and outputs at
steps less than 0 are 0. That assumption lets us fill in the following table:

y[n] = x[n] + y[n − 1]

y[0] = x[0] + y[−1] = 1 + 0 = 1

y[1] = x[1] + y[0] = 0 + 1 = 1

y[2] = x[2] + y[1] = 0 + 1 = 1

· · ·

Here are plots of the input signal X and the output signal Y:

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

This result may be somewhat surprising! In feedforward systems, we saw that the output was
always a finite sum of scaled and delayed versions of the input signal; so that if the input signal
was transient (had a finite number of non-zero samples) then the output signal would be transient
as well. But, in this feedback system, we have a transient input with a persistent (infinitely many
non-zero samples) output.

We can also look at the operator equation for this system. Again, reading it off of the block
diagram, it seems like it should be

Y = X + RY .

It’s a well-formed equation, but it isn’t immediately clear how to use it to determine Y. Using
what we already know about operator algebra, we can rewrite it as:

Y(1 − R) = X ,

which defines Y to be the signal such that the difference between Y and RY is X. But how can we
find that Y?

We will now show that we can think of the accumulator system as being equivalent to another
system, in which the output is the sum of infinitely many feedforward paths, each of which delays
the input by a different, fixed value. This system has an operator equation of the form

Y = (1 + R + R2 + R3 +) X· · ·

and can be represented with a block diagram of the form:

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 186

Delay

Delay Delay

Delay Delay Delay

+

... ...

X Y

These systems are equivalent in the sense that if each is initially at rest, they will produce identical
outputs from the same input. We can see this by taking the original definition and repeatedly
substituting in the definition of Y in for its occurrence on the right hand side:

Y = X + RY

Y = X + R(X + RY)

Y = X + R(X + R(X + RY))

Y = X + R(X + R(X + R(X + RY)))

Y = (1 + R + R2 + R3 + . . .)X

Now, we can informally derive a ’definition’ of the reciprocal of 1 − R (the mathematical details
underlying this are subtle and not presented here),

1
= 1 + R + R2 + R3 + .

1 − R
· · ·

In the following it will help to remind ourselves of the derivation of the formula for the sum of an
infinte geometric series:

S = 1 + x + x 2 + x 3 + · · ·

Sx = x + x 2 + x 3 + x 4 · · ·

Subtracting the second equation from the first we get

S(1 − x) = 1

And so, provided |x| < 1,

1

= 1 + x + x 2 + x 3 +

1 − x
· · ·

Similarly, we can consider the system O, where

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 187

O = 1 + R + R2 + R3 + · · ·

OR = R + R2 + R3 + · · ·

So

O(1 − R) = 1

And so,

1
= 1 + R + R2 + R3 +

1 − R
· · ·

Exercise 5.8. Check this derivation by showing that

(1 + R + R2 + R3 +)(1 − R) = 1· · ·

So, we can rewrite the operator equation for the accumulator as

1
Y = X .

1 − R

We don’t have an intuitive way to interpret this relationship between X and Y yet, but we will
spend most of the rest of this chapter on developing intuition and analysis for systems with feed­
back.

5.4.2 General form of LTI systems
We can now treat the general case of LTI systems, including feedback. In general, LTI systems can
be described by difference equations of the form:

y[n] = c0 y[n − 1] + c1 y[n − 2] + . . . + ck−1 y[n − k]

+ d0 x[n] + d1 x[n − 1] + . . . + dj x[n − j] .

The state of this system consists of the k previous output values and j previous input values.
The output y[n] is a linear combination of the k previous output values, y[n − 1], . . . , y[n − k], j
previous input values, x[n − 1], . . . , x[n − j], and the current input, x[n].

This class of state machines can be represented, in generality, in Python, using the LTISM class.
The state is a tuple, containing a list of the j previous input values and a list of the k previous
output values.

class LTISM (sm.SM):
def __init__(self, dCoeffs, cCoeffs):

j = len(dCoeffs) - 1

k = len(cCoeffs)

self.cCoeffs = cCoeffs

self.dCoeffs = dCoeffs

self.startState = ([0.0]*j, [0.0]*k)

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 188

def getNextValues(self, state, input):

(inputs, outputs) = state

inputs = [input] + inputs

currentOutput =	 util.dotProd(outputs, self.cCoeffs) + \
util.dotProd(inputs, self.dCoeffs)

return ((inputs[:-1], ([currentOutput] + outputs)[:-1]),
currentOutput)

The util.dotProd method takes two equal-length lists of numbers and returns the sum of their
elementwise products (the dot-product of the two vectors). To keep this code easy to read, we
do not handle correctly the case where dCoeffs is empty, though it is handled properly in our
library implementation.

5.4.3 System functions
Now, we are going to engage in a shift of perspective. We started by defining a new signal Y in
terms of an old signal X, much as we might, in algebra, define y = x + 6. Sometimes, however,
we want to speak of the relationship between x and y in the general case, without a specific x or
y in mind. We do this by defining a function f: f(x) = x + 6. We can do the same thing with LTI
systems, by defining system functions.

If we take the general form of an LTI system given in the previous section and write it as an
operator equation, we have

Y = c0 RY + c1 R
2Y + . . . + ck−1 R

kY + d0 X + d1 RX + . . . + dj R
jX

= (c0 R + c1 R
2 + . . . + ck−1 R

k) Y + (d0 + d1 R + . . . + dj R
j) X .

We can rewrite this as

(1 − c0 R − c1 R
2 − . . . − ck−1 R

k) Y = (d0 + d1 R + . . . + dj R
j) X ,

so

Y d0 + d1R + d2R2 + d3R3 +
=	

· · ·
,

X 1 − c0R − c1R2 − c2R3 − · · ·

which has the form

Y N(R)
= ,

X D(R)

where N(R), the numerator, is a polynomial in R, and D(R), the denominator, is also a polynomial
in R. We will refer to Y/X as the system function : it characterizes the operation of a system,
independent of the particular input and output signals involved.

The system function is most typically written in the form

Y b0 + b1R + b2R2 + b3R3 +
=	

· · ·
,

X a0 + a1R + a2R2 + a3R3 + · · ·

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 189

where ci = −ai+1/a0 and di = bi/a0. It can be completely characterized by the coefficients
of the denominator polynomial, ai, and the coefficients of the numerator polynomial, bi. It is
always possible to rewrite this in a form in which a0 = 1.

Feedforward systems have no dependence on previous values of Y, so they have D(R) = 1.
Feedback systems have persistent behavior, which is determined by D(R). We will study this
dependence in detail in section 5.5.

5.4.4 Primitive systems
Just as we had a PCAP system for signals, we have one for LTI system, in terms of system func­
tions, as well. We can specify system functions for each of our system primitives.

A gain element is governed by operator equation Y = kX, for constant k, so its system function is

Y
H = = k .

X

A delay element is governed by operator equation Y = RX, so its system function is

Y
H = = R .

X

5.4.5 Combining system functions
We have three basic composition operations: sum, cascade, and feedback. This PCAP system, as
our previous ones have been, is compositional, in the sense that whenever we make a new system
function out of existing ones, it is a system function in its own right, which can be an element in
further compositions.

Addition
The system function of the sum of two systems is the sum of their system functions. So, given two
systems with system functions H1 and H2, connected like this:

H1

H2

+X Y

and letting

Y1 = H1X and Y2 = H2X ,

we have

Y	= Y1 + Y2

= H1X + H2X

= (H1 + H2)X

= HX ,

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 190

where H = H1 + H2.

Cascade
The system function of the cascade of two systems is the product of their system functions. So,
given two systems with system functions H1 and H2, connected like this:

H1 H2X Y

and letting

W = H1X and Y = H2W ,

we have

Y = H2W

= H2H1X

= HX ,

where H = H2H1. And note that, as was the case with purely feedforward systems, cascade
combination is still commutative, so it doesn’t matter whether H1 or H2 comes first in the cas­
cade. This surprising fact holds because we are only considering LTI systems starting at rest ; for
more general classes of systems, such as the general class of state machines we have worked with
before, the ordering of a cascade does matter.

Feedback
There are several ways of connecting systems in feedback. Here we study a particular case of
negative feedback combination, which results in a classical formula called Black’s formula.

It is really

Consider two systems connected like this

H1

H2

+X Y
−

and pay careful attention to the negative sign on the feedback input to the addition.
just shorthand; the negative sign could be replaced with a gain component with value −1. This
negative feedback arrangement is frequently used to model a case in which X is a desired value
for some signal and Y is its actual value; thus the input to H1 is the difference between the desired
an actual values, often called an error signal. We can simply write down the operator equation
governing this system and use standard algebraic operations to determine the system function:

+

Rp0

X Y

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 191

Y = H1(X − H2Y)

Y + H1H2Y = H1X

Y(1 + H1H2) = H1X

H1

Y = X

1 + H1H2

Y = HX ,

where

H1
H = .

1 + H1H2

Armed with this set of primitives and composition methods, we can specify a large class of ma­
chines. Ultimately, we will want to construct systems with multiple inputs and outputs; such
systems are specified with a matrix of basic system functions, describing how each output de­
pends on each input.

5.5 Predicting system behavior
We have seen how to construct complex discrete-time LTI systems; in this section we will see
how we can use properties of the system function to predict how the system will behave, in the
long term, and for any input. We will start by analyzing simple systems and then move to more
complex ones.

We can provide a general characterization of the long-term behavior of the output, as increasing or
decreasing, with constant or alternating sign, for any finite input to the system. We will begin by
studying the unit-sample response of systems, and then generalize to more general input signals;
similarly, we will begin by studying simple systems and generalize to more complex ones.

5.5.1 First-order systems
Systems that only have forward connections can only have a finite response; that means that if
we put in a unit sample (or other signal with only a finite number of non-zero samples) then the
output signal will only have a finite number of non-zero samples.

Systems with feedback have a surprisingly different character. Finite inputs can result in per­
sistent response ; that is, in output signals with infinitely many non-zero samples. Furthermore,
the qualitative long-term behavior of this output is generally independent of the particular input
given to the system, for any finite input. In this section, we will consider the class of first-order
systems, in which the denominator of the system function is a first-order polynomial (that is, it
only involves R, but not R2 or other higher powers of R.)

Let’s consider this very simple system

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 192

for which we can write an operator equation

Y = X + p0RY

(1 − p0R)Y = X

X

Y =

1 − p0R

and derive a system function

Y 1
H = = .

X 1 − p0R

Recall the infinite series representation of this system function (derived in section 5.4.1):

1
= 1 + p0R + p0

2R2 + p0
3R3 + p0

4R4 + .
1 − p0R

· · ·

We can make intuitive sense of this by considering how the signal flows through the system. On
each step, the output of the system is being fed back into the input. Consider the simple case
where the input is the unit sample (X = ∆). Then, after step 0, when the input is 1, there is no
further input, and the system continues to respond.

In this table, we see that the whole output signal is a sum of scaled and delayed copies of the
input signal; the bottom row of figures shows the first three terms in the infinite sum of signals,
for the case where p0 = 0.9.

Delay

+

p0

X Y

Delay

+

p0

X Y

Delay

+

p0

X Y

Y
X = 1 + · · · Y

X = 1 + p0R + · · · Y
X = 1 + p0R + p2

0R2 + · · ·

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

∆ 0.9R∆ 0.92R2∆

If traversing the cycle decreases or increases the magnitude of the signal, then the sample values
will decay or grow, respectively, as time increases.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 193

Delay

+

0.5

X Y

Delay

+

1.2

X Y

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

For the first system, the unit sample response is y[n] = (0.5)n; for the second, it’s y[n] = (1.2)n .

These system responses can be characterized by a single number, called the pole, which is the base
of the geometric sequence. The value of the pole, p0, determines the nature and rate of growth.

• If p0 < −1, the magnitude increases to infinity and the sign alternates.

• If −1 < p0 < 0, the magnitude decreases and the sign alternates.

• If 0 < p0 < 1, the magnitude decreases monotonically.

• If p0 > 1, the magnitude increases monotonically to infinity.

y[n] y[n] y[n] y[n]

−1 0 1
z

5.5.2 Second-order systems
We will call these persistent long-term behaviors of a signal (and, hence, of the system that gen­
erates such signals) modes. For a fixed p0, the first-order system only exhibited one mode (but
different values of p0 resulted in very different modes). As we build more complex systems, they
will have multiple modes, which manifest as more complex behavior. Second-order systems are
characterized by a system function whose denominator polynomial is second order; they will
generally exhibit two modes.

Consider this system

6.01— Spring 2011— April 25, 2011 194Chapter 5 Signals and Systems

R

R

1.6

−0.63

+X Y

We can describe it with the operator equation

Y = 1.6RY − 0.63R2Y + X ,

so the system function is

1
H = .

1 − 1.6R + 0.63R2

Here is its response to a unit sample signal:

We can try to understand its behavior by decomposing it in different ways. First, let’s see if we
can see it as a cascade of two systems. To do so, we need to find H1 and H2 such that H1H2 = H.
We can do that by factoring H to get

1 1
H1 =

1 − 0.7R
and H2 =

1 − 0.9R
.

So, we have two equivalent version of this system, describable as cascades of two systems, one
with p0 = 0.9 and one with p0 = 0.7:

+

0.9 R

+

0.7 R

X Y
Y2

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 195

+

0.7 R

+

0.9 R

X Y
Y1

This decomposition is interesting, but it does not yet let us understand the behavior of the system
as the combination of the behaviors of two subsystems.

5.5.2.1 Additive decomposition
Another way to try to decompose the system is as the sum of two simpler systems. In this case,
we seek H1 and H2 such that H1 + H2 = H. We can do a partial fraction decomposition (don’t
worry if you don’t remember the process for doing this...we won’t need to solve problems like this
in detail). We start by factoring, as above, and then figure out how to decompose into additive
terms:

1
H =

1 − 1.6R + 0.63R2

1

=

(1 − 0.9R)(1 − 0.7R)

A B

= +

1 − 0.9R 1 − 0.7R

= H1 + H2 .

To find values for A and B, we start with

1 A B

= + ,

(1 − 0.9R)(1 − 0.7R) 1 − 0.9R 1 − 0.7R

multiply through by 1 − 1.6R + 0.63R2 to get

1 = A(1 − 0.7R) + B(1 − 0.9R) ,

and collect like terms:

1 = (A + B) − (0.7A + 0.9B)R .

Equating the terms that involve equal powers of R (including constants as terms that involve R0),
we have:

1 = A + B

0 = 0.7A + 0.9B .

Solving, we find A = 4.5 and B = −3.5, so

Y 4.5 −3.5

= + ,

X 1 − 0.9R 1 − 0.7R

where

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 196

4.5 −3.5
H1 =

1 − 0.9R
and H2 =

1 − 0.7R
.

Exercise 5.9. Verify that H1 + H2 = H.

Here is (yet another) equivalent block diagram for this system, highlighting its decomposition

into a sum:

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2

We can understand this by looking at the responses of H1 and of H2 to the unit sample, and then
summing them to recover the response of H to the unit sample. In the next figure, the blue stem
plot is the overall signal, which is the sum of the green and red signals, which correspond to the
top and bottom parts of the diagram, respectively.

In this case, both of the poles (0.9 and 0.7) are less than 1, so the magnitude of the responses
they generate decreases monotonically; their sum does not behave monotonically, but there is a
time step at which the dominant pole completely dominates the other one, and the convergence
is monotonic after that.

If, instead, we had a system with system function

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 197

Y 1 20
H = = + ,

X 1 − 1.1R 1 − 0.9R

what would the unit-sample response be? The first mode (first term of the sum) has pole 1.1,
which means it will generate monotonically increasing output values. The second mode has pole
0.9, and will decrease monotonically. The plot below illustrates the sum of these two components:

The red points correspond to the output from the mode with pole 1.1; the green points correspond
to the output from the mode with pole 0.9; and the blue stem plot shows the sum.

Here is a plot of the output of the system described by

Y 21.1R + 21
= .

X −0.99R2 + 0.2R + 1

It has poles 0.9 and −1.1.

The green dots are generated by the component with pole 0.9, the red dots are generated by the
component with pole −1.1 and the blue dots are generated by the sum.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 198

In these examples, as in the general case, the long-term unit-sample response of the entire
system is governed by the unit-sample response of the mode whose pole has the larger magni­
tude. In the long run, the rate of growth of the exponential with the largest exponent will always
dominate.

5.5.2.2 Complex poles
Consider a system described by the operator equation:

Y = 2X + 2RX − 2RY − 4R2Y .

It has system function

Y 2 + 2R
= . (5.1)

X 1 + 2R + 4R2

But now, if we attempt to perform an additive decomposition on it, we find that the denominator
cannot be factored to find real poles. Instead, we find that

Y 2 + 2R
=

X (1 − (−1 +
√

−3)R)(1 − (−1 −
√

−3)R)

2 + 2R

.≈

(1 − (−1 + 1.732j)R)(1 − (−1 − 1.732j)R)

So, the poles are −1+1.732j and −1−1.732j. Note that we are using j to signal the imaginary part
of a complex number.36 What does that mean about the behavior of our system? Are the outputs
real or complex? Do the output values grow or shrink with time?

Difference equations that represent physical systems have real-valued coefficients. For instance,
a bank account with interest ρ might be described with difference equation

y[n] = (1 + ρ)y[n − 1] + x[n] .

The position of a robot moving toward a wall might be described with difference equation:

do[n] = do[n − 1] + KTdo[n − 2] − KTdi[n − 1] .

Difference equations with real-valued coefficients generate real-valued outputs from real-valued
inputs. But, like the difference equation

y[n] = 2x[n] + 2x[n − 1] − 2y[n − 1] − 4y[n − 1] ,

corresponding to system function 5.1, they might still have complex poles.

Polar representation of complex numbers

Sometimes it’s easier to think about a complex number a + bj instead as rejΩ, where

36 We use j instead of i because, to an electrical engineer, i stands for current, and can’t be re-used!

√

√

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 199

a = r cos Ω

b = r sinΩ

so that the magnitude, r, sometimes written as |a + bj|, is defined as

r = a2 + b2

and the angle, Ω, is defined as

Ω = tan−1(b, a) .

So, if we think of (a, b) as a point in the complex plane, then (r, Ω) is its representation in polar
coordinates.

a
b

r

Ω Re

Im

This representation is justified by Euler’s equation

exj = cos x + j sin x ,

which can be directly derived from series expansions of ez , sin z and cos z. To see that this is
reasonable, let’s take our number, represent it as a complex exponential, and then apply Euler’s
equation:

a + bj = rejΩ

= r(cosΩ + j sinΩ)

= a2 + b2(cos(tan−1(b, a)) + j sin(tan−1(b, a))) √ a b
= a2 + b2(√

a2 + b2
+ j√

a2 + b2
)

= a + bj

Why should we bother with this change of representation? There are some operations on complex
numbers that are much more straightforwardly done in the exponential representation. In partic­
ular, let’s consider raising a complex number to a power. In the Cartesian representation, we get
complex trigonometric polynomials. In the exponential representation, we get, in the quadratic
case, (

jΩ
)2 jΩ jΩre = re re

2 j2Ω= r e

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 200

More generally, we have that (
jΩ

)n n jnΩre = r e ,

which is much tidier. This is an instance of an important trick in math and engineering: changing
representations. We will often find that representing something in a different way will allow
us to do some kinds of manipulations more easily. This is why we use diagrams, difference
equations, operator equations and system functions all to describe LTI systems. There is no one
best representation; each has advantages under some circumstances (and disadvantages under
others).

Complex modes
Now, we’re equipped to understand how complex poles of a system generate behavior: they
produce complex-valued modes. Remember that we can characterize the behavior of a mode as

1
= 1 + pR + p 2R2 + + p nRn + .

1 − pR
· · · · · ·

For a complex pole p = rejΩ, pn = rnejΩn. So

1
= 1 + rejΩR + r 2 ej2ΩR2 +

1 − rejΩR
· · ·

What happens as n tends to infinity when p is complex? Think of pn as a point in the complex
plane with coordinates (rn, Ωn). The radius, rn, will grow or shrink depending on the mode’s
magnitude, r. And the angle, Ωn, will simply rotate, but will not affect the magnitude of the
resulting value. Note that each new point in the sequence pn will be rotated by Ω from the
previous one. We will say that the period of the output signal is 2π/Ω; that is the number of
samples required to move through 2π radians (although this need not actually be an integer).

The sequence spirals around the origin of the complex plane. Here is a case for r = 0.85, Ω = π/4,
that spirals inward, rotating π/4 radians on each step:

-0.4 -0.2 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

p = 0.85ejπ/4 ≈ 0.601 + 0.601j

Here, for example, are plots of two other complex modes, with different magnitudes and rates of
oscillation. In all cases, we are plotting the unit-sample response, so the first element in the series

√
√

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 201

is the real value 1. The first signal clearly converges in magnitude to 0; the second one diverges
(look carefully at the scales).

-0.2 0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

-5000 5000 10 000

-5000

5000

10 000

p = 0.85ejπ/8 ≈ 0.785 + 0.325j p = 1.1ejπ/8 ≈ 1.016 + 0.421j

If complex modes occurred all by themselves, then our signals would have complex numbers in
them. But isolated complex pole can result only from a difference equation with complex-valued
coefficients. For example, to end up with this system function

Y 1
= ,

X 1 − rejΩR

we would need to have this difference equation, which has a complex coefficient.

y[n] − rejΩy[n − 1] = x[n]

But, we have difference equations with real parameters, so we can express the value of every
sample of the output signal as a linear combination of inputs and previous values with real coef­
ficients, so we know the output signal is real-valued at all samples. The reason this all works out
is that, for polynomials with real coefficients, the complex poles always come in conjugate pairs :
that is, pairs of complex numbers p = a + bj and p∗ = a − bj. (See section 5.5.4 for a proof of this
fact.) In the polar representation, the conjugate pair becomes

a ± bj = a2 + b2 ej tan−1(±b,a)

2 + b2 e±j tan−1(b,a)= a

where the only difference is in the sign of the angular part.

If we look at a second-order system with complex-conjugate poles, the resulting polynomial has
real-valued coefficients. To see this, consider a system with poles rejΩ and re−jΩ, so that

Y 1
=

X (1 − rejΩR)(1 − re−jΩR)

Let’s slowly multiply out the denominator:

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 202

(1 − rejΩR)(1 − re −jΩR) = 1 − rejΩR − re −jΩR + r 2 ejΩe −jΩR2

= 1 − r(ejΩ + e −jΩ)R + r 2 ejΩ−jΩR2

Using the definition of the complex exponential ejx = cos x + j sin x,

= 1 − r(cosΩ + j sinΩ + cos(−Ω) + j sin(−Ω))R + r 2R2

Using trigonometric identities sin −x = − sin x and cos −x = cos x,

= 1 − r(cosΩ + j sinΩ + cosΩ − j sinΩ)R + r 2R2

= 1 − 2r cosΩR + r 2R2

So,

Y 1
= .

2R2X 1 − 2r cosΩR + r

This is pretty cool! All of the imaginary parts cancel, and we are left with a system function with
only real coefficients, which corresponds to the difference equation

y[n] = x[n] + 2r cosΩ y[n − 1] − r 2 y[n − 2] .

Additive decomposition with complex poles

You can skip this section if you want to.
To really understand these complex modes and how they combine to generate the output
signal, we need to do an additive decomposition. That means doing a partial fraction
expansion of

Y 1
= .

X (1 − rejΩR)(1 − re−jΩR)

It’s a little trickier than before, because we have complex numbers, but the method is the same.
The end result is that we can decompose this system additively to get

Y 2
1(1 − j cot Ω) 2

1(1 + j cot Ω)
= + .

X 1 − rejΩR 1 − re−jΩR

What is the unit-sample response of each of these modes? What is the unit-sample response of
their sum? This might be making you nervous...it’s hard to see how everything is going to come
out to be real in the end.

But, let’s examine the response of the additive decomposition; it’s the sum of the outputs of the
component systems. So, if x[n] = δ[n],

y[n] =
1
(1 − j cot Ω)r n ejnΩ +

1
(1 + j cot Ω)r n e −jnΩ

2 2

= r n(cos nΩ + cot Ω sinnΩ) ,

which is entirely real.

√ √
√ √

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 203

The figures below show the modes for a system with poles 0.85ejπ/8 and 0.85e−jπ/8: the blue
series starts at 1

2(1 − j cot(π/8)) and traces out the unit sample response of the first component;
the second red series starts at 1

2(1 + j cot(π/8)) and traces out the unit sample response of the
second component.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Note, in the third figure, that the imaginary parts of the contributions of each of the modes cancel
out, and that real parts are equal. Thus, the real part of the output is going to be twice the real
part of these elements. The figure below shows the unit sample response of the entire system.

In the formula below,

y[n] = r n(cos nΩ + cot Ω sinnΩ) ,

we know that

− 1 + cot2 Ω 6 cos nΩ + cot Ω sinnΩ 6 1 + cot2 Ω ,

so

− 1 + cot2 Ω r n 6 y[n] 6 1 + cot2 Ω r n

1 1
− r n 6 y[n] 6 r n .

sinΩ sinΩ

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 204

Just for fun, here is a three-dimensional plot of a single mode of a system with pole 0.98ejπ/20.
These values were chosen so that it would shrink slowly and also rotate slowly around the com­
plex plane. The first figure shows n growing upward with the complex plane oriented horizon­
tally; the second shows a view looking down onto the complex plane; the third shows a view that
projects along the imaginary axis.

-1
0

1
2

re

-2

0

2

im

0

50

100

n

-1 0 1 2

re

-2

0

2

im

050100n

-1012

re

-202 im

0

50

100

n

Importance of magnitude and period
Both r and Ω tells us something very useful about the way in which the system behaves. In
the previous section, we derived an expression for the samples of the unit sample response for a
system with a pair of complex poles. It has the form

y[n] = r n(cos nΩ + αsin nΩ) ,

where α is a constant. We know that (cos nΩ +αsin nΩ) cannot possibly be less than −
√

1 + α2

or greater than
√

1 + α2.

These bounds provide an envelope that constrains where the values of the signal can be as a
function of time, and help us understand the rate of growth or decay of the signal, as shown
below. The red and green curves are ±

√
1 + α2rn, for a system where r = 0.85, Ω = π/8, and

α = 2.414.

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 205

The value of r governs the rate of exponential decrease. The value of Ω governs the rate of
oscillation of the curve. It will take 2π/Ω (the period of the oscillation) samples to go from peak to
peak of the oscillation.37 In our example, Ω = π/8 so the period is 16; you should be able to count
16 samples from peak to peak.

5.5.2.3 Poles and behavior: summary
In a second-order system, if we let p0 be the pole with the largest magnitude, then there is a time
step at which the behavior of the dominant pole begins to dominate; after that time step

• If p0 is real and
• p0 < −1, the magnitude increases to infinity and the sign alternates.
• −1 < p0 < 0, the magnitude decreases and the sign alternates.
• 0 < p0 < 1, the magnitude decreases monotonically.
• p0 > 1, the magnitude increases monotonically to infinity.

• If p0 is complex
• and |p0| < 1, the magnitude decreases monotonically.
• and |p0| > 1, the magnitude increases monotonically to infinity.

• If p0 is complex and Ω is its angle, then the signal will be periodic, with period 2π/Ω.

As we have seen in our examples, when we add multiple modes, it is the mode with the largest
pole that governs the long-term behavior.

5.5.3 Higher-order systems
Recall that we can describe any system in terms of a system function that is the ratio of two
polynomials in R (and assuming a0 = 1):

37	 We are being informal here, in two ways. First, the signal does not technically have a period, because unless r = 1, it
doesn’t return to the same point. Second, unless r = 1, then distance from peak to peak is not exactly 2π/Ω, however,
for most signals, it will give a good basis for estimating Ω.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 206

Y b0 + b1R + b2R2 + b3R3 +
=

· · ·
X 1 + a1R + a2R2 + a3R3 + · · ·

Regrouping terms, we can write this as the operator equation:

Y = (b0 + b1R + b2R2 + b3R3 +) X − (a1R + a2R2 + a3R3 +) Y· · · · · ·

and construct an equivalent block diagram:

Returning to the general polynomial ratio

Y
=

X

R

R

R

R

R

R

−a1

−a2

b0

b1

b2

+ +

· · · · · ·

X Y

b0 + b1R + b2R2 + b3R3 + · · ·
1 + a1R + a2R2 + a3R3 + · · ·

We can factor the denominator of an nth-order polynomial into n factors, and then perform a
partial fraction expansion, to turn it into the form of a sum of terms. We won’t go over the details
here (there are nice tutorials online), but it comes out in the form:

Y C0 C1 C2
= + + + + D0 + D1R + D2R2 +

X 1 − p0R 1 − p1R 1 − p2R
· · · · · ·

where the Ck and Dk are constants defined in terms of the ai and bj from the original polynomial
ratio. It’s actually a little bit trickier than this: if there are complex poles, then for each conjugate
pair of complex poles, we would put in a second-order system with real coefficients that expresses
the contribution of the sum of the complex modes.

The constant term D0 and the terms with Rk in the numerator occur if the numerator has equal or
higher order than the denominator. They do not involve feedback and don’t affect the long-term

nbehavior of the system. One mode of the form pi arises from each factor of the denominator. This
modal decomposition leads us to an alternative block diagram:

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 207

+
p0 R

C0 +

C1

Rp1

+ +

D0

D1 R

+

+

· · ·
· · ·

· · · · · ·

X Y
Y1

Y2

We can fairly easily observe that the behavior is going to be the sum of the behaviors of the
individual modes, and that, as in the second-order case, the mode whose pole has the largest
magnitude will govern the qualitative long-term nature of the behavior of the system in response
to a unit-sample input.

5.5.4 Finding poles
In general, we will find that if the denominator of the system function H is a kth order polynomial,
then it can be factored into the form (1−p0R)(1−p1R) . . . (1−pk−1R). We will call the pi values
the poles of the system. The entire persistent output of the system can be expressed as a scaled
sum of the signals arising from each of these individual poles.

We’re doing something interesting here! We are using the PCAP system backwards for analysis.
We have a complex thing that is hard to understand monolithically, so we are taking it apart into
simpler pieces that we do understand.

It might seem like factoring polynomials in this way is tricky, but there is a straightforward way
to find the poles of a system given its denominator polynomial in R.

We’ll start with an example. Assume the denominator is 12R2 − 7R + 1. If we play a quick trick,
and introduce a new variable z = 1/R, then our denominator becomes

12 7

− + 1 .

2z z

We’d like to find the roots of this polynomial, which, if you multiply through by z2, is equivalent
to finding the roots of this poyinomial:

12 − 7z + z 2 = 0 .

The roots are 3 and 4. If we go back to our original polynomial in R, we can see that:

12R2 − 7R + 1 = (1 − 4R)(1 − 3R) .

so that our poles are 4 and 3. So, remember, the poles are not the roots of the polynomial in R, but
are the roots of the polynomial in the reciprocal of R.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 208

The roots of a polynomial can be a combination of real and complex numbers, with the require­
ment that if a complex number p is a root, then so is its complex conjugate, p∗.

Pole-Zero cancellation
For some systems, we may find that it is possible to cancel matching factors from the numerator
and denominator of the system function. If the factors represent poles that are not at zero, then
although it may be theoretically supportable to cancel them, it is unlikely that they would match
exactly in a real system. If we were to cancel them in that case, we might end up with a system
model that was a particularly poor match for reality.38

So, we will only consider canceling poles and zeros at zero. In this example:

R
H =

R − 1.6R2 + 0.63R3

we can cancel R, getting

1
H =

1 − 1.6R + 0.63R2

Now, we find the poles by finding the roots of the equation

z 2 − 1.6z + 0.63 = 0

Repeated roots

In some cases, the equation in z will have repeated roots. For example, z2 − z + 0.25, which has
two roots at 0.5. In this case, the system has a repeated pole; it is still possible to perform an
additive decomposition, but it is somewhat trickier. Ultimately, however, it is still the magnitude
of the largest root that governs the long-term convergence properties of the system.

5.5.5 Superposition
The principle of superposition states that the response of a LTI system to a sum of input signals is
the sum of the responses of that system to the components of the input. So, given a system with
system function H, and input X = X1 + X2,

Y = HX = H(X1 + X2) = HX1 + HX2

So, although we have been concentrating on the unit sample response of systems, we can see that,
to find the response of a system to any finite signal, we must simply sum the responses to each
of the components of that signal; and those responses will simply be scaled, delayed copies of the
response to the unit sample.

If Φ is a polynomial in R and X = Φ∆, then we can use what we know about the algebra of
polynomials in R (remembering that H is a ratio of polynomials in R) to determine that

Y = HX = H(Φ∆) = Φ(H∆)

38 Don’t worry too much if this doesn’t make sense to you...take 6.003 to learn more.

{

∑
∑

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 209

So, for example, if X = (−3R2+20R4)∆, then Y = HX = H(−3R2+20R4)∆ = (−3R2+20R4)H∆.
From this equation, it is easy to see that once we understand the unit-sample response of a system,
we can see how it will respond to any finite input.

We might be interested in understanding how a system H responds to a step input signal. Let’s
just consider the basic step signal, U, defined as

1 if n > 0
u[n] = .

0 otherwise

We can express U as an infinite sum of increasingly delayed unit-sample signals:

U = ∆ + R∆ + R2∆ + R3∆ + · · ·

= (1 + R + R2 + R3 +)∆ . · · ·

The response of a system to U will therefore be an infinite sum of unit-sample responses. Let
Z = H∆ be the unit-sample response of H. Then

HU = H(1 + R + R2 + R3 +)∆· · ·

= (1 + R + R2 + R3 +)H∆· · ·

= (1 + R + R2 + R3 +)Z· · ·

Let’s consider the case where H is a first-order system with a pole at p. Then,

z[n] = p n

If Y = HU, then

y[n] = z[n] + z[n − 1] + z[n − 2] + + z[0]· · ·
n

= z[k]

k=0

n
k = p

k=0

It’s clear that, if |p| >= 1 then y[n] will grow without bound; but if 0 < p < 1 then, as n goes to
infinity, y[n] will converge to 1/(1 − p).

We won’t study this in any further detail, but it’s useful to understand that the basis of our analy­
sis of systems applies very broadly across LTI systems and inputs.

5.6 Designing systems
Will eventually include a discussion of root-locus plots.

For now, see section 5.8.3 for a discussion of picking k for the wall finding robot.

5.7 Summary of system behavior
Here is some terminology that will help us characterize the long-term behavior of systems.

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 210

•	 A signal is transient if it has finitely many non-zero samples.
•	 Otherwise, it is persistent.
•	 A signal is bounded if there is exist upper and lower bound values such that the samples of

the signal never exceed those bounds; item otherwise it is unbounded.

Now, using those terms, here is what we can say about system behavior.

•	 A transient input to an acyclic (feed-forward) system results in a transient output.
•	 A transient input to a cyclic (feed-back) system results in a persistent output.
•	 The poles of a system are the roots of the denominator polynomial of the system function in

1/R.
•	 The dominant pole is the pole with the largest magnitude.
•	 If the dominant pole has magnitude > 1, then in response to a bounded input, the output

signal will be unbounded.
•	 If the dominant pole has magnitude < 1, then in response to a bounded input, the output

signal will be bounded; in response to a transient input, the output signal will converge to 0.
•	 If the dominant pole has magnitude 1, then in response to a bounded input, the output signal

will be bounded; in response to a transient input, it will converge to some constant value.
•	 If the dominant pole is real and positive, then in response to a transient input, the signal will,

after finitely many steps, begin to increase or decrease monotonically.
•	 If the dominant pole is real and negative, then in response to a transient input, the signal will,

after finitely many steps, begin to alternate signs.
•	 If the dominant pole is complex, then in response to a transient input, the signal will, after

finitely many steps, begin to be periodic, with a period of 2π/Ω, where Ω is the ’angle’ of the
pole.

5.8 Worked Examples

5.8.1 Specifying difference equations
Here are some examples of LTI systems and the way they would be described as difference equa­
tions. It’s useful to pay careful attention to the specification of the coefficients. As a reminder,
here’s the general form.

y[n] = c0 y[n − 1] + c1 y[n − 2] + . . . + ck−1 y[n − k]

+ d0 x[n] + d1 x[n − 1] + . . . + dj x[n − j]

•	 Output at step n is 3 times the input at step n:

y[n] = 3x[n]

dCoeffs: 3, cCoeffs: none
•	 Output at step n is the input at step n − 1:

y[n] = x[n − 1]

dCoeffs: 0, 1, cCoeffs: none

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 211

•	 Output at step n is 2 times the input at step n − 2:

y[n] = 2x[n − 2]

dCoeffs: 0, 0, 2, cCoeffs: none
•	 Output at step n is 2 times the output at step n − 1:

y[n] = 2y[n − 1]

dCoeffs: none, cCoeffs: 2
•	 Output at step n is the input at step n − 1 plus the output at step n − 2:

y[n] = x[n − 1] + y[n − 2]

dCoeffs: 0, 1, cCoeffs: 0, 1

5.8.2 Difference equations and block diagrams
Let H represent a system whose input is a signal X and whose output is a signal Y. The system H

is defined by the following difference equations:

y[n] = x[n] + z[n]

z[n] = y[n − 1] + z[n − 1]

Start by finding an operator equation.

Y = X + Z

Z = RY + RZ

Now, we use the second equation to find an expression for Z:

RY

Z =

1 − R

and substitute that into the first equation, and solve for Y:

RY
Y = X +

1 − R

(1 − R)Y = (1 − R)X + RY

(1 − 2R)Y = (1 − R)X

1 − R

Y = X

1 − 2R

Part a. Which of the following systems are valid representations of H? (Remember that there can
be multiple “equivalent” representations for a system.)

+ +

R R2 −1
X Y

equivalent to H (yes/no)? YES

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 212

Find operator equations here; start by naming the signal that’s flowing between the two adders.
Let’s call it W.

Y = W − RW

W = X + 2RW

Now, rewrite the first equation as

Y = (1 − R)W

And the second one as

X
W =

1 − 2R

Then, combine them to get

X
Y = (1 − R)

1 − 2R

1 − R

= X
1 − 2R

Showing that this system is the same as H.

+ +

R R2 2

X Y

equivalent to H (yes/no)? NO

This time, let’s name the signal that’s flowing between the two adders A. Now, we have equations

Y = A + 2RY

A = X + 2RA

Rewrite the first equation as:

A
Y =

1 − 2R

And the second as:

X
A =

1 − 2R

When we combine them, we get

X
Y =

(1 − 2R)(1 − 2R)

which is not equivalent to the original system.

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 213

+

+

R

R

X Y

equivalent to H (yes/no)? YES

We’ll name the signal flowing between the adders B. We get equations

Y = X + B

B = RY + RB

Rewriting the second equation, we have

RY
B =

1 − R

Substituting into the first equation and solving, we get:

RY
Y = X +

1 − R

Y(1 − R) = (1 − R)X + RY

Y(1 − 2R) = (1 − R)X

1 − R

Y = X

1 − 2R

So this system is equivalent to the original one.

+ +

R

R

−1

X Y

equivalent to H (yes/no)? NO

Let’s call the signal coming out of the first adder C. We get equations

Y = RC − RX

C = X + RX

So

Y	= R(X + RX) − RX

= R2X

which is not equivalent to the original system.

Part b. Assume that the system starts “at rest” and that the input signal X is the unit sample
signal. Determine y[3].

4 y[3] =

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 214

n x[n]

−1 0

0 1

1 0

2 0

2 0

z[n]

0 0

0 1

1 1

2 2

4 4

y[n]

Part c. Let po represent the dominant pole of H. Determine po.

Enter p0 or none if there are no poles: 2

The denominator polynomial of the system function is 1 − 2R. This is directly in the form that
exposes the pole as 2. But, we can also go step by step. We convert this into a polynomial in
z = 1/R to get 1 − 2/z. The roots of that equation are the same as the roots of z − 2 = 0; the single
root is 2.

5.8.3 Wall finder
Let’s think about a robot driving straight toward a wall. It has a distance sensor that allows it to
observe the distance to the wall at time n, Ds[n], and it desires to maintain a distance Di from the
wall.

The robot can execute velocity commands, and we program it to use this rule to set its forward

di = desiredFront
do = distanceFront

velocity at time n, to be proportional to the error between Di and its current sensor reading. In this
section, we’ll develop two different models of the system that includes the robot and the world
around it, and try to see how we can use the models to understand how to select a controller.

In this block diagram, we will begin by considering the case in which the sensor box is just a wire;
then consider what happens when it is a delay instead.

5.8.3.1 Version 1: No computational delay

controller plant

sensor

+X Y
error command

−

In this first model, we’ll assume that the sensor responds immediately, so that the robot’s com­
manded velocity v[n] depends instantaneously on its actual distance do[n] from the wall. Of

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 215

course this dependence can’t truly be instantaneous, but it might be quite small relative to the
robot’s 0.1-second cycle time and so might justifiably be ignored. So:

v[n] = k(di[n] − do[n]) ,

Although Di will generally be a constant value, we’ll allow for a more general case in which it
may vary over time.

We can describe this system with the operator equation:

V = k(Di − Do) .

Now, we can think about the “plant”; that is, the relationship between the robot and the world.
The distance of the robot to the wall changes at each time step depending on the robot’s forward
velocity and the length of the time steps. Let T be the length of time between velocity commands
issued by the robot. Then we can describe the plant with the equation:

do[n] = do[n − 1] − Tv[n − 1] .

That is, the new distance from the wall is equal to the old distance from the wall, minus the robot’s
velocity towards the wall times the time interval of a step. In operator algebra terms, we have

Do = RDo − TRV

Do − RDo = −TRV

Do(1 − R) = −TRV

Our overall system is a combination of the plant and the controller; we can combine the two
equations to get

Do(1 − R) = −TRV

Do(1 − R) = −TRk(Di − Do)

Do(1 − R − TkR) = TkRDi

−TkR

Do = Di

1 − (1 + Tk)R

We can solve for the poles analytically after substituting 1/z in for R:

z − (1 + Tk) = 0 .

There is one pole at 1 + Tk.

In order for the system to converge, we need

| 1 + Tk | < 1

− 1 < 1 + Tk < 1

− 2 < Tk < 0

−2
< k < 0

T

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 216

Assuming that T = 0.1 (which it is for our robots), then we can use this information to select k.

Here are some plots of the evolution of the system, starting at distance 2.0, with an input Di = 0.7.

k = 1 k = −1 k = −9

k = −10 k = −11 k = −15

k = −18 k = −21

Generally speaking, the closer the magnitude of the dominant pole is to 0, the faster the system
will converge. For this system, k = −10 is the ’perfect’ gain, which, in a perfect world, would
make the robot jump, instantaneously, to the right place. This corresponds to having a pole of 0.
(Note that, in this case, the system function degenerates into D0 = R.)Di

Of course, in the real world, there will be error, which will cause the robot to overshoot or un­
dershoot, and have to correct, etc. And, in the real world, we can’t cause the robot to have an
instantaneous increase (or decrease) in velocity, so we couldn’t even approach the ’ideal’ behav­
ior of moving to the goal all in one step. Note that a positive gain causes the system to diverge as

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 217

does a gain less than −20. And for gain values between −10 and −20, it converges, but alternates
sign.

Here is what is called a root-locus plot. It shows how the poles of the system (in this case just one
pole) move in the complex plane as we vary parameter k. In this figure, we varied k from −25 to
+10. The corresponding poles are plotted in different colors, starting with red corresponding to
k = −25 through violet corresponding to k = +10. First, we can easily see that for any value of
k, the pole is on the real line. Then, we observe that for the lowest values of k, the pole is outside
the unit circle (drawn in dark black, any value inside it has magnitude less than 1), and will cause
divergence, and for the highest values of k it is also outside the unit circle and will also diverge.

5.8.3.2 Model 2: A delay in the sensor
Now, we’ll consider a version of the problem in which there is a delay in the sensor, so that the
commanded velocity v[n] depends on the distance at the previous time step, do[n − 1], rather
than on do[n].

v[n] = k(di[n] − do[n − 1]) ,

We can describe this system with the operator equation:

V = k(Di − RDo) .

We’ll leave the model of the plant as it was above (but note that in a real situation, there might be
additional delays in the plant, as well as, or instead of, the delay we’re modeling in the controller).

Do(1 − R) = −TRV .

Our overall system is a combination of the plant and the controller; we can combine the two
equations to get

When

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 218

Do(1 − R) = −TRV

Do(1 − R) = −TRk(Di − RDo)

Do(1 − R − TkR2) = −TkRDi

−TkR

Do = Di

1 − R − TkR2

We can solve for the poles analytically after substituting 1/z for R:

z 2 − z − Tk = 0 .

We find that the roots of this polynomial are

1 1√
1 + 4kT .

2
±

2

To determine the behavior of the system for some value of k, you can plug it into this formula
and see what the values are. Remember that the pole with the largest magnitude will govern the
long-term behavior of the system.

Here are some plots of the evolution of the system, starting at distance 2.0, with an input Di = 0.7.

k = 1 k = −1 k = −2.5

k = −3 k = −9 k = −11

T = 0.1, the system is monotonically divergent for k > 0, monotonically convergent for
−2.5 < k < 0, converges but oscillates for −10 < k < −2.5, and diverges while oscillating for
k < −10.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 219

Below, on the left is

|
2

1 ±
2

1√
1 + 4kT |

that is, the magnitudes of the two poles as a function of kT . Note that, on the left branch, there
are still two poles, but they are a complex conjugate pair with the same magnitude. On the right
is the maximum of the pole magnitudes. We can see that it is minimized at kT = −0.25.

-1.0 -0.5 0.5 1.0
kt

0.5

1.0

1.5

PoleMags

-1.0 -0.5 0.5 1.0
kt

0.5

1.0

1.5

magDomPole

Magnitudes of both poles Magnitude of dominant pole

Here is a root-locus plot for this system. It shows how the poles of the system move in the complex
plane as we vary parameter k. In this figure, we varied k from −20 to +10. The corresponding
poles are plotted in different colors, starting with red corresponding to k = −20 through violet
corresponding to k = +10. There are two red points, corresponding to the conjugate pair of
complex poles arising when k = −20. This system is unstable, because the magnitudes of those
complex poles are greater than 1 (outside the unit circle). As we increase k, these poles move
down; that is, their real part stays constant and the imaginary part decreases, until we reach
complex poles (greenish on the plot) that are stable. Finally, these two poles meet on the real line:
one ’turns’ right as k increases and one ’turns’ left. Now, we have two real poles, one of which
is closer to the unit circle than the other. As soon as the positive real pole is equal to 1 then the
system will begin to turn unstable again (even though the other pole is still inside the unit circle.
This, for k = 10, the system is unstable (eventually diverging monotonically) because the largest
pole is positive and outside the unit circle.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 220

5.8.4 Cool difference equations
Newton’s law of cooling states that: the rate of change of the temperature of an object is propor­
tional to the difference between its own temperature and the temperature of its surroundings.

We can model this process in discrete time, by assuming that the change in an object’s temperature
from one time step to the next is proportional to the difference (on the earlier step) between the
temperature of the object and the temperature of the environment, as well as to the length of the
time step.

Let

• o[n] be temperature of object

• s[n] be temperature of environment

• T be the duration of a time step

• K be the constant of proportionality

Part a. Write a difference equation for Newton’s law of cooling. Be sure the signs are such that
the temperature of the object will eventually equilibrate with that of the environment.

o[n] = o[n − 1] + TK(s[n − 1] − o[n − 1])

Part b. Write the system function corresponding to this equation (show your work):

H =
O

S
=

KTR

1 − (1 − KT)R

First, convert the difference equation to an operator equation, then solve for O in terms of S.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 221

O = RO + KT(RS − RO)

O − RO + KTRO = KTRS

O(1 − (1 − KT)R) = KTRS

O KTR
=

S 1 − (1 − KT)R

5.8.5 Modeling
Consider the following system:

R

R

R

+ +k1 k2X Y
− −

Part a. Write the system function:

H =
Y

X
=

k1k2R

1 + k2R2(1 + k1)

We start by naming some of the internal signals. Let Z be the output of the gain of k1 and W be
the output of the gain of k2. Then we can write the following set of operator equations:

Z = k1(X − RY)

W = k2(Z − RY)

Y = RW

Eliminating Z and W, we have:

Y = Rk2(Z − RY)

= Rk2(k1(X − RY) − RY)

= k1k2RX − k1k2R2Y − k2R2Y

Reorganizing terms, we have

Y + k2(1 + k1)R2Y = k1k2RX

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 222

which leads us to the answer.

Part b.

Let k1 = 1 and k2 = −2. Assume that the system starts “at rest” (all signals are zero) and that the
input signal X is the unit sample signal. Determine y[0] through y[3].

y[0] = 0

-2 y[1] =

0 y[2] =

y[3] = -8

First, we write the difference equation:

y[n] = −2x[n − 1] + 4y[n − 2]

Then we can calculate the values step by step.

• y[0] = −2x[−1] + 4y[−1] = 0 + 0 = 0

• y[1] = −2x[0] + 4y[−1] = −2 + 0 = −2

• y[2] = −2x[1] + 4y[0] = 0 + 0 = 0

• y[1] = −2x[2] + 4y[1] = 0 + 4 · (−2) = −8

Part c. Let k1 = 1 and k2 = −2, determine the poles of H.

Enter poles or none if there are no poles:

For these k values, the denominator polynomial is 1 − 4R2 . So, we need to find the roots of the
polynomial z2 − 4, which are ±2.

2, -2

Part d. For each of the systems below indicate whether the system is equivalent to this one:

223 Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011

R

R

R+ +k1 k2X Y
− −

Equivalent to H (yes/no)? No

Let the output of the gain of k1 be W. Then we can write the following set of operator equations:

W = k1(X − RY)

Y = k2(RW − RY)

Eliminating W, we have:

Y = k2(RW − RY)

= k2(Rk1(X − RY) − RY)

= k1k2RX − k1k2R2Y − k2RY

which is not equal to the operator equation for the original system.

R

R

R

R

+ +k1 k2X Y
− −

Equivalent to H (yes/no)? Yes

Let the output of the gain of k1 be W. Then we can write the following set of operator equations:

W = k1(X − RY)

Y = k2(RW − R2Y)

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 224

Eliminating W, we have:

Y = k2(RW − R2Y)

= k2(Rk1(X − RY) − R2Y)

= k1k2RX − k1k2R2Y − k2R2Y

which is equal to the operator equation for the original system.

R

R

+

+

k1 k2

k1

X Y
−

Equivalent to H (yes/no)? Yes

Let the output of the gain of k2 be W. Then we can write the following set of operator equations:

W = k2(k1X − (1 + k1)RY)

Y = RW

Eliminating W, we have:

Y = Rk2(k1X − (1 + k1)RY)

= k1k2RX − k1k2R2Y − k2R2Y

which is equal to the operator equation for the original system.

R

RR

+

+

k1 k2

k1

X Y
−

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 225

Equivalent to H (yes/no)? No

This is like the previous system, but with an extra delay in the feedback path, so it cannot be
equivalent to the original system.

5.8.6 SM to DE
Here is the definition of a class of state machines:

class Thing(SM):

startState = [0, 0, 0, 0]

def getNextValues(self, state, inp):

result = state[0] * 2 + state[2] * 3

newState = [state[1], result, state[3], inp]

return (newState, result)

1.	 What is the result of evaluating

Thing().transduce([1, 2, 0, 1, 3])

[0, 0, 3, 6, 6]

2. The state machine above describes the behavior of an LTI system starting at rest. Write a
difference equation that describes the same system as the state machine.

y[n] = 2y[n − 2] + 3x[n − 2]

The important thing to see here is that the values in the state are (y[n−2], y[n−1], x[n−2], x[n−1]),
so that the output is 2y[n − 2] + 3x[n − 2].

5.8.7 On the Verge
For each difference equation below, say whether, for a unit sample input signal:

•	 the output of the system it describes will diverge or not,

•	 the output of the system it describes (a) will always be positive, (b) will alternate between
positive and negative, or (c) will have a different pattern of oscillation

1.

10y[n] − y[n − 1] = 8x[n − 3]

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 226

diverge? Yes or No No

positive/alternate/oscillate Positive

We first write the operator equation:

10Y − RY = 8R3X

And the system function

Y 8R3

=
X 10 − R

Find the root of the polynomial in z = 1/R:

10z − 1 = 0

z = 0.1

The single pole is at 0.1. It is positive, so for a unit-sample input, the output will always be
positive (assuming it starts at rest). It has magnitude less than 1, so it will converge.

2.

y[n] = −y[n − 1] − 10y[n − 2] + x[n]

diverge? Yes or No Yes

positive/alternate/oscillate Oscillates

We first write the operator equation:

Y + RY + 5R2Y = X

And the system function

Y 1
=

X 1 + R + 10R2

Find the roots of the polynomial in z = 1/R:

Z2 + Z + 10 = 0

−1±
√

1 − 100

Z =

2

Z = 0.5 ± 4.97j

The magnitude of the poles is 5, which is greater than 1, so it diverges. The poles are complex,
so the output will oscillate.

3.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 227

y[n] = −0.6y[n − 1] + .16y[n − 2] − 0.1x[n − 1]

diverge? Yes or No No

positive/alternate/oscillate Oscillates

We first write the operator equation:

Y + 0.6RY − .16R2Y = −0.1RX

And the system function

Y −0.1R
=

X 1 + 0.6R − 0.16R2

Find the roots of the polynomial in z = 1/R:

Z2 + 0.6Z − 0.16 = 0

−0.6 ±
√

.36 + .64

Z =

2

Z = (−0.8, 0.2)

The dominant pole is −0.8, because it has the largest magnitude. Its magnitude is less than
1, so the system will converge. The pole is negative, so the system will alternate positive and
negative signs.

5.8.8 What’s Cooking?
Sous vide cooking involves cooking food at a very precise, fixed temperature T (typically, low
enough to keep it moist, but high enough to kill any pathogens). In this problem, we model the
behavior of the heater and water bath used for such cooking. Let I be the current going into the
heater, and c be the proportionality constant such that Ic is the rate of heat input.

The system is thus described by the following diagram:

+ +

Delay Delay

-
I T

k1 k2

c

1. a. Give the system function:

c

(1 − k1R)(1 + k2R)

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 228

If we name the signal coming out of the first adder W, then we have operator equations

W = cI + k1RW

T = W − k2RT

Solving, we get

W − k1RW = cI

W(1 − k1R) = cI

cI
W =

1 − k1R

cI
T = − k2RT

1 − k1R

T(1 − k1R) = cI − k2RT(1 − k1R)

T − k1RT + k2RT − k1k2R2T = cI

T(1 − k1R)(1 + k2R) = cI

T c

=

I (1 − k1R)(1 + k2R)

b.	 Give a difference equation for the system: t[n] =

t[n] = (k1 − k2)t[n − 1] + k1k2t[n − 2] + ci[n]

Starting with this form of the operator equation, taken from the derivation above, and then
rearranging terms

T(1 − k1R) = cI − k2RT(1 − k1R)

T = cI + k1RT − k2RT(1 − k1R)

We get an equation that’s easy to convert to the difference equation above.

2.	 Let the system start at rest (all signals are zero). Suppose I[0] = 100 and I[n] = 0 for n > 0.
Here are plots of T [n] as a function of n for this system for c = 1 and different values of k1

and k2.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 229

5 10 15

-50

50

100

150

200

5 10 15

-50

50

100

150

200

a b

5 10 15

-50

50

100

150

200

5 10 15

-50

50

100

150

200

c d

5 10 15

-50

50

100

150

200

5 10 15

-50

50

100

150

200

a.
e f

Which of the plots above corresponds to k1 = 0.5 and k2 = 0 ?

Circle all correct answers: a c d e f none

b.

The denominator as written above is already factored, and so we know that the poles are
k1 and −k2. So, with these values for k1 and k2, there is a single pole at 0.5. So, we know
that the system will converge monotonically, and that the each magnitude will be 0.5 of
the magnitude on the previous step. The only plot that has this property is b.

Which of the plots above corresponds to k1 = 1 and k2 = 0.5 ?

Circle all correct answers: a b c d e none

In this case, the poles are 1 and −0.5. With the dominant pole at 1, we expect the system
to neither converge to 0, nor to diverge. The other pole at −0.5 will generate a component

b

f

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 230

with alternating signs, but whose magnitude dies away over time. The graph in f shows a
signal that is the sum of a long-term constant signal and a signal that is converging to zero
with alternating signs.

3. Let k1 = 0.5, k2 = 3, and c = 1. Determine the poles of H, or none if there are no poles.

Looking at the factored form of the denominator, we can easily see that the poles are at k1

and −k2. If you didn’t see that factored form, then you could explicitly see that the poles are
roots of the equation z2 + (k2 − k1)z − k1k2 = 0, which in this case is z2 + 2.5z − 1.5 = 0.
We can use the quadratic formula to find that the roots are at 0.5 and −3.

5.8.9 Pole Position
Consider eight poles located at the following locations in the z plane. The plots below show the
unit-sample responses of eight linear, time-invariant systems. Match them with the dominant
pole for each system (remember that the system may have more than one pole).

�1.5 �1.0 �0.5 0.5 1.0 1.5

�1.5

�1.0

�0.5

0.5

1.0

1.5

1

2 3 4

5 6 7

8

A.	 This signal is alternating in sign and converging. Each magnitude is about 0.75 of the mag­
nitude of the previous sample. So, we’d expect the dominant pole to be about −0.75, which
corresponds to pole 2 on the plot.

B.	 This signal is converging monotonically; each sample is about 0.25 of the previous sample
value. So, we expect a dominant pole of about 0.25. This corresponds to pole 3 on the plot.

C.	 This signal is diverging monotonically; each sample is about 1.25 of the previous sample value.
So, we expect a dominant pole of about 1.25. This corresponds to pole 4 on the plot.

D. This signal is converging; it is neither monotonic, nor alternating in sign. It is oscillating with
a period of 4, so we expect the dominant poles to be complex, with angle ±2π/4 = ±π/2. We
can see that the magnitude is about 0.3 of the previous magnitude after 4 steps, which means
that the magnitude of the pole is about 0.75 (because 0.754 = 0.316). Pole 8 has angle −π/2

and magnitude 0.75.

Chapter 5 Signals and Systems	 6.01— Spring 2011— April 25, 2011 231

E.	 This signal is converging and oscillating. The period seems to be 8. So, we’d expect a pole at
angle ±pi/4. The magnitude is a bit tricky to estimate. It seems to get from 2 to about 0.1 in 8

steps, so it’s something like 0.7. That corresponds well to pole 6.

F.	 This signal is converging and oscillating. The period seems to be something like 3, and the
magnitude even smaller than the previous two. Pole 5 has these characteristics.

G. This signal is diverging and oscillating. It seems to have a period of about 12, which would
mean an angle of ±π/6. The only pole on our picture with magnitude greater than 1 is at the
correct angle, and so it must be 7.

H. Finally, we have a signal that converges and oscillates. The period seems to be 10 or 12 and
the rate fairly fast; pole 1 has a smaller magnitude than pole 6, and this converges faster than
E, so this must be pole 1.

10 20 30 40

-1.5

-1.0

-0.5

0.5

1.0

1.5

2.0

10 20 30 40

0.5

1.0

1.5

2.0

10 20 30 40

5000

10 000

15 000

A = 2 B = 3 C = 4

10 20 30 40

-1.0

-0.5

0.5

1.0

1.5

2.0

10 20 30 40

-0.5

0.5

1.0

1.5

2.0

10 20 30 40

-0.5

0.5

1.0

1.5

2.0

D = 8 E = 6 F = 5

10 20 30 40

-50

50

100

150

10 20 30 40

0.5

1.0

1.5

2.0

G = 7 H = 1

5.8.10 System functions
Let H1 represent a subsystem that is part of the larger system shown below.

Chapter 5 Signals and Systems 6.01— Spring 2011— April 25, 2011 232

The system function for the larger system can be written as

+ H1

RK0

X0 Y0
−

Y0 H1
H0 = = .

X0 1 + K0RH1

+

R

R

KB

X1 Y1

Assume that H1 = H1B = Y1 as shown below. X1

What is the system function for H1B?

R
H1B =

1 − KBR2

Determine the system function H0 for the larger system when H1 = H1B.

R
H0 =

1 + (K0 − KB)R2

Under what conditions on K0 and KB is this system stable? Explain.

There are poles at z = ±
√

KB − K0. To be stable, the poles should all have magnitued less
than 1. Thus the system is stable if |KB − K0| < 1.

Under what conditions on K0 and KB does the unit-sample response decay monotonically?
Explain.

None. For monotonic convergence, both poles must have magnitudes between 0 and 1 (since
there are two poles of equal magnitude). If KB < K0 then the poles have non-zero imaginary
parts, and the response oscillates. If KB > K0 then one pole is on the positive real axis and
one is on the negative real axis. The pole on the negative real axis causes the unit sample
response to alternate. Thus there are no values of KO and KB for which there is monotonic
decay.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 233

Chapter 6
Circuits

6.1 What is a circuit?
In conventional English, a circuit is a path or route that starts at one place and ultimately returns
to that same place. The engineering sense of the word is similar. In electronics, a circuit is a closed
path through which electrical currents can flow. The flow of electrical current through a flashlight
illustrates the idea.

Three parts of the flashlight comprise the circuit: the battery, which supplies power, a bulb, which
produces light when connected to the battery, and a switch, which can either be on (connected)
or off (disconnected). The important feature of this circuit is that electrical currents flow through
it in a loop, as illustrated in the right part of the figure above.

The rules that govern the flow of electrical current are similar to the rules that govern the flow
of certain types of fluids; and it is often helpful to draw analogies between these flows. The
following figure illustrates the flow of blood through the human circulatory system.

heart

liver

intestines

kidneys

trunk and legs

head and arms

lungs

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 234

The right side (from the person’s viewpoint) of the heart pumps blood through the lungs and into
the left side of the heart, where it is then pumped throughout the body. The heart and associated
network of arteries, capillaries, and veins can be thought of and analyzed as a circuit. As with the
flow of electrical current in the flashlight example, blood flows through the circulatory system in
loops: it starts at one place and ultimately returns to that same place.

As we learn about circuits, we will point out analogies to fluid dynamics for two reasons. First,
we all have developed some intuition for the flow of fluid as a result of our interactions with
fluids as a part of everyday experience. We can leverage the similarity between fluid flow and
the flow of electrical current to increase our intuition for electrical circuits. Second, the analogy
between electrical circuits and fluid dynamics is a simple example of the use of circuits to make
models of other phenomena. Such models are widely used in acoustics, hydrodynamics, cellular
biophysics, systems biology, neurophysiology, and many other fields.

Electrical circuits are made up of components, such as resistors, capacitors, inductors, and tran­
sistors, connected together by wires. You can make arbitrarily amazing, complicated devices by
hooking these things up in different ways, but in order to help with analysis and design of circuits,
we need a systematic way of understanding how they work.

As usual, we can’t comprehend the whole thing at once: it’s too hard to analyze the system at the
level of individual components, so, again, we’re going to build a model in terms of primitives,
means of combination, and means of abstraction. The primitives will be the basic components,
such as resistors and op-amps; the means of combination is wiring the primitives together into
circuits. We’ll find that abstraction in circuits is different than in software or LTI systems. You
can’t think of a circuit as “computing” the voltages on its wires: if you connect it to another circuit,
then the voltages are very likely to be different. However, you can think of a circuit as enforcing
a constraint on the voltages and currents that enter and exit it; this constraint will remain true, no
matter what else you connect to the circuit.

6.1.1 Electrical circuits

wires39 that connect a component.

Voltage is a difference in electrical potential between two different points in a circuit. We will
often pick some point in a circuit and say that it is “ground” or has voltage 0. Now, every other

39	 Wire is typically made from metals through which electrons can flow to produce electrical currents. Generally, the
strong forces of repulsion between electrons prevent their accumulation in wires. However, thinking about nodes as
wires is only an approximation, because physical wires can have more complicated electrical properties.

Circuits are made up of elements connected by nodes. The following circuit has three elements,
each represented with a box.

i1 i2 i3

There are two nodes, each indicated by a dot. In an electrical circuit nodes can be thought of as

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 235

point has a voltage defined with respect to ground. Because voltage is a relative concept, we could
pick any point in the circuit and call it ground, and we would still get the same results.

Current is a flow of electrical charge through a path in the circuit. A positive current in a direction
is generated by negative charges (electrons) moving in the opposite direction.

We’ll start by considering a simple set of components that have two terminals (connection points
into the circuit). Each component has a current flowing through it, and a voltage difference across
its terminals. Each type of component has some special characteristics that govern the relationship
between its voltage and current. We will restrict our attention, in this course, to components that
exert a linear constraint on their current and voltage.

One way to model circuits is in terms of their dynamics. That is, to think of the currents and
voltages in the system and how they change over time. Such systems are appropriately modeled,
in fact, using differential or difference equations, connected together into complex systems, as
we saw in the last couple of weeks. But for many purposes, the dynamic properties of a circuit
converge quickly, and we can directly model the equilibrium state that they will converge to.
The combination of the behavior of the components and the structure in which they’re connected
provides a set of constraints on the equilibrium state of the circuit. We’ll work through this view
by starting with the constraints that come from the structure, and then examining constraints for
three simple types of components.

6.2 Conservation laws
Conservation laws describe properties of a circuit that must hold, no matter what the particular
elements are. There are two fundamental conservation laws, one that relates to currents and one
that relates to voltages.

6.2.1 Kirchoff’s current law
Fluids can be roughly classified as compressible or incompressible. Air is compressible. Doubling
the pressure on a volume of air will decrease the volume by a factor of two. By contrast, water is
nearly incompressible. Doubling the pressure on a volume of water (from 1 atmosphere to 2) will
decrease the volume by less than one part in a billion.

The laws that govern incompressible fluid flows are relatively simple. The net flow of incom­
pressible fluid into a region of fixed volume must be zero. It follows that if there is flow into one
part of a fixed volume, then there most be an equal flow out of the other part.

As an example, consider the flow of water through a branching point, as shown below.

i1 →
→ i2

→ i3

Let i1 represent the flow into the branching point and i2 and i3 represent the flows out of it.
Assume that i1, i2, and i3 have the units of volume per unit time (e.g., m3/s).

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 236

Example 1. What is the relation between i1, i2, and i3?

In this example, i1 = i2 + i3.

Changing the direction of a flow variable is equivalent to changing its sign. For that reason,
we think about flow variables as signed variables. The direction associated with the variable
represents the direction that results when the variable is positive. The flow is in the opposite
direction if the variable is negative. Thus, the direction that we associate with a flow is arbitrary.
If we happen to associate the one direction, the flow variable will be positive. If we happen to
associate the opposite direction, the flow variable will be negative.

The laws for the flow of electrical current are similar to those for the flow of an incompressible
fluid. The net flow of electrical current into a node must be zero.

Example 2. What if i2 represented flow in the opposite direction, as shown below?

i1 →
← i2

→ i3

Now i1 + i2 = i3 or equivalently i1 = −i2 + i3.

The following circuit has three elements, each represented with a box.

i1 i2 i3

There are two nodes, each indicated by a dot. The net current into or out of each of these nodes is
zero. Therefore i1 + i2 + i3 = 0.

Similar current relations apply for all nodes in a circuit. Such relations are called Kirchoff’s Cur­
rent Laws (KCL) and represent the first of two fundamental conservation laws for circuits.

Kirchoff’s Current Law: the sum of the currents that flow into a node is zero.

Electrical currents cannot accumulate in elements, so the current that flows into a circuit element
must equal to the current that flows out.

Chapter 6 Circuits

i1 i2 i3

i4 i5 i6

Therefore i1 = i4, i2 = i5, and i3 = i6.

6.01— Spring 2011— April 25, 2011 237

Teach Yourself 1. Part a. A circuit is divided into the part that is inside the dashed red box
(below) and the part that is outside the box (not shown). Find an equation
that relates the currents i1 and i2 that flow through the dashed red box.

i1 i2

Part b. A more complicated circuit is shown inside the red box below.
Find an equation that relates the currents i1, i2, and i3 that flow through
the dashed red box.

i1 i2

i3

Part c. Generalize your results to an arbitrary closed surface. Explain how
to prove the generalization.

h0
h1

h2

i1 i2

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 238

Teach Yourself 2. Part a. How many linearly independent40 KCL equations can be written
for the following circuit?

Part b. Generalize your result to determine the number of linearly inde­
pendent KCL equations in an arbitrary circuit with n nodes. Prove your
generalization.

6.2.2 Kirchoff’s Voltage Law
What physical mechanisms cause flow? Blood circulates due to pressures generated in the heart.
Hydraulic pressure also moves water through the pipes of your house. In similar fashion, voltages
propel electrical currents. A voltage can be associated with every node in a circuit; and it is the
difference between the voltages at two nodes that excites electrical currents to pass between those
nodes.

The flow of water between water storage tanks provides a useful analogy for the flow of electrical
currents. Consider three tanks connected as shown below.

40	 None of the equations in a linearly independent set can be written as a linear combination of the other equations. For
example,

x + y = 1

x + 2y = 1

are linearly independent equations. However, the equations

x + y + z = 1

x + y = 1

z = 0

are not, since the last equation is the difference between the first two.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 239

Example 3. What will be the signs of i1 and i2?
Water will flow from the middle tank toward the left tank because h1 > h0.
Thus i1 < 0. Similarly, water will flow from the middle tank toward the
right tank because h1 > h2. Thus i2 > 0.

Voltages work similarly for driving electrical currents. It is the difference in voltage between two
nodes that drives electrical current between the nodes. Absolute voltage is not important (or even
well defined). Voltage differences are all that matter.

Teach Yourself 3. How would the flows in the tank system above change if each height of
water in each tank were increased by 1 unit? ... by 1000 units?

Another similarity between the hydraulic pressures in the tank system and voltages in a circuit is

that the voltage differences that accumulate along any closed path is zero. This is obvious for an
array of tanks. Consider the array illustrated below in a top down view.

1

3

2

7

3

1

2

Assume that the lines between circles represent pipes and that the numbers indicate the height
(in meters) of the water in each tank. Consider the clockwise path around the perimeter of the
network starting and ending with the leftmost tank. The path visits heights of 1, 3, 3, 2, 1, 2, and
1. These heights increase by 2, 0, −1, −1, 1, and −1, which sum to 0.

It’s easy to see that the sum of differences in heights around any closed loop will be zero. If it
were not, then the height of the first tank would not end up at the same value that it began. This
same rule applies to voltage differences, where the rule is called Kirchoff’s Voltage Law (KVL).

Kirchoff’s Voltage Law: the sum of voltage differences along a closed path is zero.

+

−
v1

+

−
v2

+

−
v3

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 240

Example 4. How many KVL equations can be written for the following circuit.

How many of the KVL equations are linearly independent?
There are three loops through this circuit. One through the left two ele­
ments yields the KVL equation −v1 + v2 = 0 or v1 = v2. One through the
right two elements yields the KVL equation −v2 + v3 = 0 or v2 = v3. One
through the outer two elements yields the KVL equation −v1 + v3 = 0 or
v1 = v3.
Only two of the three KVL equations are linearly independent, since each
equation can be derived from the other two.
The particularly simple solution to this circuit is that v1 = v2 = v3. This
solution could also have been derived directly from the fact that there are
just two nodes, and therefore only one possible potential difference.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 241

Example 5. How many different KVL equations can be written for this circuit?

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6

How many of the KCL equations are linearly independent?
One KVL equation can be written for every possible closed loop through
the circuit. The most obvious loops are A, B, and C shown below.

A

B

C

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6

A: −v1 + v2 + v4 = 0

B: −v2 + v3 − v6 = 0

C: −v4 + v6 + v5 = 0

But there are several more, shown below.

D

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6

D=A+B: −v1 + v3 − v6 + v4 = 0

E

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6

E=A+C: −v1 + v2 + v6 + v5 = 0

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 242

F

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6

F=B+C: −v4 − v2 + v3 + v5 = 0

G

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6

G=A+B+C: −v1 + v3 + v5 = 0

These seven equations are not linearly independent. Equation D is the sum of Equations A and
B (notice that the v2 terms in Equations A and B cancel). Similarly, equation E is the sum of
Equations A and C, equation F is the sum of Equations B and C, and equation G is the sum of
Equations A, B, and C. Thus this circuit has three independent KVL equations and four additional
dependent KVL equations.

Teach Yourself 4. The following set of voltages are not consistent with Kirchoff’s voltage
laws but can be made consistent by changing just one. Which one?

1

2

2
1

3

2
2

3
4

2
3

0

Prove that the answer is unique.

6.3 Circuit elements

Kirchoff’s Current and Voltage Laws do not alone determine the behavior of a circuit. Consider
the following circuit with just two elements. There are two elements, so there are two element
currents i1 and i2 as well as two element voltages v1 and v2, all of which are unknown.

i1 i2+

−
v1

+

−
v2

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 243

Example 6. List all of the KCL and KVL equations for this circuit.
There are two nodes in this circuit. As we saw in TeachYourself 2, this
implies that there is a single independent KCL equation, which is i1 + i2 =

0. There is a single loop and therefore a single KVL equation: v1 − v2 = 0.
Thus we have four unknowns and just two equations. More information
is needed to solve for the currents and voltages.

In general, every electrical element imposes a relation between the voltage across the element
and the current through the element. This relation is called a constitutive or element relation.
The simplest relations are those for sources. A voltage source is an element whose voltage is a
constant (e.g., v = V0) independent of the current through the element. We will denote a voltage
source by a circle enclosing plus and minus symbols to denote voltage. A number beside the
source will indicate the constant voltage generated by the source, as illustrated below. Voltages
are specified with units called volts which are abbreviated as V.

+
−

V0

A current source is an element whose current is a constant (e.g., i = I0) independent of the
voltage across the element. We will denote a current source by a circle enclosing an arrow to

denote current. A number beside the source will indicate the constant current generated by the

source, as illustrated below. Currents are specified with units called amperes or simply amps
which are abbreviated as A.

I0

Our third simple element is a resistor, in which the voltage is proportional to the current and
the proportionality constant is the resistance R, so that vR = RiR. We will denote a resistor as
follows. Resistances have the dimensions of ohms (abbreviated as Ω), which are equivalent to
volts divided by amps.

R

A circuit consisting of a 10V voltage source and 2Ω resistor can easily be solved.

6.01— Spring 2011— April 25, 2011 244
Chapter 6 Circuits

+
−

10V 2Ω

i1 i2
+

−

v1

+

−

v2

Example 7. Find v1, v2, i1, and i2.
As before, i1 + i2 = 0 and v1 = v2. However, now we also know two
consitutive relations: v1 = 10V and v2 = 2Ω × i2. Solving, we find that
v1 = v2 = 10V, i2 = v2/2Ω = 5A, and i1 = −i2 = −5A.

Example 8.
 Determine the currents and voltages in the following circuit.

14A 3Ω 4Ω

i1 i2 i3
+

−

v1

+

−

v2

+

−

v3

There is a single independent KCL equation: i1 + i2 + i3 =

two independent KVL equations that together yield v1 =

0. There are
v2 = v3. Thus,

KCL and KVL together yield three equations in six unknowns. We need
three more equations — one from each element. From the current source
constitutive relation we have i1 = −14A. From the resistor constitutive
relations we have v2 = 3Ω × i2 and v3 = 4Ω × i3. Solving

v1 = v2 = 3Ω×i2 = v3 = 4Ω×i3 = 4Ω×(−i1−i2) = 4Ω×(14−i2)

so that 3Ω × i2 = 4Ω × (14 − i2) so that i2 = 8A. Therefore i1 = −14A,
i2 = 8A, and i3 = 6A. Also, v1 = v2 = 3Ω × 8A= v3 = 4Ω × 6A= 24V.

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 245

Example 9.	

+
−

36V 3Ω 2Ω

6Ωi1

i2

i3 i4
+

−

v1

+

−

v3

+

−

v4

+ −v2
Solve the following circuit.

Answer:

i1 = −5A ; i2 = 5A ; i3 = 2A ; i4 = 3A ;

v1 = 36V ; v2 = 30V ; v3 = 6V ; v4 = 6V

6.4 Solving circuits
Given a description of the circuit’s wiring and a specification of the individual components, we
can solve the circuit to answer questions about particular voltages or currents in the circuit. There
are several ways to approach this problem: we will start with a completely systematic method that
is particularly useful if we want to solve circuits using a computer; then, we’ll see some simpler
method and patterns that are easier for humans to use.

The most obvious strategy would be to write down all the KVL and KCL equations, add the con­
stituent equations for each element, and then solve for the voltage and current at each component.
But we have a problem with redundant KVL equations. The voltages across circuit elements are
constrained by KVL so that the sum of the voltages around any closed loop is zero. However,
there are many possible closed loops through even simple circuits (see section 6.2.2). If we are
dealing with a planar circuit,41 then we know that all loops can be written as combinations of
primitive loops with non-overlapping interiors (see example 5).

Teach Yourself 5.	 Each of four nodes are connected to each of the others by a 1Ω resistor.
How many resistors are there? Is the network planar?

Teach Yourself 6. Each of five nodes are connected to each of the others by a 1Ω resistor.
How many resistors are there? Is the network planar?

So far, the only general way that we have seen to deal with this redundancy is to (1) find all
of the possible KVL equations, and then (2) eliminate the redundant ones. This process seems
needlessly complicated.

41	 A circuit is “planar” if it is possible to draw all of the elements and all of the lines that connect the elements without
any of the lines or elements crossing over one another.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 246

One good way to eliminate KVL redundancy is to use node voltages. Node voltages are voltages
associated with circuit nodes rather than with circuit elements. Given a complete set of node volt­
ages, it is easy to determine the element voltages: each element voltage is the difference between
the voltage of the node at the positive end of the element minus that at its negative end.

Example 10. Determine expressions for each of the element voltages from the node volt­
ages e0, e1, e2, and e3.

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6
e1 e2

e0

e3

Answers: v1 = e3 − e0; v2 = e3 − e1; v3 = e3 − e2; v4 = e1 − e0; v5 = e2 − e0; v6 = e1 − e2;

Example 11. How would the element voltages in the previous example change if 1V
were added to each of the node voltages?

Adding a constant voltage to each of the node voltages of a circuit has no effect on any of the
element voltages. Thus, substituting node voltages for element voltages removes redundancies
that are implicit in KCL equations, but also introduces a new redundancy, which we can think
of as a global offset voltage. If we are only interested in element voltages (which is typically the
case), we can exclude effects of a global offset voltage by arbitrarily assigning the potential of one
node to zero. We refer to that special node with zero potential as the “ground.”

We will explore two methods that use node voltages: the node-voltage-and-component-current
(NVCC) method, which has variables for voltages at all of the nodes and currents through all of
the components, and the node method, which only has variables for voltages at the nodes. The
NVCC method is completely general, but rather long-winded (and is perhaps better for comput­
ers to use than humans). The node method is terser, with potentially many fewer equations, but
can become complicated when there are multiple voltage sources.

6.4.1 NVCC Method
In the NVCC method, we take the following steps:

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 247

1.	 Label all of the nodes (places where there is a wire between two or more components) with
names n1, . . . , nn, and make variables v1, . . . , vn, one for the voltage at each node.

2.	 Declare one of them, ng, to be the ground node (this can be any node; the voltages will be
computed relative to the voltage at that node) and set vg = 0.

3.	 Make current variables i1, . . . , im for each component (resistor or source) in the network. La­
bel a direction for each current in your network (it doesn’t matter what directions you pick as
long as you handle them consistently from here on out).

4.	 Write down n−1 KCL equations, one for each node except for ng. These equations assert that
the sum of currents entering each node is 0.

5.	 Write down m constitutive equations, one for each component, describing that component’s
linear relationship between its current ik and the voltage difference across the component.
The voltage across the component is vk+ − vk−, where vk+ is the node voltage at the positive
terminal of the component and vk− is the node voltage at its negative terminal voltage. The
direction of the current defines what constitutes the ’positive’ and ’negative’ terminals of the
component: the current runs from positive to negative.

For a resistor with resistance R, the equation is vk+ − vk− = ikR; for a voltage source with
voltage Vs, the equation is vk+ − vk− = Vs; for a current source with current Cs, the equation
is ik = Cs.

6.	 Solve these equations to determine the node voltage and component currents.

So, for this circuit,

Vc

n2

n3

n1 iA

iB

iC

iD

RA

RB

RD

using the current directions for each component as drawn, we have the following equations:

Ground•
v3 = 0 .

KCL•

iA − iB − iD − iC = 0

iB − iA = 0 .

•	 Constitutive equations

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 248

(v1 − v2) = iA RA·

(v2 − v1) = iB RB·

(v2 − v3) = iD RD·

v2 − v3 = Vc .

So, now, if we know RA, RB, RD, and VC, which are the specifications of our components, we have
7 linear equations in 7 unknowns (v1, v2, v3, iA, iB, iC, and iD). Just a small (though possibly
tedious) matter of algebra, and we’re done.

As an example, let RA = 100Ω, RB = 200Ω, RD = 100Ω, and VC = 10V . Then, we get v2 = 10V ;
iA = iB = 0A (that’s reasonable: why would any current bother going that way, when it can just
run through the diagonal wire?); and iD = 0.1A, which is pretty straightforward.

6.4.2 Solution strategy
You can see that the KCL equations are all in terms of currents; and the constitutive equations
give us direct expressions for almost all of the currents. So, a good solution strategy is to work
primarily with the KCL equations, trying to eliminate as many current variables as possible, by
substituting in expressions derived from the constitutive equations. In the example above, here
are the KCL equations:

iA − iB − iD − iC = 0

iB − iA = 0 .

Now, substituting in expressions from the constitutive equations, we can rewrite them as:

v1 − v2 v2 − v1 Vc
− − − iC = 0

RA RB RD

v2 − v1 v1 − v2

− = 0 .

RB RA

We also know, from the ground equation v3 = 0, that v2 = VC, so we can rewrite our equations
as:

v1 − Vc Vc − v1 Vc
− − − iC = 0

RA RB RD

Vc − v1 v1 − Vc

− = 0 .

RB RA

In most cases, you can write equations of this form down directly, without bothering to write
the KCL and the constituent equations separately, and then substituting in for the currents.

Now we only have two unknowns: v1 and iC, and two equations. The second equation tells us
that Vc = V1, and, substituting that into the first equation, we have

Vc
iC =

RD

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 249

Exercise 6.1. What happens when we take out the diagonal wire? We have to add a new
node, v4, and then proceed as we did above.

Vc

n2

n3n4

n1 iA

iB

iC

iD

RA

RB

RD

Ultimately, we can find that iA = iB = iC = −0.025A, iD = 0.025A,
v1 = 7.5V , v2 = 10V , and v4 = 2.5V . Verify this solution by writing out
the equations and solving them using a process similar to the one outlined
above.

6.4.3 An example

Let’s try to find the node voltages and constituent currents for this circuit:

+10 A+15 V
3 Ω

2 Ω

n1 n2

n3

i1
i2

i3

i4

NVCC
Here are the steps of the NVCC method:

1.	 We have labeled the nodes n1, n2, and n3. Remember that we don’t need a node for every
corner or join in the circuit: a single ’node’ can cover a stretch of wire with several connections,
because it will all have the same voltage as long as no components intervene.

2.	 Declare one of them to be the ground node. When there’s a single voltage source, it is con­
ventional (but not necessary!) to set its negative terminal to be the ground node; so we’ll set
v3 = 0.

3.	 Make current variables for each component in the network and label them with arrows. We
did this already in the figure.

4.	 Write down n − 1 KCL equations, one for each node except for the ground node.

− i4 − i1 = 0

i1 − i2 + i3 = 0

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 250

5.	 Write down m constitutive equations, one for each component, describing that component’s
linear relationship between its current ik and the voltage difference across the component.

v1 = 15

v1 − v2 = 3i1

v2 − v3 = 2i2

i3 = 10

6.	 Solve these equations to determine the node voltage and component currents. There are lots
of ways to work through this algebra. Here’s one meandering path to the right answer.

We can do some plugging in of v1, v3, and i3 to simplify matters.

15 − v2 = 3i1

v2 = 2i2

− i4 − i1 = 0

i1 − i2 + 10 = 0

Plugging expressions for i1 and i2 derived from the first two equations into the last one, we
get

15 − v2 v2
− = −10

3 2 so
v2 = 18

And now it’s easy to see that i1 = −1, i2 = 9, and i4 = 1.

NVCC Shortcut
If we want to shortcut the NVCC method, we can follow the first three steps above, but then try
to go straight to versions of the KCL equations that substitute in expressions for current that are
derived from the constituent constraints. So, we could observe that if v3 = 0 then v1 = 15. And
then we could write the KCL equations as:

15 − v2
− i4 − = 0

3

15 − v2 v2

+ 10 − = 0
3 2

Solving the second equation we find that v2 = 18; from this we can easily determine the other
relevant quantities.

6.4.4 Node method (optional)
Node analysis is similar to NVCC, but with the goal of writing down one equation per node.

We can further simplify the node representation of circuits that contain voltage sources. When a
voltage source connects two nodes, it constrains the two node voltages so that one can be deter­
mined from the other, as shown in the following figure, where e0 in the previous figure is taken
as ground.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 251

+
−
V0

+

−

v1

+

−
v2

+

−
v3

+

−
v4

+

−
v5

+ −v6
e1 e2

gnd

V0

So far, we have seen that node voltages are a concise representation of all of the information that is
necessary to compute the element voltages of a circuit. Furthermore, node voltages automatically
guarantee that KVL is satisfied by all of the element voltages. To complete the analysis of a circuit
using node voltages, we must next consider the element currents and KCL.

In general, one can write KCL at each of the nodes of a circuit. However, as we saw in
TeachYourself 2, one of those equations will always be linearly dependent on the others. Thus, if
the circuit has n nodes, we can write n − 1 independent KCL equations.

If there are no voltage sources in the circuit, then we can express each KCL equation as a sum
of element currents that can each be determined from the node voltages by using the element’s
constitutive equation. The result is a system of n−1 KCL equations that can be expressed in terms
of n − 1 node voltage variables.

If there are voltage sources in the circuit, then two additional issues arise. First, each voltage
source connects two nodes, but is represented by just one node variable (since the voltage of the
source determines the voltage at the other node). Second, the current through a voltage source
cannot be determined from its constitutive equation. The constitutive equation for a voltage
source is vs = V0, which must be true for all currents. Thus, knowing that vs = V0 provides
no information about the current through the source. These constraints are illustrated below.

+
−

V0

i1
i2
i3

i4
i5
i6

ek

ek + V0

A consistent set of equations can be derived by treating the entire voltage source as a single node,
represented by the dashed green box above. The KCL equation for that node,

i1 + i2 + i3 + i4 + i5 + i6 = 0

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 252

involves element currents that can each be written (using their constitutive equations) in terms of
node voltages outside the box plus ek and ek + V0. Like the KCL equations outside the box, this
KCL equation adds a single new unknown, which is ek.

Example 12. Does the above analysis imply that the current through the voltage source
is zero?

No. Let iv represent the current through the voltage source. KCL at the top node requires that

i1 + i2 + i3 + iv = 0

KCL at the bottom node requires that

i4 + i5 + i6 − iv = 0

The sum of these equations is the KCL equation given above for the dashed green box. It holds
reguardless of the value of the current through the voltage source. To find the value of the current
through the current source, first solve for i1, i2, i3, i4, i5, i6, and ek, ignoring iv. Then iv =

−(i1 + i2 + i3), which will be the same as i4 + i5 + i6.

Teach Yourself 7.	 How would you handle a circuit in which i1 (above) connects directly to
another voltage source outside the dashed green box?

Node Analysis: Summary
• Assign a voltage expression to each node in the circuit, as follows:

− Assign a voltage of zero to one node, which is called the “ground.”
− Assign voltages to nodes that are connected to voltage sources so that the voltage

source relations are satisfied:
? If the voltage on one terminal of a voltage source is known (e.g., ground), then use

the voltage source relation to determine the node voltage on the other terminal.
? If neither terminal of the voltage source connects to a known voltage, then assign

a variable to represent the node voltage at one terminal and use the voltage source
relation to determine the node voltage at the other terminal.

− Assign variables to represent the voltages at all remaining nodes.
• For each element in the circuit that is not a voltage source, use the associated constitu­

tive law to express the current through the element in terms of the node voltages at its
terminals.

• Write one KCL equation for each unknown node voltage, as follows:
− Express KCL for each node that is not connected to a voltage source as a sum of ele­

ment currents.
− For each voltage source, write a single KCL to express the sum of currents entering

the nodes connected to both its positive and negative terminals.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 253

6.4.5 Common Patterns
There are some common patterns of resistors that are important to understand and that can be
used over and over again as design elements. In this section, we will lead into a systematic
approach to solving circuits. The first step in that approach is to associate voltages with nodes
(points at which components connect) in the circuit rather than with the components themselves.
This only makes sense if we establish a fixed reference voltage. We pick a particular node in
the circuit (it won’t matter which one, but it is, for example, conventional to pick the negative
terminal of a voltage source) and call it ground and assert that it has voltage 0. Now, when
we speak of a node in the circuit having voltage v, what we mean is that the voltage difference
between that node and the ground node is v. Ground is indicated in a circuit diagram by a special
single-terminal component made of three parallel lines.

6.4.5.1 Resistors in series
The figure below shows two resistors connected together in a circuit with a voltage source, the
negative terminal of which is connected to ground.

Vc

n2

n3

n1
RA

RB

iA

iB

iC

It induces a simple set of constraints (remember that we don’t need a KVL equation for the ground
node):

iA − iC = 0

iB − iA = 0

v3 = 0

v1 − v2 = iA RA·

v3 − v1 = iB RB·

v2 − v3 = Vc

What happens when we solve? First, it’s easy to see that because there’s a single loop, KCL
implies that the current across each of the nodes is the same. Let’s call it i. Now, we can add
together the fourth and fifth equations, and then use the last equation to get

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 254

v3 − v2 = iARA + iBRB

v3 − v2 = i(RA + RB)

− Vc = i(RA + RB)

Vc
− i =

RA + RB

The interesting thing to see here is that we get exactly the same result as we would have had if
there were a single resistor R, with resistance RA +RB. So, if you ever see two or more resistors in
series in a circuit, with no other connections from the point between them to other components,
you can treat them as if it were one resistor with the sum of the resistance values. This is a nice
small piece of abstraction.

It might bother you that we got something that looks like v = −iR instead of v = iR. Did we do
something wrong? Not really. The reason that it seems funny is that the directions we picked for
the currents iA and iB turn out to be “backwards”, in the sense that, in fact, the current is running
in the other direction, given the way we hooked them up to the voltage source. But the answer is
still correct.

Exercise 6.2. Consider the circuit we just analayzed. You should be able to construct an
equivalent circuit with only one resistor. What is its resistance value?

6.4.5.2 Resistors in parallel

Now, in this figure,

Vc

n2

n1

RARB

iAiB

iC

we have a simple circuit with two resistors in parallel. Even though there are a lot of wires
being connected together, there are really only two nodes : places where multiple components are
connected. Let’s write down the equations governing this system.

First, applying KCL to n1,

iA + iB − iC = 0 .

Now, setting v2 to ground, and describing the individual components, we have:

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 255

v2 = 0

v2 − v1 = iA RA·

v2 − v1 = iB RB·

v1 − v2 = Vc

We can simplify this last set of constraints to

− VC = iA RA·

− VC = iB RB·
so

Vc
iA = −

RA

Vc
iB = −

RB

Plugging these into the KCL equation, we get:

iA + iB − iC = 0

Vc Vc
− − = iC

RA RB

RA + RB
− Vc = iC

RARB

RARB

− Vc = iC

RA + RB

What we can see from this is that two resistances, RA and RB, wired up in parallel, act like a single
resistor with resistance

RARB
.

RA + RB

This is another common pattern for both analysis and design. If you see a circuit with parallel
resistors connected at nodes n1 and n2, you can simplify it to a circuit that replaces those two
paths between n1 and n2 with a single path with a single resistor.

To get some intuition, think about what happens when RA is much bigger than RB. Because the
voltage across both resistors is the same, it must be that the current through RA is much smaller
than the current through RB. The appropriate intuition here is that current goes through the
resistor that’s easier to pass through.

Exercise 6.3. If RA = 10000Ω and RB = 10Ω, what is the effective resistance of RA and
RB in parallel?

6.4.5.3 Voltage divider
The figure below shows part of a circuit, in a configuration known as a voltage divider.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 256

nin

nout

n0

RB

RA

iA

iB

Using what we know about circuit constraints, we can determine the following relationship be­
tween Vout and Vin:

RB
Vout = Vin .

RA + RB

Let’s go step by step. Here are the basic equations:

v0 = 0

iA − iB = 0

Vin − Vout = iARA

Vout − v0 = iBRB

We can start by seeing that iA = iB; let’s just call it i. Now, we add the last two equations to each
other, and do some algebra:

Vin − v0 = iRA + iRB

Vin = i(RA + RB)

Vin
i =

RA + RB

Vin − Vout = iRA

RA
Vin − Vout = Vin

RA + RB

Vin(RA + RB) − Vout(RA + RB) = VinRA

VinRB = Vout(RA + RB)

RB

Vout = Vin

RA + RB

So, for example, if RA = RB, then Vout = Vin/2. This is a very handy thing: if you need a voltage
in your circuit that is between two values that you already have available, you can choose an
appropriate RA and RB to create that voltage.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 257

0, we were assuming that there was no current flowing

with a resistor RL standing for what-

Well, almost. When we wrote iA − iB =

out Vout. But, of course, in general, that won’t be true. Consider the following figure:

nin

nout

n0

RB

RA

RL

iA

iB iL

We’ve shown an additional “load” on the circuit at Vout

ever resistance that additional load might offer to the ground node n0. This changes matters
considerably.

To see what is going to happen, we could solve the whole circuit again. Or, we could observe
that, between the node labeled Vout and n0, we have two resistances, RB and RL in parallel. And
we’ve already see that resistances in parallel behave as if they are a single resistor with value
RBRL/(RB + RL). So, (you do the algebra), our result will be that

RB
Vout = Vin .

RA + RB + RARB
RL

The lesson here is that the modularity in circuits is not as strong as that in programs or our dif­
ference equation models of linear systems. How a circuit will behave can be highly dependent on
how it is connected to other components. Still, the constraints that it exerts on the overall system
remain the same.

6.5 Circuit Equivalents
We just saw that pieces of circuits cannot be abstracted as input/output elements; the actual volt­
ages and currents in them will depend on how they are connected to the rest of a larger circuit.
However, we can still abstract them as sets of constraints on the values involved.

In fact, when a circuit includes only resistors, current sources, and voltage sources, we can derive
a much simpler circuit that induces the same constraints on currents and voltages as the original
one. This is a kind of abstraction that’s similar to the abstraction that we saw in linear systems:
we can take a complex circuit and treat it as if it were a much simpler circuit.

If somebody gave you a circuit and put it in a black box with two wires coming out, labeled + and
-, what could you do with it? You could try to figure out what constraints that box puts on the
voltage between and current through the wires coming out of the box.

Chapter 6 Circuits	 6.01— Spring 2011— April 25, 2011 258

We can start by figuring out the open-circuit voltage across the two terminals. That is the voltage
drop we’d see across the two wires if nothing were connected to them. We’ll call that Voc. Another
thing we could do is connect the two wires together, and see how much current runs through
them; this is called the short-circuit current. We’ll call that isc.

Because all of the relationships in our circuits are linear, these two values are sufficient to char­
acterize the constraint that this whole box will exert on a circuit connected to it. The constraint
will be a relationship between the voltage across its terminals and the current flowing through
the box. We can derive it by using Thévenin’s theorem:

Any combination of current sources, voltage sources, and resistances with two terminals can
be replaced by a single voltage source Vth and a single series resistor Rth. The value of Vth

is the open circuit voltage at the terminals Voc, and the value of Rth is Vth divided by the
current with the terminals short circuited (−isc).

Let’s look at a picture, then an example.

+

-
VTH

iTH

RTH n+

n-

i

Here, we show a picture of a black (well, gray) box, abstracted as being made up of a circuit with
a single voltage source Vth and a single resistor Rth in series. The open-circuit voltage from n+

to n− is clearly Vth. The short-circuit current isc (in the direction of the arrow) is −Vth/Rth. So,
this circuit would have the desired measured properties.42

Now, here is an actual circuit. We’ll compute its associated open-circuit voltage and short-circuit
current, construct the associated Thévenin equivalent circuit, and be sure it has the same proper­
ties.

42	 The minus sign here can be kind of confusing. The issue is this: when we are treating this circuit as a black box with
terminals n+ and n−, we think of the current flowing out of n+ and in to n−, which is consistent with the voltage
difference Vth = V+ − V−. But when we compute the short-circuit current by wiring n+ and n− together, we are
continuing to think of isc as flowing out of n+, but now it is coming out of n− and in to n+, which is the opposite
direction. So, we have to change its sign to compute Rth.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 259

+

-
VS

RA n+

n-

i

RB

n1

The first step is to compute the open-circuit voltage. This just means figuring out the difference
between the voltage at nodes n+ and n−, under the assumption that the current i = 0. An easy
way to do this is to set n− as ground and then find the node voltage at n+. Let’s write down the
equations:

v+ − v1 = iARA

v1 − v− = Vs

v+ − v− = iBRB

− iA − iB = 0

iA − iS = 0

v− = 0

We can solve these pretty straightforwardly to find that
RB

v+ = Vs .
RA + RB

So, we know that, for this circuit, Vth = Vs RA

R
+
B
RB

.

Now, we need the short-circuit current, isc. To find this, imagine a wire connecting n+ to n−; we
want to solve for the current passing through this wire. We can use the equations we had before,
but adding equation 6.1 wiring n+ to n−, and adding the current isc to the KCL equation 6.2.

v+ − v1 = iARA

v1 − v− = Vs

v+ − v− = iBRB

v+ = v− (6.1)

isc − iA − iB = 0 (6.2)

iA − iS = 0

v− = 0

We can solve this system to find that

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 260

Vs
isc = − ,

RA
and therefore that

Vth
Rth = −

isc

RB Vs

= Vs

RA + RB RA

RARB

=

RA + RB

What can we do with this information? We could use it during circuit analysis to simplify parts of
a circuit model, individually, making it easier to solve the whole system. We could also use it in
design, to construct a simpler implementation of a more complex network design. One important
point is that the Thévenin equivalent circuit is not exactly the same as the original one. It will
exert the same constraints on the voltages and currents of a circuit that it is connected to, but will,
for example, have different heat dissipation properties.

6.5.1 Example
Here’s another example.

+

-
VS

RA n+

n-

i

RC

n1

RD

RB

+

-
7.5V

2KΩ n+

n-

i

Another example circuit Its Thévenin equivalent

It’s a bit more hassle than the previous one, but you can write down the equations to describe
the constituents and KCL constraints, as before. If we let RA = 2KΩ, RB = RC = RD = 1KΩ,
and VS = 15V , then we can solve for Vth = 7.5V and Rth = 2KΩ. So, it is indistinguishable by
current and voltage from the circuit shown in the equivalent circuit.

Here is the same circuit, but with the connections that run outside the box made to different nodes
in the circuit.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 261

+

-
VS

RA

n+

n-

iRC

n1

RD

RB

+

-
3.75V

1750Ω n+

n-

i

Same circuit, different ports Its Thévenin equivalent

Note also that the top lead is marked n− and the bottom one n+. If we solve, using the same
values for the resistors and voltage source as before, we find that Vth = −3.75V and Rth =

1750Ω. We show the Thévenin equivalent circuit next to the original. We’ve changed the polarity
of the voltage source and made it 3.75V (instead of having the + terminal at the top and a voltage
of -3.75), but that’s just a matter of drawing.

These results are quite different: so, the moral is, it matters which wires you connect up to what!

6.5.2 Norton Equivalents
It is also possible to derive an equivalent circuit consisting of a single resistor in parallel with a
single current source. Such a circuit is called a Norton equivalent circuit. The process for deriving
Norton equivalents is similar in spirit to the process outlined above.

6.6 Op Amps
So far, we have considered circuits with resistors, voltage sources, and current sources. Now
we are going introduce a new component, called an operational amplifier or op-amp, for short.
Op-amps are a crucial tool for decoupling some aspects of complex circuits, so that they can
be designed independently and then connected. They are also important for amplifying small
voltage differences into larger ones, and can be used to scale, invert, and add voltages.

6.6.1 Voltage-controlled voltage sources
In fact, op-amps are complex assemblages of transistors and other circuit components. We’ll need
a simpler model than that of what they do, so that we can analyze circuits that contain them, and
design new circuits that use them.

We will think about an op-amp as a voltage-controlled voltage source (VCVS). Op-amps have
four terminals, two of which are often called the input terminals and two, the output terminals.
We can think of the op-amp as a voltage source, in which the voltage difference across the output
terminals is controlled by the voltage difference between the input terminals. The crucial thing
about a voltage source is that it maintains the voltage difference that it is trying to source, no
matter what it is connected to.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 262

n-

n+ nout

K(v+− v−)

ngnd

i

A model of the constraint that an op-amp exerts on the circuit it is connected to relates the voltages
at its four terminals in this way:

vout − vgnd = K(v+ − v−) ,

where K is a very large gain, on the order of 10,000, and asserts that no current flows into the op
amp.

i+ = i− = 0 .

So, we can think of nout and ngnd as constituting a voltage source, whose voltage is defined to
be K(v+ − v−). We can see it as amplifying the voltage difference v+ − v−. It’s hard to really
understand how this model works without seeing it in context. So, we’ll study an op-amp that is
wired up in a configuration called a voltage follower :

n-

n+ nout

+

-
VC

K(v+− v−)

i

Note that we have connected a wire from the output, nout, to the negative input, n−, and so those
constitute one node with a single voltage, which we call vout. We can write down the equations:

v+ = Vc

vout − vgnd = K(v+ − vout)

vgnd = 0

Solving this system, we find that

K

vout = Vc .

K + 1

So, for large K, the voltage difference between the output terminals is very close to the voltage
difference between the input terminals.

In this circuit we have set vgnd = 0; in practice this doesn’t matter. If we had left vgnd in our
equations, we would have found that:

K 1
vout = Vc + vgnd .

K + 1 K + 1

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 263

Since K is very large, that second term can be ignored. In fact, if you look at an actual op-amp,
you won’t even find an output corresponding to ngnd. Therefore, we will always treat it as being
zero.

The crucial additional fact about an op-amp is that no current flows between the input and output
terminals, so the op-amp acts as a buffer between the input and output signal. It provides a
disconnect between the currents on either side of it. This is a big deal: it gives us a kind of
modularity in our circuits that we haven’t had before, by limiting the kinds of influence of one
part of the circuit on the other. The ability to partially disconnect sub-parts of our circuits will
make it easier to do complex designs.

We can appreciate the value of a buffer in the context of using a variable voltage to control a motor.
If we have a 15V supply, but only want to put 7.5V across the motor terminals, what should we
do? A voltage divider seems like a good strategy: we can use one with two equal resistances, to
make 7.5V , and then connect it to the motor as shown here

nmotor

10K

+15V

RmotorMotor10K

But what will the voltage vmotor end up being? It all depends on the resistance of the motor. If the
motor is offering little resistance, say 100Ω, then the voltage vmotor will be very close to 0.43 So,
this is not an effective solution to the problem of supplying 7.5V to the motor.

So, now, back to the motor. In this figure,

43 Go back and review the discussion of adding a load to a voltage divider, if this doesn’t seem clear.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 264

n-

n+ nout

Rmotor

Motor

10K

+15V

10K

K(v+− v−)

i

we have used a voltage follower to connect the voltage divider to the motor. Based on our previ­
ous analysis of the follower, we expect the voltage at nout to be 7.5V , at least before we connect
it up to the motor. Let’s see how this all works out by writing the equations out for the whole
circuit: Letting the current through the top resistor be i1, the current through the second resistor
be i2, the current through the motor be im, and recalling that vout = v− (since they are the same
node), we have

i1 − i2 − i+ = 0

− iout − i− − im = 0

i+ = 0

i− = 0

(15 − v+) = 10000i1

(v+ − 0) = 10000i2

(v− − 0) = K(v+ − v−)

(v− − 0) = imRm

Solving these equations, we find that

v+ = 7.5

K

v− = 7.5

K + 1

K 7.5

im =
K + 1 Rm

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 265

So, now, the voltage across the motor stays near 7.5V , and because of the isolation provided by
the op-amp, it will remain that way, no matter what the resistance of the motor. Further, if in fact
the motor has resistance of 5Ω, then we can find that the (maximum) current through the motor,
im, is approximately 1.5A.

6.6.2 Simplified model
The voltage-controlled voltage-source model allows us to use our standard linear-equation form
of reasoning about circuit values, but it can become cumbersome to deal with the K’s all the time.
In most of the usual applications of an op-amp, we will find that we can use a simpler model to
reason about what is happening. That simpler model also comes with a simpler picture:

-

+

n-

n+
nout

The simplified behavioral model is that the op-amp adjusts vout in order to try to maintain the
constraint that v+ ≈ v− and that no current flows in to n+ or n−. In what follows we will assume
that the op-amp enforces v+ = v−.

In this section, we will explore several standard applications of op-amps, using this simplified
model. If it becomes confusing, you can always go back and apply the VCVS model from the
previous section.

Non-inverting amplifier
Not surprisingly, a primary use of an op-amp is as an amplifier. Here is an amplifier configuration,
like this.

-

+

n-

nin
nout

RI

RF

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 266

Let’s see if we can figure out the relationship between vin and vout. The circuit constraints tell us
that

v− = iIRI

v− − vout = iFRF

− iI − iF = 0 (6.3)

vin = v− (6.4)

The KCL equation (6.3) has no term for the current into the op-amp, because we assume it is zero.
Equation 6.4 is the op-amp constraint. So, we find that

RF + RI
vout = vin .

RI

This is cool. We’ve arranged for the output voltage to be greater than the input voltage. We can
get any gain (greater than one) by choosing the values of RF and RI.

We can think intuitively about how it works by examining some cases. First, if RF = 0, then we’ll
have vout = vin, so there’s not a particularly interesting change in the voltages. This is still a useful
device, essentially the voltage follower, which we have already seen, with an additional resistor.
This extra resistor does not change the voltage relationsips but does increase the current flowing
from the op-amp. Note also that choosing RI very much larger than RF also gives us a follower.

Now let’s think about a more interesting case, but simplify matters by setting RF = RI. We can
look at the part of the circuit running from Vout through RF and RI to ground. This looks a lot like
a voltage divider, with v− coming out of the middle of it. Because v− needs to be the same as vin,
and it is vout being divided in half, then vout clearly has to be 2vin.

Inverting amplifier
Here is a very similar configuration, called an inverting amplifier.

-

+

n-

nin

nout

RI RF

n+

The difference is that the + terminal of the op-amp is connected to ground, and the we’re think­
ing of the path through the resistors as the terminal of the resulting circuit. Let’s figure out the
relationship between vin and vout for this one. The circuit constraints tell us that

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 267

vin − v− = iIRI

v− − vout = iFRF

iI − iF = 0

v+ = v−

v+ = 0

Solving, we discover that
RF

vout = −vin .
RI

If RF = RI, then this circuit simply inverts the incoming voltage. So, for example, if vin is +10V

with respect to ground, then vout will be −10V . Again, we can see the path from nin through the
resistors, to nout, as a voltage divider. Knowing that v− has to be 0, we can see that vout has to
be equal to −vin. If we want to scale the voltage, as well as invert it, we can do that by selecting
appropriate values of RF and RI.

Voltage summer

A voltage summer 44 circuit, shown here, can be thought of as having three terminals, with the
voltage at nout constrained to be a scaled, inverted, sum of the voltages at n1 and n2.

-

+

n-

n1

nout

RI RF

n+

RIn2

You should be able to write down the equations for this circuit, which is very similar to the in­
verting amplifier, and derive the relationship:

RF
vout = − (v1 + v2) .

RI

6.6.3 Op-amps and feedback
We have now seen two different models of op-amps. Each of those models can be useful in some
circumstances, but now we’ll explore some situations that require us to use an even more detailed
and faithful model of how an op-amp really behaves.

44 As in thing that sums, not as in endless summer.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 268

Here are two voltage followers, a “good” one and a “bad” one.

-

+

n-

n+
nout

+

-
VC -

+

n-

n+
nout

+

-
VC

“Good” voltage follower “Bad” voltage follower

If we use our simplest model to predict their behavior, in both cases, we’ll predict that vout = Vc.
If we use the VCVS model, we’ll predict that, for the good follower vout = Vc

K . For the bad K+1

follower, things are connected a little bit differently:

v− = Vc

vout − vgnd = K(v+ − v−)

v+ = vout

vgnd = 0

Solving this system, we find that
K

vout = Vc .
K − 1

Those two predictions are basically the same for large K. But, in fact, the prediction about the
behavior of the bad follower is completely bogus! In fact, if you connect an op-amp this way, it
is likely to burn out, possibly generating smoke and noise in the process.

To see why this happens, we’ll actually need to make a more detailed model.

Dynamics model
Our new model is going to take the actual dynamics of the circuit into account. We can model
what is going on in an op-amp by using a difference equation to describe the value of the output
at a time n as a linear function of its values at previous times and of the values of v+ and v−.

Note that we’re using vo = vout in the following.

You might imagine that the way the op-amp ’tries’ to make Vo equal K(V+ − V−) is by gradually
adjusting Vo to decrease the error, E, making adjustments that are proportional, with a positive
’gain’ g, to the error. That is, that

vo[t] = vo[t − 1] − g e[t − 1]·

= vo[t − 1] − g (vo[t − 1] − K(v+[t − 1] − v−[t − 1])) (6.5)·

We would expect this system to adjust vo to be closer to K(v+ − v−) on every step. The gain g is
a property of the design of the op-amp.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 269

Now, what happens when we use this model to predict the temporal behavior of the voltage
followers? Let’s start with the good one.

Good follower
In this case, we have v−[t] = vo[t] for all t. So, equation 6.5 becomes

vo[t] = vo[t − 1] − g (vo[t − 1] − K(v+[t − 1] − vo[t − 1])) ·

= (1 − g − gK)vo[t − 1] + gKv+[t − 1]

Writing this as an operator equation, and then a system function, we get

Vo = (1 − g − gK)RVo + gKRV+

Vo(1 − R(1 − g − gK)) = gKRV+

Vo gKR
=

V+ 1 − R(1 − g − gK)

This system has a pole at 1 − g − gK, so if we let g = 1/(1 + K), then we have a pole at 0, which
means the system will, ideally, converge in a single step, with

K
Vo = RV+ ,

K + 1

which agrees with our previous model.

Bad follower
In this case, we have v+[t] = vo[t] for all t. This time, equation 6.5 becomes

vo[t] = vo[t − 1] − g (vo[t − 1] − K(vo[t − 1] − v−[t − 1])) ·

= (1 − g + gK)vo[t − 1] − gKv−[t − 1]

Writing this as an operator equation, and finding the system function, we get

Vo = (1 − g + gK)RVo − gKRV−

Vo(1 − R(1 − g + gK)) = −gKRV−

Vo −gKR
=

V− 1 − R(1 − g + gK)

This system has a pole at 1−g+gK, so with g = 1/(1+K) as before, we have a pole at 2K/(1+K),
which means the system will diverge for large positive values of K. There is no positive value of
g that will make this system stable (and, if we were to pick a negative value, it would make the
good follower become a bad follower).

The prediction we get for g = 1/(1+K) agrees with the empirical behavior of op-amps, at least in
so far as op-amps wired up in feedback to the postive input terminal do not converge to a stable
output voltage, but typically burn themselves out, or behave otherwise unpredictably.

Chapter 6 Circuits 6.01— Spring 2011— April 25, 2011 270

6.6.4 Where does the current come from?
In all of the models we have seen so far, we’ve left out an important point. As you know from
lab, op-amps, in fact, need two more connections, which is to VCC, the main positive voltage
supply, and to VEE/GND, which is the negative power supply (which can be ground). Why? If no
current flows “through” the op-amp, from n+ or n− to the other side, then how can it maintain
the necessary voltage difference on the output side, and supply current to, e.g., drive the motor?
The answer is that it uses current from the power supplies to regulate the output voltage and to
supply the necessary output current.

One metaphorical way of thinking about this is that VCC is a big main water-supply pipe and that
v+ − v− is the controlling the handle of a faucet. As we change the size of the difference v+ − v−,
we open or close the faucet; but the water is being supplied from somewhere else entirely.

This metaphor is appropriate in another way: the total voltage on the output of the op-amp is
limited by VCC. So, if the VCC = 10, then the output of the op-amp is limited to be between 0
and 10. If we connect the ground connection of the op-amp to a negative supply voltage, then the
output of the op-amp can be negative as well as positive; this has many applications.

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 271

Chapter 7
Probabilistic State Estimation

Consider trying to drive through an unfamiliar city. Even if we are able to plan a route from our
starting location to our destination, navigation can fail on two counts: sometimes we don’t know
where we are on a map, and sometimes, due to traffic or road work or bad driving, we fail to
execute a turn we had intended to take.

In such situations, we have some information about where we are: we can make observations of
our local surroundings, which give us useful information; and we know what actions we have
taken and the consequences those are likely to have on our location. So, the question is: how can
we take information from a sequence of actions and local observations and integrate it into some
sort of estimate of where we are? What form should that estimate take?

We’ll consider a probabilistic approach to answering this question. We’ll assume that, as you
navigate, you maintain a belief state which contains your best information about what state you’re
in, which is represented as a probability distribution over all possible states. So, it might say that
you’re sure you’re somewhere in Boston, and you’re pretty sure it’s Storrow drive, but you don’t
know whether you’re past the Mass Ave bridge or not (of course, it will specify this all much more
precisely).

We’ll start by defining probability distributions on simple and complex spaces, and develop a
set of methods for defining and manipulating them. Then, we’ll formulate problems like the
navigation problem discussed above as state estimation problems in stochastic state machines.
Finally, we’ll develop an algorithm for estimating the unobservable state of system, based on
observations of its outputs.

7.1 State spaces
We have been using state machines to model systems and how they change over time. The state
of a system is a description of the aspects of the system that allow us to predict its behavior over
time. We have seen systems with finite and infinite state spaces:

A basic enumeration of states, such as (’closed’, ’closing’, ’open’, ’opening’) for•
an elevator controller, we will call an atomic finite state space. The states are atomic because
they don’t have any further detailed structure.

•	 A state space that is described using more than one variable, such as a counter for seconds that
goes from 0 to 59 and a counter for minutes that goes from 0 to 59 can be described as having
two state variables : seconds and minutes. We would say that this state space is factored : a
state is actually described by a value of each of the two variables.

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 272

•	 A state space described by a single integer is a countably infinite atomic state space.

•	 A state space described by a real number is uncountably infinite, but still atomic.

•	 A state space described by more than one integer or real number (or a combination of contin­
uous and discrete state variables) is a factored state space.

In this chapter, we will concentrate on factored, finite state spaces, and see how to represent and
manipulate probability distributions on them.

7.2 Probability distributions on atomic state spaces
Probability theory is a calculus that allows us to assign numerical assessments of uncertainty to
possible events, and then do calculations with them in a way that preserves their meaning. (A
similar system that you might be more familiar with is algebra: you start with some facts that you
know, and the axioms of algebra allow you to make certain manipulations of your equations that
you know will preserve their truth).

The typical informal interpretation of probability statements is that they are long-term frequen­
cies: to say “the probability that this coin will come up heads when flipped is 0.5” is to say that, in
the long run, the proportion of flips that come up heads will be 0.5. This is known as the frequen­
tist interpretation of probability. But then, what does it mean to say “there is a 0.7 probability that
it will rain somewhere in Boston sometime on April 29, 2017”? How can we repeat that process
a lot of times, when there will only be one April 29, 2017? Another way to interpret probabilities
is that they are measures of a person’s (or robot’s) degree of belief in the statement. This is some­
times referred to as the Bayesian interpretation. In either interpretation, the formal calculus is the
same.

So, studying and applying the axioms of probability will help us make true statements about
long-run frequencies and make consistent statements about our beliefs by deriving sensible con­
sequences from initial assumptions.

We will restrict our attention to discrete sample spaces45, so we’ll let U be the universe or sample
space, which is a set of atomic events. An atomic event is just a state: an outcome or a way the
world could be. It might be a die roll, or whether the robot is in a particular room, for example.
Exactly one (no more, no less) event in the sample space is guaranteed to occur; we’ll say that the
atomic events are “mutually exclusive” (no two can happen at once) and “collectively exhaustive”
(one of them is guaranteed to happen).

45 In probability, it is typical to talk about a ’sample space’ rather than a ’state space’, but they both come to the same
thing: a space of possible situations.

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 273

The sample space for a coin flip might be {H, T}, standing for heads
Example 13.

•
and tails.
The sample space for a sequence of three coin flips might be {HHH,•
HHT, HTH, HTT, THH, THT, TTH, TTT}: all possible sequences of
three heads or tails.

•	 The sample space for a robot navigating in a city might be the set of
intersections in the city.

•	 The sample space for a randomly generated document might be all
strings of fewer than 1000 words drawn from a particular dictionary.

An event is a subset of U; it will contain zero or more atomic events.

An event in the three-coin-flip space might be that there are at least two
Example 14.

•
heads: {HHH, HHT, HTH, THH}.

•	 An event in the robot navigation problem might be that the robot is
within one mile of MIT.

•	 An event in the document domain might be that the document con­
tains, in sequence, the words ’6.01’ and ’rules’.

A probability measure Pr is a mapping from events to numbers that satisfy the following axioms:

Pr(U) = 1

Pr({}) = 0

Pr(E1 ∪ E2) = Pr(E1) + Pr(E2) − Pr(E1 ∩ E2)

Or, in English:

•	 The probability that something will happen is 1.

•	 The probability that nothing will happen is 0.

•	 The probability that an atomic event in the set E1 or an atomic event in the set E2 will happen
is the probability that an atomic event of E1 will happen plus the probability that an atomic
event of E2 will happen, minus the probability that an atomic event that is in both E1 and
E2 will happen (because those events effectively got counted twice in the sum of Pr(E1) and
Pr(E2)).

Armed with these axioms, we are prepared to do anything that can be done with discrete proba­
bility!

Conditional probability
One of the most important operations in probabilistic reasoning is incorporating evidence into
our models. So, we might wonder what the probability of an event is given or conditioned on
some other relevant information we have received. For example, we might want to know the
probability of getting a die roll greater than 3, if we already know that the die roll will be odd.

∑

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 274

We will write conditional probabilities as Pr(E1 | E2), pronounced “the probability of E1 given
E2”, where E1 and E2 are events (subset of the atomic sample space). The formal definition of
conditional probability is this:

Pr(E1 ∩ E2)
Pr(E1 | E2) = .

Pr(E2)

In the figure below, E1 is the red ellipse, E2 is the blue ellipse, and E1∩E2 is the purple intersection.
When we condition on E2, we restrict our attention entirely to the blue ellipse, and ask what
percentage of the blue ellipse is also in the red ellipse. This is the same as asking for the ratio of
the purple intersection to the whole blue ellipse.

U

E1 E2

Example 15.	 What is the conditional probability of getting a die roll greater than 3, given
that it will be odd? The probability of a die roll greater than 3 (in a fair six-
sided die) is 1/2. But if we know the roll will be odd, then we have to
consider ratio of the probabilities of two events: that the die roll will be
odd and greater than three, and that the die roll will be odd. This is 1/6
divided by 1/2, which is 1/3. So, learning that the die roll will be odd
decreases our belief that it will be greater than three.

7.3 Random variables
Just as some state spaces are naturally described in their factored form (it’s easier to say that there
are 10 coins, each of which can be heads or tails, than to enumerate all 210 possible sequences),
we often want to describe probability distributions over one or more variables. We will call a
probability distribution that is described over one dimension of a state space a random variable.

A discrete random variable is a discrete set of values, v1 . . . vn, and a mapping of those values to
probabilities p1 . . . pn such that pi ∈ [0, 1] and i pi = 1. So, for instance, the random variable
associated with flipping a somewhat biased coin might be {heads : 0.6, tails : 0.4}. We will speak
of random variables having distributions: so, for example, two flips of the same biased coin are
actually two different random variables, but they have the same distribution.

In a world that is appropriately described with multiple random variables, the atomic event space
is the Cartesian product of the value spaces of the variables. So, for example, consider two ran­
dom variables, C for cavity and A for toothache. If they can each take on the values T or F (for
true and false), then the universe is pairs of values, one for each variable:

C× A = {(T, T), (T, F), (F, T), (F, F)} .

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 275

We will systematically use the following notation when working with random variables:
•	 A: capital letters stand for random variables;
•	 a: small letters stand for possible values of random variables; so a is an element of the domain

(possible set of values) of random variable A;
•	 A = a: an equality statement with a random variable in it is an event: in this case, the event

that random variable A has value a

Some non-atomic events in a universe described by random variables A and C might be C = c

(which includes atomic events with all possible values of A), or C = A (which includes all atomic
events consisting of pairs of the same value).

Joint distribution
The joint distribution of a set of random variables is a function from elements of the product space
to probability values that sum to 1 over the whole space. So, we would say that (C = c, A = a)

(with a comma connecting the equalities), which is short for (C = c and A = a) is an atomic
event in the joint distribution of C, A.

In most of our examples, we’ll consider joint distributions of two random variables, but all of
the ideas extend to joint distributions over any finite number of variables: if there are n random
variables, then the domain of the joint distribution is all n-tuples of values, one drawn from the
domain of each of the component random variables. We will write Pr(A, B, . . . , N) to stand for
an entire joint distribution over two or more variables.

Conditional distribution
In section 7.2 we gave the basic definition of conditional probabilities, in terms of events on
atomic subspaces. Sometimes, it will be useful to define conditional probabilities directly. A
conditional probability distribution, written Pr(A | B), where A and B are random variables (we
can generalize this so that they are groups of random variables), is a function from values, b, of
B, to probability distributions on A. We can think of it this way:

Pr(A | B) = λb. Pr(A | B = b)

Here, we are using λ in the same way that it is used in Python: to say that this is a function that
takes a value b as an argument, and returns a distribution over A.

Example 16. Conditional distributions are often used to model the efficacy of medical
tests. Consider two random variables: D, which has value disease if some­
one has a disease and value nodisease otherwise; and T , which has value
positive if the test comes out positive and value negative otherwise. We
can characterize the efficacy of the test by specifying Pr(T | D), that is, a
conditional distribution on the test results given whether a person has the
disease. We might specify it as:

Pr(T | D) =

{
{positive : 0.99, negative : 0.01} if D = disease
{positive : 0.001, negative : 0.999} if D = nodisease

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 276

7.3.1 Python representations of distributions
We can represent distributions in Python in a number of ways. We’ll use a simple discrete dis­
tribution class, called DDist, which stores its entries in a dictionary, where the elements of the
sample space are the keys and their probabilities are the values.

class DDist:

def __init__(self, dictionary):

self.d = dictionary

The primary method of the DDist class is prob, which takes as an argument an element of the
domain of this distribution and returns the probability associated with it. If the element is not
present in the dictionary, we return 0. This feature allows us to represent distributions over large
sets efficiently, as long as they are sparse, in the sense of not having too many non-zero entries.

def prob(self, elt):

if elt in self.d:

return self.d[elt]

else:

return 0

(The expression elt in self.d is a nicer way to say self.d.has_key(elt). That is a call to a
built-in method of the Python dictionary class, which returns True if the dictionary contains the
key elt and False otherwise.)

It is useful to know the support of the distribution, which is a list of elements that have non­
zero probability. Just in case there are some zero-probability elements stored explicitly in the
dictionary, we filter to be sure they do not get returned.

def support(self):

return [k for k in self.d.keys() if self.prob(k) > 0]

If we want to use the probability distribution to make a simulation, or to do something like shuffle
or deal cards, it’s useful to be able to draw from it. This method returns an element from the
sample space of the distribution, selected at random according to the specified distribution.

def draw(self):

r = random.random()

sum = 0.0

for val in self.support():

sum += self.prob(val)

if r < sum:

return val

We can represent a joint distribution on two random variables simply as a DDist on pairs of their
values. So, for example, this distribution

dist.DDist({(0, 0) : 0.5, (0, 1): 0.2, (1, 0): 0.1, (1, 1): 0.2})

can be seen as the joint distribution on two random variables, each of which can take on values 0
or 1. (Remember that expressions like key1 : v1, key2 : v2 create a new dictionary).

{

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 277

Finally, we will represent conditional distributions as Python procedures, from values of the con­
ditioning variable to distributions on the conditioned variable. This distribution

{positive : 0.99, negative : 0.01} if D = disease
Pr(T | D) =

{positive : 0.001, negative : 0.999} if D = nodisease

would be represented in Python as

def TgivenD(D):

if D == ’disease’:

return dist.DDist({’positive’ : 0.99, ’negative’ : 0.01})

elif D == ’nodisease’:

return dist.DDist({’positive’ : 0.001, ’negative’ : 0.999})

else:

raise Exception, ’invalid value for D’

To find a value for Pr(T = negative | D = disease), we would evaluate this Python expression:

>>> TgivenD(’disease’).prob(’negative’)

7.4 Operations on random variables
Now that we can talk about random variables, that is, distributions over their sets of values,
we can follow the PCAP principle to define a systematic way of combining them to make new
distributions. In this section, we will define important basic operations.

7.4.1 Constructing a joint distribution
A convenient way to construct a joint distribution is as a product of factors. We can specify a joint
distribution on C and A by the product of a distribution Pr(A) and a conditional distribution
Pr(C | A) by computing the individual elements of the joint, for every pair of values a in the
domain of A and c in the domain of C:

Pr(C = c, A = a) = Pr(C = c) Pr(A = a | C = c)

It is also true that

Pr(C = c, A = a) = Pr(A = a) Pr(C = c | A = a)

Exercise 7.1. Use the definition of conditional probability to verify that the above for­
mulas are correct.

{

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 278

Example 17. In the domain where the random variable C stands for whether a person
has a cavity and A for whether they have a toothache, we might know:
• The probability of a randomly chosen patient having a cavity:

Pr(C) = {T : 0.15, F : 0.85}

• The conditional probability of someone having a toothache given that
they have a cavity:

Pr(A | C) =

{
{T : 0.333, F : 0.667} if C = T

{T : 0.0588, F : 0.9412} if C = F

Then we could construct the following table representing the joint distrib­
ution:

C

T F

A
T 0.05 0.05

F 0.1 0.8

The numbers in the table make up the joint probability distribution. They
are assignments of probability values to atomic events, which are complete
specifications of the values of all of the random variables. For example,
Pr(C = T, A = F) = 0.1; that is, the probability of the atomic event that
random variable C has value T and random variable A has value F is 0.1.
Other events can be made up of the union of these primitive events, and
specified by the assignments of values to only some of the variables. So,
for instance, the event A = T is really a set of primitive events: {(A =

T, C = F), (A = T, C = T)}, which means that
Pr(A = T) = Pr(A = T, C = T) + Pr(A = T, C = F) ,

which is just the sum of the row in the table.

Here is another example of forming a joint distribution. Imagine that we are given the following
distributions:

Pr(A) = {a1 : 0.9, a2 : 0.1}

{b1 : 0.7, b2 : 0.3} if A = a1
Pr(B | A) =

{b1 : 0.2, b2 : 0.8} if A = a2

You can visualize the joint distribution spatially, like this:

∑

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 279

A = a1, B = b1

A = a1, B = b2

A = a2, B = b2

A = a2, B = b1

The sample space is divided vertically according to the distribution Pr(A), and then, for each
value of A, it is divided horizontally according to the distribution Pr(B | A = a). This joint
distribution is represented numerically by the table:

A

a1 a2

B
b1

b2

0.63

0.27

0.02

0.08

We can also think of this joint distribution as just another regular distribution on a larger state
space:

Pr(A, B) = {(a1, b1) : 0.63, (a1, b2) : 0.27, (a2, b1) : 0.02, (a2, b2) : 0.08}

More generally, we can construct a joint distribution on an arbitrary number of random variables,
Pr(V1, . . . , Vn), as follows:

Pr(V1 = v1, . . . , Vn = vn) = Pr(V1 = v1 | V2 = v2, . . . , Vn = vn)

Pr(V2 = v2 | V3 = v3, . . . , Vn = vn)·

. . .

Pr(Vn−1 = vn−1 | Vn = vn)·

Pr(Vn = vn)·

This can be done with the variables in any order.

7.4.2 Marginalization
A marginal distribution over any individual random variable can be obtained from the joint dis­
tribution by summing over all assignments to the other random variables in the joint distribution.
In two dimensional tables, this means summing the rows or the columns:

Pr(A = a) = Pr(A = a, B = b)

b

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 280

Example 18. In our example with toothaches and cavities, we can compute the marginal
distributions:

Pr(A) = {T : 0.1, F : 0.9}

Pr(C) = {T : 0.15, F : 0.85}

Although you can compute the marginal distributions from the joint distribution, you cannot in
general compute the joint distribution from the marginal distributions!! In the very special
case when two random variables A and B do not influence one another, we say that they are
independent, which is mathematically defined as

Pr(A = a, B = b) = Pr(A = a) Pr(B = b) .

If we only knew the marginals of toothaches and cavities, and assumed they were independent,
we would find that Pr(C = T, A = T) = 0.015, which is much less than the value in our joint
distribution. This is because, although cavity and toothache are relatively rare events, they are
highly dependent.

7.4.3 Conditioning
One more important operation on a joint distribution is conditioning. It is fundamentally the
same operation as computing a conditional probability, but when the conditioning event (on the
right hand side of the bar) is that a random variable has a particular value, then we get a nice
simplification. So, for example, if we wanted to condition our joint toothache/cavity distribution
on the event A = T , we could write Pr(C, A | A = T). But since the value for A is already made
explicit in the conditioning event, we typically write this as Pr(C | A = T). It is obtained by:

•	 Finding the row (or column) of the joint distribution corresponding to the conditioning event.
In our example, it would be the row for A = T , which consists of Pr(A = T, C = T) and
Pr(A = T, C = F).

•	 Dividing each of the numbers in that row (or column) by the probability of the conditioning
event, which is the marginal probability of that row (or column). In our example, we would
divide 0.05 by 0.1 to get

Pr(C | A = T) = {T : 0.5, F : 0.5}

So, in this example, although a cavity is relatively unlikely, it becomes much more likely condi­
tioned on knowing that the person has a toothache.

We have described conditioning in the case that our distribution is only over two variables, but
it applies to joint distributions over any number of variables. You just have to think of selecting
the entries whose value for the specified random variable equals the specified value, and then
renormalizing their probabilities so they sum to 1.

7.4.4 Bayesian reasoning
Frequently, for medical diagnosis or characterizing the quality of a sensor, it’s easiest to measure
conditional probabilities of the form Pr(Symptom | Disease), indicating what proportion of dis­
eased patients have a particular symptom. (These numbers are often more useful, because they

∑

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 281

tend to be the same everywhere, even though the proportion of the population that has disease
may differ.) But in these cases, when a patient comes in and demonstrates some actual symptom
s, we really want to know Pr(Disease | Symptom = s). We can compute that if we also know
a prior or base rate distribution, Pr(Disease). The computation can be done in two steps, using
operations we already know:

1.	 Form the joint distribution: Pr(Disease, Symptom)

2.	 Condition on the event Symptom = s, which means selecting the row (or column) of the joint
distribution corresponding to Symptom = s and dividing through by Pr(Symptom = s).

So, given an actual observation of symptoms s, we can determine a conditional distribution over
Disease, by computing for every value of d,

Pr(Symptom = s | Disease = d) Pr(Disease = d)
Pr(Disease = d | Symptom = s) =	 .

Pr(Symptom = s)

The formula, when written this way, is called Bayes’ Rule, after Rev. Thomas Bayes who first
formulated this solution to the ’inverse probability problem,’ in the 18th century.

7.4.5 Total probability
Another common pattern of reasoning is sometimes known as the law of total probability. What
if we have our basic distributions specified in an inconvenient form: we know, for example, Pr(A)

and Pr(B | A), but what we really care about is Pr(B)? We can form the joint distribution over
A and B, and then marginalize it by summing over values of A. To compute one entry of the
resulting distribution on B, we would do:

Pr(B = b) = Pr(B = b | A = a) Pr(A = a)
a

but it’s easier to think about as an operation on the whole distributions.

7.4.6 Python operations on distributions
We can implement the operations described in this section as operations on DDist instances.

Constructing a joint distribution
We start by defining a procedure that takes a distribution Pr(A), named PA, and a conditional
distribution Pr(B | A), named PBgA, and returns a joint distribution Pr(A, B), represented as a
Python dist.DDist instance. It must be the case that the domain of A in PA is the same as in
PBgA. It creates a new instance of dist.DDist with entries (a, b) for all a with support in PA
and b with support in PB. The Python expression PA.prob(a) corresponds to Pr(A = a); PBgA
is a conditional probability distribution, so PBgA(a) is the distribution Pr(B | A = a) on B, and
PBgA(a).prob(b) is Pr(B = b | A = a).

So, for example, we can re-do our joint distribution on A and B as:

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 282

PA = dist.DDist({’a1’ : 0.9, ’a2’ : 0.1})
def PBgA(a):

if a == ’a1’:
return dist.DDist({’b1’ : 0.7, ’b2’ : 0.3})

else:
return dist.DDist({’b1’ : 0.2, ’b2’ : 0.8})

>>> PAB = JDist(PA, PBgA)

>>> PAB

DDist((a1, b2): 0.270000, (a1, b1): 0.630000, (a2, b2): 0.080000, (a2, b1): 0.020000)

We have constructed a new joint distribution. We leave the implementation as an exercise.

Marginalization
Now, we can add a method to the DDist class to marginalize out a variable. It is only appropri­
ately applied to instances of DDist whose domain is pairs or tuples of values (corresponding to a
joint distribution). It takes, as input, the index of the variable that we want to marginalize out.

It can be implemented using two utility procedures: removeElt takes a list and an index and
returns a new list that is a copy of the first list with the element at the specified index removed;
incrDictEntry takes a dictionary, a key, and a numeric increment and adds the increment to the
value of the key, adding the key if it was not previously in the dictionary.

def removeElt(items, i):
result = items[:i] + items[i+1:]
if len(result) == 1:

return result[0]
else:

return result

def incrDictEntry(d, k, v):
if d.has_key(k):

d[k] += v
else:

d[k] = v

Now, we can understand marginalizeOut as making a new dictionary, with entries that have
the variable at the specified index removed; the probability associated with each of these entries is
the sum of the old entries that agree on the remaining indices. So, for example, we could take the
joint distribution, PAB, that we defined above, and marginalize out the variable A (by specifying
index 0) or B (by specifying index 1):

>>> PAB.marginalizeOut(0)
DDist(b1: 0.650000, b2: 0.350000)
>>> PAB.marginalizeOut(1)
DDist(a1: 0.900000, a2: 0.100000)

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 283

Conditioning
We can also add a conditionOnVar method to DDist which, like marginalizeOut, should only
be applied to joint distributions. It takes as input an index of the value to be conditioned on, and a
value for that variable, and returns a DDist on the remaining variables. It operates in three steps:

•	 Collect all of the value-tuples in the joint distribution that have the specified value at the speci­
fied index. This is the new universe of values, over which we will construct a distribution.

•	 Compute the sum of the probabilities of those elements.

•	 Create a new distribution by removing the elements at the specified index (they are redundant
at this point, since they are all equal) and dividing the probability values by the sum of the
probability mass in this set. The result is guaranteed to be a distribution in the sense that the
probability values properly sum to 1.

Now, we can compute, for example, the distribution on A, given that B = b1:

>>> PAB.conditionOnVar(1, ’b1’)
DDist(a1: 0.969231, a2: 0.030769)

Note that this is not a conditional distribution, because it is not a function from values of B to
distributions on A. At this point, it is simply a distribution on A.

Exercise 7.2.	 Define a method condDist(self, index) of the DDist class that makes
a new conditional probability distribution. Remember that a conditional
distribution is not a distribution. It is a function that takes as input a value
of the random variable we are conditioning on, and returns, as a result a
probability distribution over the other variable(s).
So, this method takes an index (of the variable we are conditioning on) and
returns a conditional probability distribution of the other variables in the
joint distribution, given the variable at the specified index.
Answer:

def condDist(self, index):
return lambda val: self.conditionOnVar(index, val)

Bayesian Evidence
The operation of updating a distribution on a random variable A, given evidence in the form of
the value b of a random variable B, can be implemented as a procedure that takes as arguments
the prior distribution Pr(A), named PA, a conditional distribution Pr(B | A), named PBgA, and the
actual evidence b, named b. It starts by constructing the joint distribution Pr(A, B) with JDist.
Then, remembering that the order of the variables in the joint distribution is (A, B), it conditions
on the variable with index 1 (that is, B) having value b, and returns the resulting distribution over
A.

So, for example, given a prior distribution on the prevalence of disease in the population

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 284

pDis = dist.DDist({True: 0.001, False: 0.999})

and the conditional distribution of test results given disease:

def pTestGivenDis(disease):

if disease:

return dist.DDist({True: 0.99, False: 0.01})

else:

return dist.DDist({True: 0.001, False: 0.999})

we can determine the probability that someone has the disease if the test is positive:

>>> dist.bayesEvidence(pDis, pTestGivenDis, True)

DDist(False: 0.502262, True: 0.497738)

Exercise 7.3.	 Does the result above surprise you? What happens if the prevalence of
disease in the population is one in a million? One in ten?

Total Probability
Finally, we can implement the law of total probability straightforwardly in Python. Given a dis­
tribution Pr(A), called PA, and Pr(B | A), called PBgA, we compute Pr(B). We do this by con­
structing the joint distribution and then marginalizing out A (which is the variable with index
0).

To compute the probability distribution of test results in the example above, we can do:

>>> dist.totalProbability(pDis, pTestGivenDis)

DDist(False: 0.998011, True: 0.001989)

7.5 Modeling with distributions
When we have a small number of discrete states, it is relatively easy to specify probability distri­
butions. But, as domains become more complex, we will need to develop another PCAP system,
just for constructing distributions. In this section, we’ll describe a collection of relatively stan­
dard primitive distributions, and a method, called a mixture distribution for combining them,
and show how they can be implemented in Python.

7.5.1 Primitives

Delta
Sometimes we’d like to construct a distribution with all of the probability mass on a single el­
ement. Here’s a handy way to create delta distributions, with a probability spike on a single
element:

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 285

def DeltaDist(v):
return DDist({v:1.0})

Uniform
Another common distribution is the uniform distribution. On a discrete set of size n, it assigns
probability 1/n to each of the elements:

def UniformDist(elts):
p = 1.0 / len(elts)
return DDist(dict([(e, p) for e in elts]))

Square
There are some distributions that are particularly valuable in numeric spaces. Since we are only
dealing with discrete distributions, we will consider distributions on the integers.

One useful distribution on the integers is a square distribution. It is defined by parameters lo and
hi, and assigns probability

1
p =

hi − lo

to all integers from lo to hi − 1. Here is a square distribution (from 60 to 80):

0.050

0

0 100

Because it is non-zero on 20 values, those values have probability 0.05.

Another useful distribution is a triangle distribution. It is defined by parameters peak and
halfWidth. It defines a shape that has its maximum value at index peak, and has linearly decreas­
ing values at each of halfWidth − 1 points on either side of the peak. The values at the indices are
scaled so that they sum to 1. Here is a triangular distribution with peak 30 and half-width 20.

0.050

0

0 100

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 286

7.5.2 Mixture distribution
We can combine distributions by mixing them. To create a mixture distribution, we specify two
distributions, d1 and d2 and a mixing parameter p, with 0 6 p 6 1. The intuition is that, to
draw an element from a mixture distribution, first we first flip a coin that comes up heads with
probability p. If it is heads, then we make a random draw from d1 and return that; otherwise we
make a random draw from d2 and return it. Another way to see it is that, if we think of a random
variable D1 having distribution d1 and another random variable D2 having distribution d2, then

Pr (x) = p Pr(D1 = x) + (1 − p) Pr(D2 = x)
mix

that is, the probability of an element x under the mixture distribution is p times its probability
under distribution d1 plus 1 − p times its probability under distribution d2.

Exercise 7.4. Convince yourself that if both d1 and d2 are proper probability distribu­
tions, in that they sum to 1 over their domains, then any mixture of them
will also be a proper probability distribution.

We can make a mixture of the square and triangle distributions shown above, with mixture para­
meter 0.5:

0.025

0

0 100

Here it is, with mixture parameter 0.9, where the square is d1 and the triangle is d2:

0.045

0

0 100

To implement a mixture distributions, we have two choices. One would be to go through the

supports of both component distributions and create a new explicit DDist. Below, we have taken

the ’lazy’ approach, similar to the way we handled signal composition. We define a new class that

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 287

stores the two component distributions and the mixture parameter, and computes the appropriate
probabilities as necessary.

Here are some example mixture distributions, created in Python and plotted below.

t1 = dist.triangleDist(30, 20)
t2 = dist.triangleDist(40, 20)
t3 = dist.triangleDist(80, 10)
s1 = dist.squareDist(0, 100)
s2 = dist.squareDist(60, 80)
m1 = dist.MixtureDist(t1, t2, 0.5)
m2 = dist.MixtureDist(s1, s2, 0.95)
m3 = dist.MixtureDist(t1, t3, 0.5)
m4 = dist.MixtureDist(t1, t3, 0.9)
m5 = dist.MixtureDist(m2, m4, 0.5)
0.050

0

0 100

0.050

0

0 100

0.100

0

0 100

0.005

0

0 100

0.050

0

0 100

t1 t2 t3 s1 s2

0.037

0

0 100

0.007

0

0 100

0.050

0

0 100

0.045

0

0 100

0.024

0

0 100

m1 m2 m3 m4 m5

7.6 Stochastic state machines
Now we can return to the application of primary interest: there is a system moving through
some sequence of states over time, but instead of getting to see the states, we only get to make
a sequence of observations of the system, where the observations give partial, noisy information
about the actual underlying state. The question is: what can we infer about the current state of
the system give the history of observations we have made?

As a very simple example, let’s consider a copy machine: we’ll model it in terms of two possible
internal states: good and bad. But since we don’t get to see inside the machine, we can only make
observations of the copies it generates; they can either be perfect, smudged, or all black. There is
only one input we can generate to the system, which is to ask it to make a copy.

We have to start by building a model of the system of interest. We can model this problem using
a probabilistic generalization of state machines, called stochastic 46 state machines (SSMs).

In an SSM, we model time as a discrete sequence of steps, and we can think about the state, input,
and the observation at each step. So, we’ll use random variables S0, S1, S2, . . . to model the state
at each time step the random variables O0, O1, . . . to model the observation at each time step, and
the random variables I0, I1, . . . to model the input at each time step.

Our problem will be to compute a probability distribution over the state at some time t + 1 given
the past history of inputs and observations o0, i0, . . . , ot, it; that is, to compute

46 ’Stochastic’ is a synonym for probabilistic.

{

{

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 288

Pr(St+1 | O0 = o0, I0 = i0, . . . , Ot = ot, It = it) .

A stochastic state-machine model makes a strong assumption about the system: that the state at
time t is sufficient to determine the probability distribution over the observation at time t and the
state at time t + 1. This is the essence of what it means to be a state of the system; that is, that
it summarizes all past history. Furthermore, we assume that the system is time-invariant, so that
way the state at time 3 depends on the state and input at time 2 is the same as the way that the
state at time 2 depends on the state and input at time 1, and so on; similarly for the observations.

So, in order to specify our model of how this system works, we need to provide three probability
distributions:

Initial state distribution: We need to have some idea of the state that the machine will be in at •
the very first step of time that we’re modeling. This is often also called the prior distribution
on the state. We’ll write it as

Pr(S0) .

It will be a distribution over possible states of the system.

•	 State transition model: Next, we need to specify how the state of the system will change over
time. It is described by the conditional probability distribution

Pr(St+1 | St, It) ,

which specifies for each possible old state r and input i, a probability distribution over the
state the system will be in at time t + 1 if it had been in state r and received input i at time t.
We will assume that this same probabilistic relationship holds for all times t.

•	 Observation model: Finally, we need to specify how the observations we make of the system
depend on its underlying state. This is often also called the sensor model. It is described by
the conditional probability distribution

Pr(Ot | St) ,

which specifies for each possible state of the system, s, a distribution over the observations
that will be obtained when the system is in that state.

7.6.1 Copy machine example
We’ll specify a stochastic state-machine model for our copy machine. Because there is only a
single possible input, to keep notation simple, we’ll omit the input throughout the example.

Initial state distribution: •

Pr(S0) = {good : 0.9, bad : 0.1}

State transition model: •

{good : 0.7, bad : 0.3} if St = good
Pr(St+1 | St) =

{good : 0.1, bad : 0.9} if St = bad

Observation model: •

{perfect : 0.8, smudged : 0.1, black : 0.1} if St = good
Pr(Ot | St) =

{perfect : 0.1, smudged : 0.7, black : 0.2} if St = bad

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 289

7.6.2 Representation in Python
We can represent these basic distributions in Python using the DDist class that we have already
developed. First, we have the initial state distribution, which is quite straightforward:

initialStateDistribution = dist.DDist({’good’: 0.9, ’bad’: 0.1})

The observation model is simply a conditional probability distribution; that is, a procedure that
takes a state as input and returns the appropriate distribution over observations.

def observationModel(s):

if s == ’good’:

return dist.DDist({’perfect’ : 0.8, ’smudged’ : 0.1, ’black’ : 0.1})

else:

return dist.DDist({’perfect’ : 0.1, ’smudged’ : 0.7, ’black’ : 0.2})

The transition model is just a little bit trickier. For reasons that we will see later, it is most con­
venient to organize the transition model as a procedure that takes an input i as input, and then
returns a conditional probability distribution of Pr(St+1 | St, It = i). Remember that the condi­
tional probability distribution is, itself, a procedure that takes an old state and returns a distrib­
ution over new states. This seems particularly silly for the copy machine example, since we are
ignoring the input, but we still have to make the definitions this way so that the types will match
those of more complex models we will build later.

def transitionModel(i):

def transitionGivenI(oldState):

if oldState == ’good’:

return dist.DDist({’good’ : 0.7, ’bad’ : 0.3})

else:

return dist.DDist({’good’ : 0.1, ’bad’ : 0.9})

return transitionGivenI

Finally, we can define a new class, called StochasticSM, which is a subclass of SM. We have had
to generalize the SM class slightly, so that there is an option of supplying a startState method
instead of a fixed start state, so that the actual starting state can be the result of calling a procedure.
To get a starting state, it makes a random draw from the initial state distribution; to get the next
values, it makes random draws from the transition and observation distributions:

class StochasticSM(sm.SM):

def __init__(self, startDistribution, transitionDistribution,

observationDistribution):
self.startDistribution = startDistribution
self.transitionDistribution = transitionDistribution
self.observationDistribution = observationDistribution

def startState(self):

return self.startDistribution.draw()

def getNextValues(self, state, inp):

return (self.transitionDistribution(inp)(state).draw(),

self.observationDistribution(state).draw())

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 290

Now, we can define our copy machine:

copyMachine = ssm.StochasticSM(initialStateDistribution,

transitionModel, observationModel)

Because StochasticSM is a subclass of SM, we can use the standard methods of SM. Here, we ask
the copy machine to make 20 copies, and observe the sequence of outputs it generates:

>>> copyMachine.transduce([’copy’]* 20)
[’perfect’, ’smudged’, ’perfect’, ’perfect’, ’perfect’, ’perfect’,

’perfect’, ’smudged’, ’smudged’, ’black’, ’smudged’, ’black’,

’perfect’, ’perfect’, ’black’, ’perfect’, ’smudged’, ’smudged’,

’black’, ’smudged’]

7.7 State estimation
Now, given the model of the way a system changes over time, and how its outputs reflect its
internal state, we can do state estimation. The problem of state estimation is to take a sequence of
inputs and observations, and determine the sequence of hidden states of the system. Of course,
we won’t be able to determine that sequence exactly, but we can derive some useful probability
distributions.

We will concentrate on the problem of filtering or sequential state estimation, in which we imag­
ine sitting and watching the stream of inputs and observations go by, and we are required, on
each step, to produce a state estimate, in the form

Pr(St+1 | O0, . . . , Ot, I0, . . . , It)

We will develop a procedure for doing this by working through a few steps of the example with
the copy machine, and then present it more generally.

7.7.1 Our first copy
Let’s assume we get a brand new copy machine in the mail, and we think it is probably (0.9)
good, but we’re not entirely sure. We print out a page, and it looks perfect. Yay! Now, what do
we believe about the state of the machine? We’d like to compute

Pr(S1 | O0 = perfect) .

We’ll do this in two steps. First, we’ll consider what information we have gained about the ma­
chine’s state at time 0 from the observation, and then we’ll consider what state it might have
transitioned to on step 1.

What information do we gain from knowing that the machine’s first copy was perfect? We can use
Bayesian reasoning to form the joint distribution between the state and observations in general,
and then condition on the observation we actual received. The joint distribution has the form

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 291

O

perfect smudged black

good 0.72 0.09 0.09
S

bad 0.01 0.07 0.02

Now, conditioning on the actual observation, O0 = perfect, we extract the column corresponding
to the observation, {0.72, 0.01}, and divide by the sum, 0.73, to get the distribution

Pr(S0 | O0 = perfect) = {good : 0.986, bad : 0.014}

Here is a schematic version of this update rule, which is a good way to think about computing it
by hand. Rather than creating the whole joint distribution and then conditioning by selecting out
a single column, we just create the column we know we’re going to need (based on the observation
we got):

0.10.9

good bad
S

Pr(S0)

0.010.72

.014.986

Pr(O0 = perfect | S)

Pr(S0 | O0 = perfect)

Pr(O0 = perfect and S0)

divide by 0.73

0.8 0.1

Because we will use it in later calculations, we will define B′0 as an abbreviation:

B′0 = Pr(S0 | O0 = perfect) ;

that is, our belief that the system is in state s on the 0th step, after having taken the actual obser­
vation o0 into account. This update strategy computes B′0(s) for all s, which we’ll need in order
to do further calculations.

Now, we can think about the consequences of the passage of one step of time. We’d like to com­
pute Pr(S1 | O0 = perfect). Note that we are not yet thinking about the observation we’ll get on
step 1; just what we know about the machine on step 1 having observed a perfect copy at step 0.

What matters is the probability of making transitions between states at time 0 and states at time 1.
We can make this relationship clear by constructing the joint probability distribution on S0 and S1

(it is actually conditioned on O0 = perfect). So, Pr(S0, S1 | O0 = perfect) can be constructed from
Pr(S0 | O0 = perfect) (which, it is important to remember, is a distribution on S0) and Pr(S1 | S0),
which is our transition model:

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 292

S1

good bad

S0
good
bad

0.690

0.001

0.296

0.012

Now, we have never really known the value of S0 for sure, and we can never really know it; we’d
like to concentrate all of our information in a representation of our knowledge about S1. We can
do that by computing the marginal distribution on S1 from this joint. Summing up the columns,
we get

Pr(S1 | O0 = perfect) = {good : 0.692, bad : 0.308}

This is an application of the law of total probability.

We’ll give this distribution, Pr(S1 | O0 = perfect), that is, everything we know about the machine

after the first observation and transition, the abbreviation B1.

Here is a schematic version of the transition update:

.014.986Pr(S0 | O0 = perfect)

0.3
0.9

.308.692

good bad

0.7
0.1

Pr(S1 | O0 = perfect)

Pr(S1 | S0)

You can see that there are two ways the copier could be in a good state at time 1: because it
was in a good state at time 0 (probability 0.986) and made a transition to a good state at time 1
(probability 0.7) or because it was in a bad state at time 0 (probability 0.014) and made a transition
to a good state at time 1 (probability 0.1). So, the resulting probability of being in a good state is
0.986 0.7 + 0.014 0.1 = 0.692. The reasoning for ending in a bad state is the same. · ·

7.7.2 Our second copy
Now, let’s imagine we print another page, and it’s smudged. We want to compute Pr(S2 | O0 =

perfect, O1 = smudged). This can be computed in two stages as before. We start with B1, which
already has the information that O0 = perfect incorporated into it. Our job will be to fold in the
information that O1 = smudged, and then the passage of another step of time.

1.	 Construct a joint distribution from B1 and Pr(O1 | S1), and condition on O1 = smudged to get
B′1. This is a Bayesian reasoning step.

2.	 Construct a joint distribution from B′1 and Pr(S2 | S1) and marginalize out S1 to get B2. This
is a law-of-total-probability step.

Chapter 7 Probabilistic State Estimation	 6.01— Spring 2011— April 25, 2011 293

.758.242

0.3
0.9

.754.246

0.7
0.1

.308.692

good bad
S

.216.069

divide by 0.285

0.1 0.7

Pr(S2 | S1)

Pr(S2 | O0 = perfect , O1 = smudged)

Pr(S1 | O0 = perfect , O1 = smudged)

Pr(O1 = smudged and S1 | O0 = perfect)

Pr(O1 = smudged | S1)

Pr(S1 | O0 = perfect)

Ow. Now we’re pretty sure our copy machine is no good. Planned obsolescence strikes again!

7.8 General state estimation
Now we’ll write out the state-update procedure for SSMs in general. As a reminder, here are the
random variables involved:

•	 State at each time S0, . . . , ST

•	 Observation at each time O0, . . . , OT

• Input at each time I0, . . . , IT

Here are the components of the model:

•	 Initial distribution Pr(S0)

•	 Observation distribution Pr(Ot | St). Because the process is time-invariant, this is the same
for all t.

•	 Transition distribution Pr(St+1 | St, It). Because the process is time-invariant, this is the
same for all t. Think of i as selecting a particular conditional transition distribution to be used
in the update.

Now, here is the update procedure. Assume that we have a belief state at time t, corresponding
to Pr(St | O0..t−1 = o0..t−1). Then we proceed in two steps:

•	 Observation update, given ot:

Pr(St | O0..t = o0..t, I0..t = i0..t)

Pr(Ot = ot | St) Pr(St | O0..t−1 = o0..t−1, I0..t−1 = i0..t−1)
= .

Pr(Ot = ot | O0..t−1 = o0..t−1, I0..t−1 = i0..t−1)

∑

∑

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 294

• Transition update, given it:

Pr(St+1 | O0..t = o0..t, I0..t = i0..t)

= Pr(St+1 | St = r, It = it) Pr(St = r | O0..t = o0..t, I0..t−1 = i0..t−1) .
r

A very important thing to see about these definitions is that they enable us to build what is known
as a recursive state estimator. (Unfortunately, this is a different use of the term “recursive” than
we’re used to from programming languages). If we define our belief at time t,

Bt = Pr(St | O0..t−1 = o0..t−1, I0..t−1 = i0..t−1)

and our belief after making the observation update to be

B′t = Pr(St | O0..t = o0..t, I0..t−1 = i0..t−1) ,

then after each observation and transition, we can update our belief state, to get a new Bt. Then,
we can forget the particular observation we had, and just use the Bt and ot to compute Bt+1.

Algorithmically, we can run a loop of the form:

• Condition on actual observation Ot = ot.

B′(s) = ∑ Pr(Ot = ot | St = s)B(s)

Pr(Ot = ot | St = r)B(r)
r

• Make transition based on input It = it.

B(s) = Pr(St+1 = s | St = r, It = it)B
′(r)

r

where B is initialized to be our initial belief about the state of the system.

7.8.1 Python
We can implement this state estimation process straightforwardly in Python. The nicest way to
think of a state estimator is, itself, as a state machine. The state of the state estimator is B, the
belief state, which is a probability distribution over the states of the SSM whose state we are
estimating. The state estimator takes an SSM model at initialization time. At each step, the input
to the state estimator is an (o, i) pair, specifying the observation from and the input to the machine
on the current step; the output of the state estimator is a probability distribution, represented as a
dist.DDist over the states of the underlying system.

The initial state of the state estimator is the initial state distribution of the underlying machine:

class StateEstimator(sm.SM):
def __init__(self, model):

self.model = model

self.startState = model.startDistribution

Now, to get the next values of the state estimator, we perform the observation and transition up­
dates, as described mathematically above. We observe that the observation update is an instance

Chapter 7 Probabilistic State Estimation 6.01— Spring 2011— April 25, 2011 295

of the Bayes evidence procedure, with the current belief as the prior, the observation model as
the conditional distribution, and the actual observation o as the value we’re conditioning on. We
also observe that the transition update is an instance of the law of total probability: we select
the appropriate state transition distribution depending on the input i, then use it to make a joint
distribution over St and St+1, then marginalize out St, because we want to represent all of our
information as a distribution on St+1. The output of the state estimator is the same as its state.

Now, we can do state estimation on our copy machine. We might have this sequence of observa­
tions and inputs:

copyData = [(’perfect’, ’copy’), (’smudged’, ’copy’)]

which means that we saw a perfect page, made a copy, saw a smudged page, and made another
copy. Now, we can make a state estimator, using the model we defined in the previous section,
and feed the data into the estimator:

>>> copyMachineSE = se.StateEstimator(copyMachine)

>>> copyMachineSE.transduce(copyData)

[DDist(bad: 0.308219, good: 0.691781), DDist(bad: 0.754327, good: 0.245673)]

Note that these are the same distributions we got when we did the state estimation by hand.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 296

Chapter 8
Long-term decision-making and search

In the lab exercises of this course, we have implemented several brains for our robots. We used
wall-following to navigate through the world and we used various linear controllers to drive
down the hall and to control the robot head. In the first case, we just wrote a program that we
hoped would do a good job. When we were studying linear controllers, we, as designers, made
models of the controller’s behavior in the world and tried to prove whether it would behave in
the way we wanted it to, taking into account a longer-term pattern of behavior.

Often, we will want a system to generate complex long-term patterns of behavior, but we will not
be able to write a simple control rule to generate those behavior patterns. In that case, we’d like
the system to evaluate alternatives for itself, but instead of evaluating single actions, it will have
to evaluate whole sequences of actions, deciding whether they’re a good thing to do given the
current state of the world.

Let’s think of the problem of navigating through a city, given a road map, and knowing where
we are. We can’t usually decide whether to turn left at the next intersection without deciding on
a whole path.

As always, the first step in the process will be to come up with a formal model of a real-world
problem that abstracts away the irrelevant detail. So, what, exactly, is a path? The car we’re dri­
ving will actually follow a trajectory through continuous space(time), but if we tried to plan at
that level of detail we would fail miserably. Why? First, because the space of possible trajecto­
ries through two-dimensional space is just too enormous. Second, because when we’re trying to
decide which roads to take, we don’t have the information about where the other cars will be on
those roads, which will end up having a huge effect on the detailed trajectory we’ll end up taking.

So, we can divide the problem into two levels: planning in advance which turns we’ll make at
which intersections, but deciding ’on-line’, while we’re driving, exactly how to control the steer­
ing wheel and the gas to best move from intersection to intersection, given the current circum­
stances (other cars, stop-lights, etc.).

We can make an abstraction of the driving problem to include road intersections and the way
they’re connected by roads. Then, given a start and a goal intersection, we could consider all
possible paths between them, and choose the one that is best.

What criteria might we use to evaluate a path? There are all sorts of reasonable ones: distance,
time, gas mileage, traffic-related frustration, scenery, etc. Generally speaking, the approach we’ll
outline below can be extended to any criterion that is additive: that is, your happiness with the
whole path is the sum of your happiness with each of the segments. We’ll start with the simple

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 297

criterion of wanting to find a path with the fewest “steps”; in this case, it will be the path that
traverses the fewest intersections. Then in section 8.5 we will generalize our methods to handle
problems where different actions have different costs.

One possible algorithm for deciding on the best path through a map of the road intersections in
this (very small) world

S

H

B

G

F

D

A

C E

would be to enumerate all the paths, evaluate each one according to our criterion, and then re­
turn the best one. The problem is that there are lots of paths. Even in our little domain, with 9
intersections, there are 210 paths from the intersection labeled S to the one labeled G.

We can get a much better handle on this problem, by formulating it as an instance of a graph
search (or a “state-space search”) problem, for which there are simple algorithms that perform
well.

8.1 State-space search
We’ll model a state-space search problem formally as

•	 a (possibly infinite) set of states the system can be in;

•	 a starting state, which is an element of the set of states;

a goal test, which is a procedure that can be applied to any state, and returns True if that state •
can serve as a goal;47

•	 a successor function, which takes a state and an action as input, and returns the new state that
will result from taking the action in the state; and

•	 a legal action list, which is just a list of actions that can be legally executed in this domain.

The decision about what constitutes an action is a modeling decision. It could be to drive to the
next intersection, or to drive a meter, or a variety of other things, depending on the domain. The

47	 Although in many cases we have a particular goal state (such as the intersection in front of my house), in other cases,
we may have the goal of going to any gas station, which can be satisfied by many different intersections.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 298

only requirement is that it terminate in a well-defined next state (and that, when it is time to
execute the plan, we will know how to execute the action.)

We can think of this model as specifying a labeled graph (in the computer scientist’s sense), in
which the states are the nodes, action specifies which of the arcs leading out of a node is to be
selected, and the successor function specifies the node at the end of each of the arcs.

So, for the little world above, we might make a model in which

The set of states is the intersections {’S’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, ’H’}.•

The starting state is ’S’.•

• The goal test is something like:

lambda x: x == ’H’

The legal actions in this domain are the numbers 0, 1, . . ., n-1, where n is the maximum •
number of successors in any of the states.

• The map can be defined using a dictionary:

map1 = {’S’ : [’A’, ’B’],

’A’ : [’S’, ’C’, ’D’],

’B’ : [’S’, ’D’, ’E’],

’C’ : [’A’, ’F’],

’D’ : [’A’, ’B’, ’F’, ’H’],

’E’ : [’B’, ’H’],

’F’ : [’C’, ’D’, ’G’],

’H’ : [’D’, ’E’, ’G’],

’G’ : [’F’, ’H’]}

where each key is a state, and its value is a list of states that can be reached from it in one step.
Now we can define the successor function as

def map1successors(s, a):

return map1[s][a]

but with an additional test to be sure that if we attempt to take an action that doesn’t exist in s,
it just results in state s. So, for example, the successor reached from state ’A’ by taking action
1 is state ’C’.

We can think of this structure as defining a search tree, like this:

S

B

F

D

A

C SS ED

A A B F HA B BA F H B HA B

0 1

1 20

0 1 0 1 2 30 1

1

0 1 2 3 0 1

20

0 1

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 299

It has the starting state, S, at the root node, and then each node has its successor states as children.
Layer k of this tree contains all possible paths of length k through the graph.

8.1.1 Representing search trees
We will need a way to represent the tree as a Python data structure as we construct it during the
search process. We will start by defining a class to represent a search node, which is one of the
circles in the tree.

Each search node represents:

•	 The state of the node;
•	 the action that was taken to arrive at the node; and

the search node from which this node can be reached.
•

We will call the node from which a node can be reached its parent node. So, for example, in the
figure below

S

B

F

D

A

C SS ED

A A B F HA B BA F H B HA B

0 1

1 20

0 1 0 1 2 30 1

1

0 1 2 3 0 1

20

0 1

we will represent the node with double circles around it with its state, ’D’, the action that reached
it, 1, and its parent node, which is the node labeled ’B’ above it.

Note that states and nodes are not the same thing! In this tree, there are many nodes labeled by

the same state; they represent different paths to and through the state.

Here is a Python class representing a search node. It’s pretty straightforward.

class SearchNode:
def __init__(self, action, state, parent):

self.state = state
self.action = action
self.parent = parent

There are a couple of other useful methods for this class. First, the path method, returns a list of
pairs (a, s) corresponding to the path starting at the top (root) of the tree, going down to this
node. It works its way up the tree, until it reaches a node whose parent is None.

def path(self):

if self.parent == None:

return [(self.action, self.state)]

else:

return self.parent.path() + [(self.action, self.state)]

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 300

The path corresponding to our double-circled node is ((None, ’S’), (1, ’B’), (1, ’D’)).

Another helper method that we will find useful is the inPath method, which takes a state, and
returns True if the state occurs anywhere in the path from the root to the node.

def inPath(self, s):

if s == self.state:

return True

elif self.parent == None:

return False

else:

return self.parent.inPath(s)

8.1.2 Basic search algorithm
We’ll describe a sequence of search algorithms of increasing sophistication and efficiency. An
ideal algorithm will take a problem description as input and return a path from the start to a goal
state, if one exists, and return None, if it does not. Some algorithms will not be capable of finding
a path in all cases.

How can we systematically search for a path to the goal? There are two plausible strategies:

•	 Start down a path, keep trying to extend it until you get stuck, in which case, go back to the
last choice you had, and go a different way. This is how kids often solve mazes. We’ll call it
depth-first search.

•	 Go layer by layer through the tree, first considering all paths of length 1, then all of length 2,
etc. We’ll call this breadth-first search.

Both of the search strategies described above can be implemented using a procedure with this
basic structure:

def search(initialState, goalTest, actions, successor):

if goalTest(initialState):

return [(None, initialState)]

agenda = EmptyAgenda()

add(SearchNode(None, initialState, None), agenda)

while not empty(agenda):

parent = getElement(agenda)
for	 a in actions(parent.state):

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

else:

add(newN, agenda)

return None

We start by checking to see if the initial state is a goal state. If so, we just return a path consisting
of the initial state.

Otherwise, we have real work to do. We make the root node of the tree. It has no parent, and
there was no action leading to it, so all it needs to specify is its state, which is initialState, so
it is created with

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 301

SearchNode(None, initialState, None)

During the process of constructing the search tree, we will use a data structure, called an agenda,
to keep track of which nodes in the partially-constructed tree are on the fringe, ready to be ex­
panded, by adding their children to the tree. We initialize the agenda to contain the root note.
Now, we enter a loop that will run until the agenda is empty (we have no more paths to con­
sider), but could stop sooner.

Inside the loop, we select a node from the agenda (more on how we decide which one to take out
in a bit) and expand it. To expand a node, we determine which actions can be taken from the state
that is stored in the node, and visit the successor states that can be reached via the actions.

When we visit a state, we make a new search node (newN, in the code) that has the node we are in
the process of expanding as the parent, and that remembers the state being visited and the action
that brought us here from the parent.

Next, we check to see if the new state satisfies the goal test. If it does, we’re done! We return the
path associated with the new node.

If this state it doesn’t satisfy the goal test, then we add the new node to the agenda. We continue
this process until we find a goal state or the agenda becomes empty. This is not quite yet an
algorithm, though, because we haven’t said anything about what it means to add and extract
nodes from the agenda. And, we’ll find, that it will do some very stupid things, in its current
form.

We’ll start by curing the stupidities, and then return to the question of how best to select nodes
from the agenda.

8.1.3 Basic pruning, or How not to be completely stupid
If you examine the full search tree, you can see that some of the paths it contains are completely
ridiculous. It can never be reasonable, if we’re trying to find the shortest path between two states,
to go back to a state we have previously visited on that same path. So, to avoid trivial infinite
loops, we can adopt the following rule:

Pruning Rule 1. Don’t consider any path that visits the same state twice.

If we can apply this rule, then we will be able to remove a number of branches from the tree, as
shown here:

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 302

S

B

F

D

A

C ED

B F H A F H H

0 1

1 2

1
1 2 3

1

0 2 3 1

2

It is relatively straightforward to modify our code to implement this rule:

def search(initialState, goalTest, actions, successor):
if goalTest(initialState):

return [(None, initialState)]

agenda = [SearchNode(None, initialState, None)]

while agenda != []:

parent = getElement(agenda)
for	 a in actions(parent.state):

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()
elif parent.inPath(newS):

pass

else:

add(newN, agenda)

return None

The red text above shows the code we’ve added to our basic algorithm. It just checks to see
whether the current state already exists on the path to the node we’re expanding and, if so, it
doesn’t do anything with it.

The next pruning rule doesn’t make a difference in the current domain, but can have a big effect
in other domains:

Pruning Rule 2. If there are multiple actions that lead from a state r to a state s, consider
only one of them.

To handle this in the code, we have to keep track of which new states we have reached in ex­
panding this node, and if we find another way to reach one of those states, we just ignore it. The
changes to the code for implementing this rule are shown in red:

def search(initialState, goalTest, actions, successor):
if goalTest(initialState):

return [(None, initialState)]

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 303

agenda = [SearchNode(None, initialState, None)]

while agenda != []:

parent = getElement(agenda)

newChildStates = []
for	 a in actions(parent.state):

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()
elif newS in newChildStates:

pass

elif parent.inPath(newS):

pass

else:

newChildStates.append(newS)
add(newN, agenda)

return None

Each time we pick a new node to expand, we make a new empty list, newChildStates, and keep
track of all of the new states we have reached from this node.

Now, we have to think about how to extract nodes from the agenda.

8.1.4 Stacks and Queues
In designing algorithms, we frequently make use of two simple data structures: stacks and
queues. You can think of them both as abstract data types that support two operations: push and
pop. The push operation adds an element to the stack or queue, and the pop operation removes
an element. The difference between a stack and a queue is what element you get back when you
do a pop.

•	 stack: When you pop a stack, you get back the element that you most recently put in. A stack
is also called a LIFO, for last in, first out.

•	 queue: When you pop a queue, you get back the element that you put in earliest. A queue is
also called a FIFO, for first in, first out.

In Python, we can use lists to represent both stacks and queues. If data is a list, then data.pop(0)
removes the first element from the list and returns it, and data.pop() removes the last element
and returns it.

Here is a class representing stacks as lists. It always adds new elements to the end of the list, and
pops items off of the same end, ensuring that the most recent items get popped off first.

class Stack:

def __init__(self):

self.data = []

def push(self, item):

self.data.append(item)

def pop(self):

return self.data.pop()

def isEmpty(self):

return self.data is []

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 304

Here is a class representing stacks as lists. It always adds new elements to the end of the list, and
pops items off of the front, ensuring that the oldest items get popped off first.

class Queue:

def __init__(self):

self.data = []

def push(self, item):

self.data.append(item)

def pop(self):

return self.data.pop(0)

def isEmpty(self):

return self.data is []

We will use stacks and queues to implement our search algorithms.

8.1.5 Depth-First Search
Now we can easily describe depth-first search by saying that it’s an instance of the generic search
procedure described above, but in which the agenda is a stack : that is, we always expand the
node we most recently put into the agenda.

The code listing below shows our implementation of depth-first search.

def depthFirstSearch(initialState, goalTest, actions, successor):
agenda = Stack()
if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState, None))

while not agenda.isEmpty()

parent = agenda.pop()

newChildStates = []
for	 a in actions(parent.state):

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

elif newS in newChildStates:

pass

elif parent.inPath(newS):

pass

else:

newChildStates.append(newS)

agenda.push(newN)

return None

You can see several operations on the agenda. We:

Create an empty Stack instance, and let that be the agenda.
•

• Push the initial node onto the agenda.

• Test to see if the agenda is empty.

• Pop the node to be expanded off of the agenda.

• Push newly visited nodes onto the agenda.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 305

Because the agenda is an instance of the Stack class, subsequent operations on the agenda ensure
that it will act like a stack, and guarantee that children of the most recently expanded node will
be chosen for expansion next.

So, let’s see how this search method behaves on our city map, with start state S and goal state F.
Here is a trace of the algorithm (you can get this in the code we distribute by setting verbose =
True before you run it.)

depthFirst(’S’, lambda x: x == ’F’, map1LegalActions, map1successors)
agenda: Stack([S])

expanding: S
agenda: Stack([S-0->A, S-1->B])

expanding: S-1->B
agenda: Stack([S-0->A, S-1->B-1->D, S-1->B-2->E])

expanding: S-1->B-2->E
agenda: Stack([S-0->A, S-1->B-1->D, S-1->B-2->E-1->H])

expanding: S-1->B-2->E-1->H
agenda: Stack([S-0->A, S-1->B-1->D, S-1->B-2->E-1->H-0->D, S-1->B-2->E-1->H-2->G])

expanding: S-1->B-2->E-1->H-2->G
8 states visited
[(None, ’S’), (1, ’B’), (2, ’E’), (1, ’H’), (2, ’G’), (0, ’F’)]

You can see that in this world, the search never needs to “backtrack”, that is, to go back and try
expanding an older path on its agenda. It is always able to push the current path forward until it
reaches the goal. Here is the search tree generated during the depth-first search process.

S

BA

ED

H

0 1

1

1

2

GD

0 2

F

0

Here is another city map (it’s a weird city, we know, but maybe a bit like trying to drive in Boston):

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 306

S

B

G

FD

A

C E

In this city, depth-first search behaves a bit differently (trying to go from S to D this time):

depthFirst(’S’, lambda x: x == ’D’, map2LegalActions, map2successors)

agenda: Stack([S])

expanding: S

agenda: Stack([S-0->A, S-1->B])

expanding: S-1->B

agenda: Stack([S-0->A, S-1->B-1->E, S-1->B-2->F])

expanding: S-1->B-2->F

agenda: Stack([S-0->A, S-1->B-1->E, S-1->B-2->F-1->G])

expanding: S-1->B-2->F-1->G

agenda: Stack([S-0->A, S-1->B-1->E])

expanding: S-1->B-1->E

agenda: Stack([S-0->A])

expanding: S-0->A

7 states visited

[(None, ’S’), (0, ’A’), (2, ’D’)]

In this case, it explores all possible paths down in the left branch of the world, and then has to
backtrack up and over to the right branch.

Here are some important properties of depth-first search:

•	 It will run forever if we don’t apply pruning rule 1, potentially going back and forth from one
state to another, forever.

•	 It may run forever in an infinite domain (as long as the path it’s on has a new successor that
hasn’t been previously visited, it can go down that path forever; we’ll see an example of this
in the last section).

•	 It doesn’t necessarily find the shortest path (as we can see from the very first example).
•	 It is generally efficient in the amount of space it requires to store the agenda, which will be

a constant factor times the depth of the path it is currently considering (we’ll explore this in
more detail in section 8.4.)

8.1.6 Breadth-First Search
To change to breadth-first search, we need to choose the oldest, rather than the newest paths from
the agenda to expand. All we have to do is change the agenda to be a queue instead of a stack,
and everything else stays the same, in the code.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 307

def breadthFirstSearch(initialState, goalTest, actions, successor):
agenda = Queue()
if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState, None))

while not agenda.isEmpty():

parent = agenda.pop()

newChildStates = []

for a in actions(parent.state):

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()

elif newS in newChildStates:

pass

elif parent.inPath(newS):

pass

else:

newChildStates.append(newS)

agenda.push(newN)

return None

Here is how breadth-first search works, looking for a path from S to F in our first city:

>>> breadthFirst(’S’, lambda x: x == ’F’, map1LegalActions, map1successors)

agenda: Queue([S])

expanding: S

agenda: Queue([S-0->A, S-1->B])

expanding: S-0->A

agenda: Queue([S-1->B, S-0->A-1->C, S-0->A-2->D])

expanding: S-1->B

agenda: Queue([S-0->A-1->C, S-0->A-2->D, S-1->B-1->D, S-1->B-2->E])

expanding: S-0->A-1->C

7 states visited

[(None, ’S’), (0, ’A’), (1, ’C’), (1, ’F’)]

We can see it proceeding systematically through paths of length two, then length three, finding
the goal among the length-three paths.

Here are some important properties of breadth-first search:

•	 Always returns a shortest (least number of steps) path to a goal state, if a goal state exists in
the set of states reachable from the start state.

•	 It may run forever if there is no solution and the domain is infinite.
•	 It requires more space than depth-first search.

8.1.7 Dynamic programming
Let’s look at breadth-first search in the first city map example, but this time with goal state G:

>>> breadthFirst(’S’, lambda x: x == ’G’, map1LegalActions, map1successors)

agenda: Queue([S])

expanding: S

agenda: Queue([S-0->A, S-1->B])

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 308

expanding: S-0->A
agenda: Queue([S-1->B, S-0->A-1->C, S-0->A-2->D])

expanding: S-1->B
agenda: Queue([S-0->A-1->C, S-0->A-2->D, S-1->B-1->D, S-1->B-2->E])

expanding: S-0->A-1->C
agenda: Queue([S-0->A-2->D, S-1->B-1->D, S-1->B-2->E, S-0->A-1->C-1->F])

expanding: S-0->A-2->D
agenda: Queue([S-1->B-1->D, S-1->B-2->E, S-0->A-1->C-1->F, S-0->A-2->D-1->B, S-0->A-2->D-2­
>F, S-0->A-2->D-3->H])

expanding: S-1->B-1->D
agenda: Queue([S-1->B-2->E, S-0->A-1->C-1->F, S-0->A-2->D-1->B, S-0->A-2->D-2->F, S-0->A-2­
>D-3->H, S-1->B-1->D-0->A, S-1->B-1->D-2->F, S-1->B-1->D-3->H])

expanding: S-1->B-2->E
agenda: Queue([S-0->A-1->C-1->F, S-0->A-2->D-1->B, S-0->A-2->D-2->F, S-0->A-2->D-3->H,
S-1->B-1->D-0->A, S-1->B-1->D-2->F, S-1->B-1->D-3->H, S-1->B-2->E-1->H])

expanding: S-0->A-1->C-1->F
16 states visited
[(None, ’S’), (0, ’A’), (1, ’C’), (1, ’F’), (2, ’G’)]

The first thing that is notable about this trace is that it ends up visiting 16 states in a domain with
9 different states. The issue is that it is exploring multiple paths to the same state. For instance,
it has both S-0->A-2->D and S-1->B-1->D in the agenda. Even worse, it has both S-0->A and
S-1->B-1->D-0->A in there! We really don’t need to consider all of these paths. We can make
use of the following example of the dynamic programming principle:

The shortest path from X to Z that goes through Y is made up of the shortest path from X to Y and the
shortest path from Y to Z.

So, as long as we find the shortest path from the start state to some intermediate state, we don’t
need to consider any other paths between those two states; there is no way that they can be part
of the shortest path between the start and the goal. This insight is the basis of a new pruning
principle:

Pruning Rule 3. Don’t consider any path that visits a state that you have already visited via
some other path.

In breadth-first search, because of the orderliness of the expansion of the layers of the search tree,
we can guarantee that the first time we visit a state, we do so along the shortest path. So, we’ll
keep track of the states that we have visited so far, by using a dictionary, called visited that has
an entry for every state we have visited.48 Then, if we are considering adding a new node to the
tree that goes to a state we have already visited, we just ignore it. This test can take the place of
the test we used to have for pruning rule 1; it’s clear that if the path we are considering already
contains this state, then the state has been visited before. Finally, we have to remember, whenever
we add a node to the agenda, to add the corresponding state to the visited list.

Here is our breadth-first search code, modified to take advantage of dynamic programming.

48 An alternative representation would be just to keep a Python set of visited nodes.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 309

def breadthFirstDP(initialState, goalTest, actions, successor):
agenda = Queue()
if goalTest(initialState):

return [(None, initialState)]

agenda.push(SearchNode(None, initialState, None))

visited = {initialState: True}
while not agenda.isEmpty():

parent = agenda.pop()

for a in actions(parent.state):

newS = successor(parent.state, a)

newN = SearchNode(a, newS, parent)

if goalTest(newS):

return newN.path()
elif visited.has_key(newS):

pass

else:

visited[newS] = True:
agenda.push(newN)

return None

So, let’s see how this performs on the task of going from S to G in the first city map:

>>> breadthFirstDP(’S’, lambda x: x == ’G’, map1LegalActions, map1successors)
agenda: Queue([S])

expanding: S
agenda: Queue([S-0->A, S-1->B])

expanding: S-0->A
agenda: Queue([S-1->B, S-0->A-1->C, S-0->A-2->D])

expanding: S-1->B
agenda: Queue([S-0->A-1->C, S-0->A-2->D, S-1->B-2->E])

expanding: S-0->A-1->C
agenda: Queue([S-0->A-2->D, S-1->B-2->E, S-0->A-1->C-1->F])

expanding: S-0->A-2->D
agenda: Queue([S-1->B-2->E, S-0->A-1->C-1->F, S-0->A-2->D-3->H])

expanding: S-1->B-2->E
agenda: Queue([S-0->A-1->C-1->F, S-0->A-2->D-3->H])

expanding: S-0->A-1->C-1->F
8 states visited
[(None, ’S’), (0, ’A’), (1, ’C’), (1, ’F’), (2, ’G’)]

As you can see, this results in visiting significantly fewer states. Here is the tree generated by this
process:

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 310

S

B

F

D

A

C E

H

G

0

1
2

1

2

3

1

2

In bigger problems, this effect will be amplified hugely, and will make the difference between
whether the algorithm can run in a reasonable amount of time, and not.

We can make the same improvement to depth-first search; we just need to use a stack instead of a
queue in the algorithm above. It still will not guarantee that the shortest path will be found, but
will guarantee that we never visit more paths than the actual number of states. The only change to
breadth-first search with dynamic programming is that the new states are added to the beginning
of the agenda.

8.1.8 Configurable search code
Because all of our search algorithms (breadth-first and depth-first, with and without dynamic
programming) are all so similar, and we don’t like to repeat code, we provide (in file search.py)
a single, configurable search procedure. It also prints out some information as it goes, if you
have the verbose or somewhatVerbose variables set to True, and has a limit on the maximum
number of nodes it will expand (to keep from going into an infinite loop).

def search(initialState, goalTest, actions, successor,

depthFirst = False, DP = True, maxNodes = 10000):

if depthFirst:

agenda = Stack()

else:

agenda = Queue()

startNode = SearchNode(None, initialState, None)
if goalTest(initialState):

return startNode.path()

agenda.push(startNode)

if DP: visited = {initialState: True}

count = 1

while not agenda.isEmpty() and maxNodes > count:

n = agenda.pop()

newStates = []

for a in actions:

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 311

newS = successor(n.state, a)

newN = SearchNode(a, newS, n)

if goalTest(newS):

return newN.path()

elif newS in newStates:

pass

elif ((not DP) and n.inPath(newS)) or \

(DP and visited.has_key(newS)):

pass

else:

count += 1

if DP: visited[newS] = True

newStates.append(newS)

agenda.push(newN)

return None

8.2 Connection to state machines
We can use state machines as a convenient representation of state-space search problems. Given
a state machine, in its initial state, what sequence of inputs can we feed to it to get it to enter a
done state? This is a search problem, analogous to determining the sequence of actions that can
be taken to reach a goal state.

The getNextValues method of a state machine can serve as the successor function in a search
(the inputs to the machine are the actions). Our standard machines do not have a notion of legal
actions; but we will add an attribute called legalInputs, which is a list of values that are legal
inputs to the machine (these are the actions, from the planning perspective) to machines that we
want to use with a search.

The startState attribute can serve as the initial state in the search and the done method of the
machine can serve as the goal test function.

Then, we can plan a sequence of actions to go from the start state to one of the done states using
this function, where smToSearch is an instance of sm.SM.

def smSearch(smToSearch, initialState = None, goalTest = None, maxNodes = 10000,
depthFirst = False, DP = True):

if initialState == None:
initialState = smToSearch.startState

if goalTest == None:
goalTest = smToSearch.done

return search(initialState, goalTest, smToSearch.legalInputs,

This returns the next state

lambda s, a: smToSearch.getNextValues(s, a)[0],

maxNodes = maxNodes,

depthFirst=depthFirst, DP=DP)

It is mostly clerical: it allows us to specify a different initial state or goal test if we want to, and
it extracts the appropriate functions out of the state machine and passes them into the search
procedure. Also, because getNextValues returns both a state and an output, we have to wrap it
inside a function that just selects out the next state and returns it.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 312

8.3 Numeric search domain
Many different kinds of problems can be formulated in terms of finding the shortest path through
a space of states. A famous one, which is very appealing to beginning calculus students, is to take
a derivative of a complex equation by finding a sequence of operations that takes you from the
starting expression to one that doesn’t contain any derivative operations. We’ll explore a different
simple one here:

• The states are the integers.

• The initial state is some integer; let’s say 1.

The legal actions are to apply the following operations: {2n, n + 1, n − 1, n2 , −n}.•

The goal test is lambda x: x == 10 .•

So, the idea would be to find a short sequence of operations to move from 1 to 10.

Here it is, formalized as state machine in Python:

class NumberTestSM(sm.SM):

startState = 1

legalInputs = [’x*2’, ’x+1’, ’x-1’, ’x**2’, ’-x’]

def __init__(self, goal):

self.goal = goal

def nextState(self, state, action):

if action == ’x*2’:

return state*2

elif action == ’x+1’:

return state+1

elif action == ’x-1’:

return state-1

elif action == ’x**2’:

return state**2

elif action == ’-x’:

return -state

def getNextValues(self, state, action):

nextState = self.nextState(state, action)

return (nextState, nextState)

def done(self, state):

return state == self.goal

First of all, this is a bad domain for applying depth-first search. Why? Because it will go off on
a gigantic chain of doubling the starting state, and never find the goal. We can run breadth-first
search, though. Without dynamic programming, here is what happens (we have set verbose =
False and somewhatVerbose = True in the search file):

>>> smSearch(NumberTestSM(10), initialState = 1, depthFirst = False, DP = False)
expanding: 1
expanding: 1-x*2->2
expanding: 1-x-1->0
expanding: 1--x->-1
expanding: 1-x*2->2-x*2->4
expanding: 1-x*2->2-x+1->3
expanding: 1-x*2->2--x->-2
expanding: 1-x-1->0-x-1->-1

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 313

expanding: 1--x->-1-x*2->-2

expanding: 1--x->-1-x+1->0

expanding: 1-x*2->2-x*2->4-x*2->8

expanding: 1-x*2->2-x*2->4-x+1->5

33 states visited

[(None, 1), (’x*2’, 2), (’x*2’, 4), (’x+1’, 5), (’x*2’, 10)]

We find a nice short path, but visit 33 states. Let’s try it with DP:

>>> smSearch(NumberTestSM(10), initialState = 1, depthFirst = False, DP = True)
expanding: 1
expanding: 1-x*2->2
expanding: 1-x-1->0
expanding: 1--x->-1
expanding: 1-x*2->2-x*2->4
expanding: 1-x*2->2-x+1->3
expanding: 1-x*2->2--x->-2
expanding: 1-x*2->2-x*2->4-x*2->8
expanding: 1-x*2->2-x*2->4-x+1->5

17 states visited

[(None, 1), (’x*2’, 2), (’x*2’, 4), (’x+1’, 5), (’x*2’, 10)]

We find the same path, but visit noticeably fewer states. If we change the goal to 27, we find that
we visit 564 states without DP and 119, with. If the goal is 1027, then we visit 12710 states without
DP and 1150 with DP, which is getting to be a very big difference.

To experiment with depth-first search, we can make a version of the problem where the state space
is limited to the integers in some range. We do this by making a subclass of the NumberTestSM,
which remembers the maximum legal value, and uses it to restrict the set of legal inputs for a
state (any input that would cause the successor state to go out of bounds just results in staying at
the same state, and it will be pruned.)

class NumberTestFiniteSM(NumberTestSM):
def __init__(self, goal, maxVal):

self.goal = goal

self.maxVal = maxVal

def getNextValues(self, state, action):

nextState = self.nextState(state, action)

if abs(nextState) < self.maxVal:

return (nextState, nextState)

else:

return (state, state)

Here’s what happens if we give it a range of -20 to +20 to work in:

>>> smSearch(NumberTestFiniteSM(10, 20), initialState = 1, depthFirst = True,
DP = False)

expanding: 1

expanding: 1--x->-1

expanding: 1--x->-1-x+1->0

expanding: 1--x->-1-x*2->-2

expanding: 1--x->-1-x*2->-2--x->2

expanding: 1--x->-1-x*2->-2--x->2-x+1->3

expanding: 1--x->-1-x*2->-2--x->2-x+1->3--x->-3

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 314

expanding: 1--x->-1-x*2->-2--x->2-x+1->3--x->-3-x**2->9
20 states visited
[(None, 1), (’-x’, -1), (’x*2’, -2), (’-x’, 2), (’x+1’, 3), (’-x’, -3), (’x**2’, 9), (’x+1’,
10)]

We generate a much longer path!

We can see from trying lots of different searches in this space that (a) the DP makes the search
much more efficient and (b) that the difficulty of these search problems varies incredibly widely.

8.4 Computational complexity
To finish up this segment, let’s consider the computational complexity of these algorithms. As
we’ve already seen, there can be a huge variation in the difficulty of a problem that depends
on the exact structure of the graph, and is very hard to quantify in advance. It can sometimes
be possible to analyze the average case running time of an algorithm, if you know some kind
of distribution over the problems you’re likely to encounter. We’ll just stick with the traditional
worst-case analysis, which tries to characterize the approximate running time of the worst possible
input for the algorithm.

First, we need to establish a bit of notation. Let

•	 b be the branching factor of the graph; that is, the number of successors a node can have. If we
want to be truly worst-case in our analysis, this needs to be the maximum branching factor of
the graph.

•	 d be the maximum depth of the graph; that is, the length of the longest path in the graph. In an
infinite space, this could be infinite.

•	 l be the solution depth of the problem; that is, the length of the shortest path from the start state
to the shallowest goal state.

•	 n be the state space size of the graph; that is the total number of states in the domain.

Depth-first search, in the worst case, will search the entire search tree. It has d levels, each of
which has b times as many paths as the previous one. So, there are bd paths on the dth level. The
algorithm might have to visit all of the paths at all of the levels, which is about bd+1 states. But
the amount of storage it needs for the agenda is only b d.·

Breadth-first search, on the other hand, only needs to search as deep as the depth of the best
solution. So, it might have to visit as many as bl+1 nodes. The amount of storage required for the
agenda can be as bad as bl, too.

So, to be clear, consider the numeric search problem. The branching factor b = 5, in the worst
case. So, if we have to find a sequence of 10 steps, breadth-first search could potentially require
visiting as many as 511 = 48828125 nodes!

This is all pretty grim. What happens when we consider the DP version of breadth-first search?
We can promise that every state in the state space is visited at most once. So, it will visit at most
n states. Sometimes n is much smaller than bl (for instance, in a road network). In other cases,
it can be much larger (for instance, when you are solving an easy (short solution path) problem
embedded in a very large space). Even so, the DP version of the search will visit fewer states,
except in the very rare case in which there are never multiple paths to the same state (the graph

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 315

is actually a tree). For example, in the numeric search problem, the shortest path from 1 to 91 is 9
steps long, but using DP it only requires visiting 1973 states, rather than 510 = 9765625.

8.5 Uniform cost search
In many cases, the arcs in our graph will actually have different costs. In a road network, we
would really like to find the shortest path in miles (or in time to traverse), and different road
segments have different lengths and times. To handle a problem like this, we need to extend our
representation of search problems, and add a new algorithm to our repertoire.

We will extend our notion of a successor function, so that it takes a state and an action, as before,
but now it returns a pair (newS, cost), which represents the resulting state, as well as the cost
that is incurred in traversing that arc. To guarantee that all of our algorithms are well behaved,
we will require that all costs be positive (not zero or negative).

Here is our original city map, now with distances associated with the roads between the cities.

S

H

B

G

F

D

A

C E

2
1

3 2

41

1

6 2

2 3

4

We can describe it in a dictionary, this time associating a cost with each resulting state, as follows:

map1dist = {’S’ : [(’A’, 2), (’B’, 1)],
’A’ : [(’S’, 2), (’C’, 3), (’D’, 2)],
’B’ : [(’S’, 1), (’D’, 2), (’E’, 3)],
’C’ : [(’A’, 3), (’F’, 1)],
’D’ : [(’A’, 2), (’B’, 2), (’F’, 4), (’H’, 6)],
’E’ : [(’B’, 3), (’H’, 2)],
’F’ : [(’C’, 1), (’D’, 4), (’G’, 1)],
’H’ : [(’D’, 6), (’E’, 2), (’G’, 4)],
’G’ : [(’F’, 1), (’H’, 4)]}

When we studied breadth-first search, we argued that it found the shortest path, in the sense of
having the fewest nodes, by seeing that it investigate all of the length 1 paths, then all of the length
2 paths, etc. This orderly enumeration of the paths guaranteed that when we first encountered a
goal state, it would be via a shortest path. The idea behind uniform cost search is basically the

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 316

same: we are going to investigate paths through the graph, in the order of the sum of the costs on
their arcs. If we do this, we guarantee that the first time we extract a node with a given state from
the agenda, it will be via a shortest path, and so the first time we extract a node with a goal state
from the agenda, it will be an optimal solution to our problem.

Priority Queue
Just as we used a stack to manage the agenda for depth-first search and a queue to manage the
agenda for bread-first search, we will need to introduce a new data structure, called a priority
queue to manage the agenda for uniform-cost search. A priority queue is a data structure with
the same basic operations as stacks and queues, with two differences:

•	 Items are pushed into a priority queue with a numeric score, called a cost.

•	 When it is time to pop an item, the item in the priority queue with the least cost is returned and
removed from the priority queue.

There are many interesting ways to implement priority queues so that they are very computation-
ally efficient. Here, we show a very simple implementation that simply walks down the entire
contents of the priority queue to find the least-cost item for a pop operation. Its data attribute
consists of a list of (cost, item) pairs. It calls the argmaxIndex procedure from our utility
package, which takes a list of items and a scoring function, and returns a pair consisting of the
index of the list with the highest scoring item, and the score of that item. Note that, because
argmaxIndex finds the item with the highest score, and we want to extract the item with the least
cost, our scoring function is the negative of the cost.

class PQ:
def __init__(self):

self.data = []
def push(self, item, cost):

self.data.append((cost, item))
def pop(self):

(index, cost) = util.argmaxIndex(self.data, lambda (c, x): -c)
return self.data.pop(index)[1] # just return the data item

def isEmpty(self):
return self.data is []

UC Search
Now, we’re ready to study the uniform-cost search algorithm itself. We will start with a simple
version that doesn’t do any pruning or dynamic programming, and then add those features back
in later. First, we have to extend our definition of a SearchNode, to incorporate costs. So, when
we create a new search node, we pass in an additional parameter actionCost, which represents
the cost just for the action that moves from the parent node to the state. Then, we create an
attribute self.cost, which encodes the cost of this entire path, from the starting state to the last
state in the path. We compute it by adding the path cost of the parent to the cost of this last action,
as shown by the red text below.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 317

class SearchNode:
def __init__(self, action, state, parent, actionCost):

self.state = state

self.action = action

self.parent = parent

if self.parent:

self.cost = self.parent.cost + actionCost

else:

self.cost = actionCost

Now, here is the search algorithm. It looks a lot like our standard search algorithm, but there are
two important differences:

•	 The agenda is a priority queue.

•	 Instead of testing for a goal state when we put an element into the agenda, as we did in breadth-
first search, we test for a goal state when we take an element out of the agenda. This is crucial,
to ensure that we actually find the shortest path to a goal state.

def ucSearch(initialState, goalTest, actions, successor):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()
agenda = PQ()
agenda.push(startNode, 0)

while not agenda.isEmpty():

n = agenda.pop()

if goalTest(n.state):

return n.path()
for	 a in actions:

(newS, cost) = successor(n.state, a)

if not n.inPath(newS):

newN = SearchNode(a, newS, n, cost)

agenda.push(newN, newN.cost)

return None

Example
Consider the following simple graph:

S

B

D

A

2
1

2 10

Let’s simulate the uniform-cost search algorithm, and see what happens when we try to start from
S and go to D:

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 318

•	 The agenda is initialized to contain the starting node. The agenda is shown as a list of cost,
node pairs.

agenda: PQ([(0, S)])

The least-cost node, S, is extracted and expanded, adding two new nodes to the agenda. The •
notation S-0->A means that the path starts in state S, takes action 0, and goes to state A.

0 : expanding: S

agenda: PQ([(2, S-0->A), (1, S-1->B)])

The least-cost node, S-1->B, is extracted, and expanded, adding one new node to the agenda. •
Note, that, at this point, we have discovered a path to the goal: S-1->B-1->D is a path to the
goal, with cost 11. But we cannot be sure that it is the shortest path to the goal, so we simply
put it into the agenda, and wait to see if it gets extracted before any other path to a goal state.

1 : expanding: S-1->B

agenda: PQ([(2, S-0->A), (11, S-1->B-1->D)])

The least-cost node, S-0->A is extracted, and expanded, adding one new node to the agenda. •
At this point, we have two different paths to the goal in the agenda.

2 : expanding: S-0->A

agenda: PQ([(11, S-1->B-1->D), (4, S-0->A-1->D)])

Finally, the least-cost node, S-0->A-1->D is extracted. It is a path to the goal, so it is returned •
as the solution.

5 states visited; Solution cost: 4

[(None, ’S’), (0, ’A’), (1, ’D’)]

Dynamic programming
Now, we just need to add dynamic programming back in, but we have to do it slightly differently.
We promise that, once we have expanded a node, that is, taken it out of the agenda, then we have
found the shortest path to that state, and we need not consider any further paths that go through
that state. So, instead of remembering which nodes we have visited (put onto the agenda) we will
remember nodes we have expanded (gotten out of the agenda), and never visit or expand a node
that has already been expanded. In the code below, the first test ensures that we don’t expand
a node that goes to a state that we have already found the shortest path to, and the second test
ensures that we don’t put any additional paths to such a state into the agenda.

def ucSearch(initialState, goalTest, actions, successor):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()

agenda = PQ()

agenda.push(startNode, 0)

expanded = { }
while not agenda.isEmpty():

n = agenda.pop()

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 319

if not expanded.has_key(n.state):

expanded[n.state] = True

if goalTest(n.state):

return n.path()

for a in actions:

(newS, cost) = successor(n.state, a)

if not expanded.has_key(newS):

newN = SearchNode(a, newS, n, cost)

agenda.push(newN, newN.cost)

return None

Here is the result of running this version of uniform cost search on our bigger city graph with
distances:

mapDistTest(map1dist,’S’, ’G’)

agenda: PQ([(0, S)])

0 : expanding: S

agenda: PQ([(2, S-0->A), (1, S-1->B)])

1 : expanding: S-1->B

agenda: PQ([(2, S-0->A), (3, S-1->B-1->D), (4, S-1->B-2->E)])

2 : expanding: S-0->A
agenda: PQ([(3, S-1->B-1->D), (4, S-1->B-2->E), (5, S-0->A-1->C), (4, S-0->A-2->D)])

3 : expanding: S-1->B-1->D
agenda: PQ([(4, S-1->B-2->E), (5, S-0->A-1->C), (4, S-0->A-2->D), (7, S-1->B-1->D-2->F),
(9, S-1->B-1->D-3->H)])

4 : expanding: S-1->B-2->E
agenda: PQ([(5, S-0->A-1->C), (4, S-0->A-2->D), (7, S-1->B-1->D-2->F), (9, S-1->B-1->D-3­
>H), (6, S-1->B-2->E-1->H)])
agenda: PQ([(5, S-0->A-1->C), (7, S-1->B-1->D-2->F), (9, S-1->B-1->D-3->H), (6, S-1->B-2­
>E-1->H)])

5 : expanding: S-0->A-1->C
agenda: PQ([(7, S-1->B-1->D-2->F), (9, S-1->B-1->D-3->H), (6, S-1->B-2->E-1->H), (6, S-0­
>A-1->C-1->F)])

6 : expanding: S-1->B-2->E-1->H
agenda: PQ([(7, S-1->B-1->D-2->F), (9, S-1->B-1->D-3->H), (6, S-0->A-1->C-1->F), (10, S-1­
>B-2->E-1->H-2->G)])

6 : expanding: S-0->A-1->C-1->F
agenda: PQ([(7, S-1->B-1->D-2->F), (9, S-1->B-1->D-3->H), (10, S-1->B-2->E-1->H-2->G), (7,
S-0->A-1->C-1->F-2->G)])
agenda: PQ([(9, S-1->B-1->D-3->H), (10, S-1->B-2->E-1->H-2->G), (7, S-0->A-1->C-1->F-2­
>G)])
13 states visited; Solution cost: 7
[(None, ’S’), (0, ’A’), (1, ’C’), (1, ’F’), (2, ’G’)]

8.5.1 Connection to state machines
When we use a state machine to specify a domain for a cost-based search, we only need to make
a small change: the getNextValues method of a state machine can still serve as the successor
function in a search (the inputs to the machine are the actions). We usually think of getNextVal­
ues as returning the next state and the output: now, we will modify that interpretation slightly,
and think of it as returning the next state and the incremental cost of taking the action that transi­
tions to that next state. This has the same form as the the ucSearch.search procedure expects a

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 320

successor function to have, so we don’t need to change anything about the smSearch procedure
we have already defined.

8.6 Search with heuristics
Ultimately, we’d like to be able to solve huge state-space search problems, such as those solved by
a GPS that can plan long routes through a complex road network. We’ll have to add something
to uniform-cost search to solve such problems efficiently. Let’s consider the city below, where the
actual distances between the intersections are shown on the arcs:

20.7
35

14.2
35.4

20

20.7

18.1
31.7

22.4 15

14.2

11.2

25

18.1

15.9

11.2

22.4

15.9

18.1

14.2

14.2
14.2

27

35.4
10

25

15

11.2

11.2

25.5

25.5

15

18.1

35

18.1

39.1

S

H

B

G

F

D

A

C E

I

P

L

Q

N

M

J

K

O

R

Z

V

AA

X

W

T

U

Y

15.9

25.5

If we use uniform cost search to find a path from G to X, we expand states in the following order
(the number at the beginning of each line is the length of the path from G to the state at the end of
the path:

>>> bigTest(’G’, ’X’)
0 : expanding: G
14.2 : expanding: G-2->H
20.7 : expanding: G-1->F
25.5 : expanding: G-0->I
30.1 : expanding: G-2->H-2->T
32.3 : expanding: G-2->H-0->D
36.7 : expanding: G-0->I-3->J

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 321

40.5 : expanding: G-0->I-0->C
44.3 : expanding: G-2->H-2->T-1->R
45.9 : expanding: G-2->H-1->E
50.4 : expanding: G-2->H-0->D-0->S
50.5 : expanding: G-0->I-2->L
52.6 : expanding: G-0->I-3->J-2->M
54.7 : expanding: G-2->H-0->D-2->B
54.7 : expanding: G-0->I-0->C-0->A
54.8 : expanding: G-0->I-3->J-1->K
58.5 : expanding: G-2->H-2->T-1->R-1->V
66.0 : expanding: G-0->I-3->J-1->K-1->N
68.5 : expanding: G-0->I-3->J-2->M-1->P
68.6 : expanding: G-0->I-2->L-1->O
69.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y
82.7 : expanding: G-0->I-3->J-2->M-1->P-1->Q
84.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z
86.7 : expanding: G-0->I-2->L-1->O-1->W
95.6 : expanding: G-0->I-2->L-1->O-2->U
95.9 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z-2->AA

39 nodes visited; 27 states expanded; solution cost: 105.9
[(None, ’G’), (2, ’H’), (2, ’T’), (1, ’R’), (1, ’V’), (2, ’Y’), (2, ’Z’), (2, ’AA’), (1,
’X’)]

This search process works its way out, radially, from G, expanding nodes in contours of increasing
path length. That means that, by the time the search expands node X, it has expanded every single
node. This seems kind of silly: if you were looking for a good route from G to X, it’s unlikely that
states like S and B would ever come into consideration.

Heuristics
What is it about state B that makes it seem so irrelevant? Clearly, it’s far away from where we want
to go. We can incorporate this idea into our search algorithm using something called a heuristic
function. A heuristic function takes a state as an argument and returns a numeric estimate of the
total cost that it will take to reach the goal from there. We can modify our search algorithm to
be biased toward states that are closer to the goal, in the sense that the heuristic function has a
smaller value on them.

In a path-planning domain, such as our example, a reasonable heuristic is the actual Euclidean
distance between the current state and the goal state; this makes sense because the states in this
domain are actual locations on a map.

A*
If we modify the uniform-cost search algorithm to take advantage of a heuristic function, we get
an algorithm called A∗ (pronounced ’a star’). It is given below, with the differences highlighted
in red. The only difference is that, when we insert a node into the priority queue, we do so with a
cost that is newN.cost + heuristic(newS). That is, it is the sum of the actual cost of the path
from the start state to the current state, and the estimated cost to go from the current state to the
goal.

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 322

def ucSearch(initialState, goalTest, actions, successor, heuristic):
startNode = SearchNode(None, initialState, None, 0)
if goalTest(initialState):

return startNode.path()

agenda = PQ()

agenda.push(startNode, 0)

expanded = { }

while not agenda.isEmpty():

n =	 agenda.pop()
if not expanded.has_key(n.state):

expanded[n.state] = True

if goalTest(n.state):

return n.path()
for	 a in actions:

(newS, cost) = successor(n.state, a)

if not expanded.has_key(newS):

newN = SearchNode(a, newS, n, cost)

agenda.push(newN, newN.cost + heuristic(newS))

return None

Example
Now, we can try to search in the big map for a path from G to X, using, as our heuristic function,
the distance between the state of interest and X. Here is a trace of what happens (with the numbers
rounded to increase readability):

•	 We get the start node out of the agenda, and add its children. Note that the costs are the actual
path cost plus the heuristic estimate.

0 : expanding: G

agenda: PQ([(107, G-0->I), (101, G-1->F), (79, G-2->H)])

The least cost path is G-2->H, so we extract it, and add its successors. •

14.2 : expanding: G-2->H
agenda: PQ([(107, G-0->I), (101, G-1->F), (109, G-2->H-0->D), (116, G-2->H-1->E), (79,
G-2->H-2->T)])

Now, we can see the heuristic function really having an effect. The path G-2->H-2->T has•
length 30.1, and the path G-1-F has length 20.7. But when we add in the heuristic cost esti­
mates, the path to T has a lower cost, because it seems to be going in the right direction. Thus,
we select G-2->H-2->T to expand next:

30.1 : expanding: G-2->H-2->T
agenda: PQ([(107, G-0->I), (101, G-1->F), (109, G-2->H-0->D), (116, G-2->H-1->E), (100,
G-2->H-2->T-1->R)])

Now the path G-2->H-2->T-1->R looks best, so we expand it. •

44.3 : expanding: G-2->H-2->T-1->R

agenda: PQ([(107, G-0->I), (101, G-1->F), (109, G-2->H-0->D), (116, G-2->H-1->E),

(103.5, G-2->H-2->T-1->R-1->V)])

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 323

Here, something interesting happens. The node with the least estimated cost is G-1->F. It’s •
going in the wrong direction, but if we were to be able to fly straight from F to X, then that
would be a good way to go. So, we expand it:

20.7 : expanding: G-1->F
agenda: PQ([(107, G-0->I), (109, G-2->H-0->D), (116, G-2->H-1->E), (103.5, G-2->H-2->T­
1->R-1->V), (123, G-1->F-0->D), (133, G-1->F-1->C)])

• Continuing now, basically straight to the goal, we have:

58.5 : expanding: G-2->H-2->T-1->R-1->V
agenda: PQ([(107, G-0->I), (109, G-2->H-0->D), (116, G-2->H-1->E), (123, G-1->F-0->D),
(133, G-1->F-1->C), (154, G-2->H-2->T-1->R-1->V-1->E), (105, G-2->H-2->T-1->R-1->V-2­
>Y)])

69.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y
agenda: PQ([(107, G-0->I), (109, G-2->H-0->D), (116, G-2->H-1->E), (123, G-1->F-0->D),
(133, G-1->F-1->C), (154, G-2->H-2->T-1->R-1->V-1->E), (175, G-2->H-2->T-1->R-1->V-2->Y­
0->E), (105, G-2->H-2->T-1->R-1->V-2->Y-2->Z)])

84.7 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z
agenda: PQ([(107, G-0->I), (109, G-2->H-0->D), (116, G-2->H-1->E), (123, G-1->F-0->D),
(133, G-1->F-1->C), (154, G-2->H-2->T-1->R-1->V-1->E), (175, G-2->H-2->T-1->R-1->V-2->Y­
0->E), (151, G-2->H-2->T-1->R-1->V-2->Y-2->Z-1->W), (106, G-2->H-2->T-1->R-1->V-2->Y-2­
>Z-2->AA)])

95.9 : expanding: G-2->H-2->T-1->R-1->V-2->Y-2->Z-2->AA
agenda: PQ([(107, G-0->I), (109, G-2->H-0->D), (116, G-2->H-1->E), (123, G-1->F-0->D),
(133, G-1->F-1->C), (154, G-2->H-2->T-1->R-1->V-1->E), (175, G-2->H-2->T-1->R-1->V-2->Y­
0->E), (151, G-2->H-2->T-1->R-1->V-2->Y-2->Z-1->W), (106, G-2->H-2->T-1->R-1->V-2->Y-2­
>Z-2->AA-1->X)])
18 nodes visited; 10 states expanded; solution cost: 105.9
[(None, ’G’), (2, ’H’), (2, ’T’), (1, ’R’), (1, ’V’), (2, ’Y’), (2, ’Z’), (2, ’AA’), (1,
’X’)]

Using A* has roughly halved the number of nodes visited and expanded. In some problems it can
result in an enormous savings, but, as we’ll see in the next section, it depends on the heuristic we
use.

Good and bad heuristics
In order to think about what makes a heuristic good or bad, let’s imagine what the perfect heuris­
tic would be. If we were to magically know the distance, via the shortest path in the graph, from
each node to the goal, then we could use that as a heuristic. It would lead us directly from start to
goal, without expanding any extra nodes. But, of course, that’s silly, because it would be at least
as hard to compute the heuristic function as it would be to solve the original search problem.

So, we would like our heuristic function to give an estimate that is as close as possible to the true
shortest-path-length from the state to the goal, but also to be relatively efficient to compute.

An important additional question is: if we use a heuristic function, are we still guaranteed to
find the shortest path through our state space? The answer is: yes, if the heuristic function is
admissible. A heuristic function is admissible if it is guaranteed to be an underestimate of the
actual cost of the optimal path to the goal. To see why this is important, consider a state s from
which the goal can actually be reached in 10 steps, but for which the heuristic function gives a

Chapter 8 Long-term decision-making and search 6.01— Spring 2011— April 25, 2011 324

value of 100. Any path to that state will be put into the agenda with a total cost of 90 more than
the true cost. That means that if a path is found that is as much as 89 units more expensive that
the optimal path, it will be accepted and returned as a result of the search.

It is important to see that if our heuristic function always returns value 0, it is admissible. And, in
fact, with that heuristic, the A∗ algorithm reduces to uniform cost search.

In the example of navigating through a city, we used the Euclidean distance between cities, which,
if distance is our cost, is clearly admissible; there’s no shorter path between any two points.

Exercise 8.1. Would the so-called ’Manhattan distance’, which is the sum of the absolute
differences of the x and y coordinates be an admissible heuristic in the city
navigation problem, in general? Would it be admissible in Manhattan?

Exercise 8.2. If we were trying to minimize travel time on a road network (and so the
estimated time to travel each road segment was the cost), what would be
an appropriate heuristic function?

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

