
Chapter 13:  Acoustics 

13.1 Acoustic waves 

13.1.1 Introduction 

Wave phenomena are ubiquitous, so the wave concepts presented in this text are widely relevant. 
Acoustic waves offer an excellent example because of their similarity to electromagnetic waves 
and because of their important applications.  Beside the obvious role of acoustics in microphones 
and loudspeakers, surface-acoustic-wave (SAW) devices are used as radio-frequency (RF) filters, 
acoustic-wave modulators diffract optical beams for real-time spectral analysis of RF signals, 
and mechanical crystal oscillators currently control the timing of most computers and clocks. 
Because of the great similarity between acoustic and electromagnetic phenomena, this chapter 
also reviews much of electromagnetics from a different perspective. 

Section 13.1.2 begins with a simplified derivation of the two main differential equations that 
characterize linear acoustics. This pair of equations can be combined to yield the acoustic wave 
equation. Only longitudinal acoustic waves are considered here, not transverse or “shear” waves.  
These equations quickly yield the group and phase velocities of sound waves, the acoustic 
impedance of media, and an acoustic Poynting theorem.  Section 13.2.1 then develops the 
acoustic boundary conditions and the behavior of acoustic waves at planar interfaces, including 
an acoustic Snell’s law, Brewster’s angle, the critical angle, and evanescent waves.  Section 
13.2.2 shows how acoustic plane waves can travel within pipes and be guided and manipulated 
much as plane waves can be manipulated within TEM transmission lines. 

Acoustic waves can be totally reflected at firm boundaries, and Section 13.2.3 explains how 
they can be trapped and guided in a variety of propagation modes closely resembling those in 
electromagnetic waveguides, where they exhibit cutoff frequencies of propagation and 
evanescence below cutoff.  Section 13.2.4 then explains how these guides can be terminated at 
their ends with open or closed orifices, thus forming resonators with Q’s that can be controlled as 
in electromagnetic resonators so as to yield band-stop or band-pass filters.  The frequencies of 
acoustic resonances can be perturbed by distorting the shape of the cavity, as governed by nearly 
the same equation used for electromagnetic resonators except that the electromagnetic energy 
densities are replaced by acoustic energy density expressions.  Section 13.3 discusses acoustic 
radiation and antennas, including antenna arrays, and Section 13.4 concludes the chapter with a 
brief introduction to representative electroacoustic devices. 

13.1.2 Acoustic waves and power 

Most waves other than electromagnetic waves involve perturbations.  For example, acoustic 
waves involve perturbations in the pressure and velocity fields in gases, liquids, or solids.  In 
gases we may express the total pressure pT, density ρT, and velocity uT  fields as the sum of a 
static component and a dynamic perturbation: 
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p ( )r,t  = P + p  ( )r,t  ⎣⎡ N/m  2 ⎤T o ⎦ (13.1.1)

ρT ( )r,t = ρo + ρ( )r,t ⎡ ⎣kg/m3⎤ ⎦ (13.1.2)

u( )r,t  = U o + u  ( )r,t  [m/s  ] (13.1.3) 

Another complexity is that, unlike electromagnetic variables referenced to a particular 
location, gases move and compress, requiring further linearization.73   Most important is the  
approximation that the mean velocity Uo = 0 . After these simplifying steps we are left with two 
linearized acoustic equations, Newton’s law (f = ma) and conservation of mass: 

p −ρ ∂u  ∂  ∇ ≅ t ⎡⎣N/m  3⎦⎤ o  (Newton’s law) (13.1.4)

ρ ∇  ⎡ 3 ⎤ o • u + ∂ρ ∂t ≅ 0 ⎣kg/m  s⎦  (conservation of mass) (13.1.5)

Newton’s law states that the pressure gradient will induce mass acceleration, while conservation 
of mass states that velocity divergence ∇ • u is proportional to the negative time derivative of 
mass density. 

These two basic equations involve three key variables: p, u , and ρ; we need the acoustic 
constitutive relation to reduce this set to two variables.  Most acoustic waves involve frequencies 
sufficiently high that the heating produced by wave compression has no time to escape by 
conduction or radiation, and thus this heat energy returns to the wave during the subsequent 
expansion without significant loss.  Such adiabatic processes involve no heat transfer across 
populations of particles. The resulting adiabatic acoustic constitutive relation states that the 
fractional change in density equals the fractional change in pressure, divided by a constant γ, 
called the adiabatic exponent: 

∂ρ ∂p = ρo γ Po (13.1.6)

The reason γ is not unity is that gas heats when compressed, which further increases the pressure, 
so the gas thereby appears to be slightly “stiffer” or more resistant to compression than 
otherwise. This effect is diminished for gas particles that have internal rotational or vibrational 
degrees of freedom so the temperature rises less upon compression.  Ideal monatomic molecules 
without such degrees of freedom exhibit γ = 5/3, and 1 < γ < 2, in general. 

Substituting this constitutive relation into the mass equation (13.1.5) replaces the variable ρ 
with p, yielding the acoustic differential equations: 

p −ρ ∂u  ∂  ∇ ≅ t ⎡⎣N/m  3⎤o ⎦  (Newton’s law) (13.1.7)

73 The Liebnitz identity facilitates taking time derivatives of integrals over volumes deforming in time. 
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∇ •  u = (1  P  o ) p − γ  ∂ ∂t  (13.1.8)

These two differential equations are roughly analogous to Maxwell’s equations (2.1.5) and 
(2.1.6), and can be combined.  To eliminate u  from Newton’s law we operate on it with (∇ •), 
and then substitute (13.1.8) for ∇ • u  to form the acoustic wave equation, analogous to the 
Helmholtz wave equation (2.2.7): 

∇ −2 ρ γ  ∂  Po ) 2p p ( o ∂t2 = 0  (acoustic wave equation) (13.1.9)

Wave equations state that the second spatial derivative equals the second time derivative 
times a constant.  If the constant is not frequency dependent, then any arbitrary function of an 
argument that is the sum or difference of terms linearly proportional to time and space will 
satisfy this equation; for example: 

p( )r,t  = ωp( t − k • r) ⎡⎣ N/m  2⎤⎦ (13.1.10)

where p(•) is an arbitrary function of its argument (•), and k = kx x̂ + ky ŷ + kz ẑ ; this is analogous
to the wave solution (9.2.4) using the notation (9.2.5).  Substituting the solution (13.1.10) into 
the wave equation yields: 

2 2 2 2 2 2 ) 2 ( 2(∂ ∂x  + ∂ ∂y  + ∂ ∂z )p(ωt − k • r) − (ρ    o γ ∂ ω − ∂ =Po p t k • r) t 0 (13.1.11) 

−(k2 + k2 + k2)p"  (ωt  − k r• ) − (ρ γ ω  x y z o Po ) 2 p"  ( ωt − k r• ) = 0  (13.1.12)

k2 + k2 + k2 = k 2 = 2
x y z ω ρ γ   o P = ω2 

o v2
p (13.1.13)

This is analogous to the electromagnetic dispersion relation (9.2.8). 

As in the case of electromagnetic waves [see (9.5.19) and (9.5.20)], the acoustic phase 
velocity vp and acoustic group velocity vg are simply related to k: 

vp = ω = (γP o ρo  k )0.5 = cs (acoustic phase velocity) (13.1.14)

vg = ∂( k ∂ω)−1 = (γPo  ρo  )0.5  = cs (acoustic group velocity) (13.1.15) 

Adiabatic acoustic waves propagating in 0oC air near sea level experience γ = 1.4, ρo = 
1.29 [kg/m3], and Po = 1.01×105 [N/m2], yielding cs ≅ 330 [m/s]. 

In solids or liquids the constitutive relation is: 
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∂ρ ∂p = ρ K (constitutive relation for solids and liquids) (13.1.16) 

K [N m-2] is the bulk modulus of the medium.  The coefficient 1/K then replaces 1/γPo in 
(13.1.8–10), yielding the acoustic velocity in solids and liquids: 

c = (K s ρo )0.5 ⎡⎣m s−1⎤⎦ (acoustic velocity in solids and liquids) (13.1.17)

Typical acoustic velocities are 900 - 2000 m s-1 in liquids (~1500 m s-1 in water), and 1500– 
13,000 m s-1 in solids (~5900 m s-1 in steel). 

Analogous to (7.1.25) and (7.1.26), the acoustic differential equations (13.1.8) and (13.1.7) 
can be simplified for sinusoidal plane waves propagating along the z axis: 

dp ( )z 

∇ •p z ˆ = = − j ωρ u ( ) 


dz o z z (13.1.18) 

du ( )
u = z z − ωj∇ •   = p ( )z  (13.1.19)dz γPo

These can be combined to yield the wave equation for z-axis waves analogous to (7.1.27): 

d2 p( )z ρ
= −ω2 o p( )z  (13.1.20) 

dz2 γPo

Analogous to (7.1.28) and (7.1.29), the solution is a sum of exponentials of the form: 

p( )z = p e− jkz + p e+ jkz ⎣⎡+ N m  -2 ⎤⎦ − (13.1.21)

1 dp( )z k u z( ) = ⎡p − jkz 
z = − +e − p ⎤

j −e + jkz [m/s  ] (13.1.22) 
ωρ ωρ ⎣o dz  ⎦o 

Note that, unlike electromagnetic waves, where the key fields are vectors transverse to the 
direction of propagation, the velocity vector for acoustic waves is in the direction of propagation 
and pressure is a scalar. 

Analogous to (7.1.31), the characteristic acoustic impedance of a gas is: 

p(z ) ωρ
η = o = = ρ c = 

u z  k s γρ P ⎡⎣N s/m  3⎤⎦ (13.1.23)( )  o s o o

z
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The acoustic impedance of air at room temperature is ~425 [N s m-3]. The acoustic impedance 
for solids and liquids is η  = ρ c  = (ρ K)0.5 -3

s o s o  [N s m ].  Note that the units are not ohms. 

The instantaneous acoustic intensity [W m-2] of this plane wave is p(t)uz(t), the complex 
power is pu * 2 , and the time average acoustic power is R {pu  *  2  [W me } -2], analogous to
(2.7.41). 

We can derive an acoustic power conservation law similar to the Poynting theorem (2.7.22) 
by computing the divergence of p⎯u* [W m-2] and substituting in (13.1.18) and (13.1.19):74 

∇ •(pu *) = u *•∇p + p ∇ •  u* = u *•(  − j  ωρo u) +  j ωp p* γP o (13.1.24)
2 ⎡ 2⎤= −4jω ρo  u 4⎦ − ⎡

⎣p 4  P  ⎤o ⎦) = −4j  ( )	 (13.1.25)γ	 ω (⎣ Wk − Wp 

acoustic kinetic energy density
2

The time average  of the wave is Wk [J m-3] = ρo u 4 , and the 

time average acoustic potential energy density is Wp = p 2 4  γP   o . For liquids or solids γPo → K,

so Wp = p  2 4K  . If there is no divergence of acoustic radiated power pu *, then it follows from 
(13.1.25) that: 

= Wk (energy balance in a lossless resonator) (13.1.26)Wp


The acoustic intensity I [W m-2] of an acoustic plane wave, analogous to (2.7.41), is: 


2 2 I R -2
e{pu *  2  = } = p 2ηs = ηs u 2 [W m  ]  (acoustic intensity) (13.1.27) 

where the acoustic impedance ηs = ρocs. The instantaneous acoustic intensity is p(t)uz(t), as 
noted above. 

Example 13.1A 
A loud radio radiates 100 acoustic watts at 1 kHz from a speaker 10-cm square near sea level 
where ρ -3

o = 1.29 [kg m ] and cs ≅ 330 m s-1. What are the: 1) wavelength, 2) peak pressure, 
particle velocity, and displacement, and 3) average energy density of this uniform acoustic plane 
wave in the speaker aperture? 

Solution:	 λ = cs/f = 330/1000 = 33 cm.  (13.1.22) yields |u| = (2I/η 0.5
s) , and (13.1.18) says 

η  = ρ c , so |u| = [200/(1.29×330)]0.5 = 0.69 [m s-1
s o s ]. p = ηsu = 425.7×0.69 = 

292 [N m-2].  Note that this acoustic pressure is much less than the ambient pressure 
Po ≅ 105 N m-2, as required for linearization of the acoustic equations.  Displacement 

74 Although these two equations apply to waves propagating in the z direction, their right-hand sides also apply to 
any direction if the subscript z is omitted. 
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d is the integral of velocity u, so d = u/jω and the peak-to-peak displacement is 2|u|/ω 
= 2×0.69/2π1000 = 0.22 mm. The average acoustic energy density stored equals 

2 
2 W u ( )2

k = ρ  4 =1.29 0.69 2 2 = 0.31 [J m-3
o ].

13.2 Acoustic waves at interfaces and in guiding structures and resonators 

13.2.1 Boundary conditions and waves at interfaces 

The behavior of acoustic waves at boundaries is determined by the acoustic boundary conditions. 
At rigid walls the normal component of acoustic velocity must clearly be zero, and fluid pressure 
is unconstrained there. At boundaries between two fluids or gases in equilibrium, both the 
acoustic pressure p( )r,t  and the normal component of acoustic velocity u r⊥( ),t  must be 
continuous. If the pressure were discontinuous, then a finite force normal to the interface would 
be acting on infinitesimal mass, giving it infinite acceleration, which is not possible.  If u⊥  were 
discontinuous, then ∂p/∂t at the interface would be infinite, which also is not possible; (13.1.8) 

∇ •  = 1  P  says u −( γ  o )∂p ∂t . These acoustic boundary conditions at a boundary between media 1 
and 2 can be stated as: 

p1 = p2 (boundary condition for pressure) (13.2.1) 

u1⊥ = u2⊥ (boundary condition for velocity) (13.2.2) 

A uniform acoustic plane wave incident upon a planar boundary between two media having 
different acoustic properties will generally have a transmitted component and a reflected 
component, as suggested in Figure 13.2.1.  The angles of incidence, reflection, and transmission 
are θi, θr, and θt, respectively. 

x 

θi 
θr 

θt 

λ1 

λ2 

ρo2, cs2 

ρo1, cs1 

kiz 

⎯kikix 

z 

Figure 13.2.1  Acoustic waves at a planar interface with phase matching. 
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A typical example is the boundary between cold air overlying a lake and warm air above; the 
warm air is less dense, although the pressures across the boundary must balance.  Since cs ∝ ρ ­

o
0.5 and ηs ∝ ρ 0.5

o , both the amplitudes and angles of propagation must change at the density 
discontinuity. 

As was done for electromagnetic waves (see Section 9.2.2), we can begin with tentative 
general expressions for the incident, reflected, and transmitted plane waves: 

p ( )
i  r = p e+ jkixx− jk izz

io   (incident wave) (13.2.3)

p ( )r = p e+ jkrxx− jk rz z
r  ro   (reflected wave) (13.2.4)

p ( )r = p e+ jktxx− jk tzz
t  to   (transmitted wave) (13.2.5)

At x = 0 the pressure is continuous across the boundary (13.2.1), so p (r ) + p (r) = p (i r)r t , which
requires the phases (-jkz) to match: 

kiz = krz = ktz ≡ kz (13.2.6)

But kz is the projection of the k  on the z axis, so kiz = kisin θi, where ki = ω/csi, and: 

k i sin θ =i k r sin θ k  r = t sin θt (13.2.7)

θ = θ  i r (13.2.8)

sinθt sin θ = c i si cst (acoustic Snell’s law) (13.2.9)

Thus acoustic waves refract at boundaries like electromagnetic waves (9.2.26). 

Acoustic waves can also be evanescent for θi > θc, where the critical angle θc is the angle of 
incidence (9.2.30) required by Snell’s law when θt = 90°: 

θ = sin −1(c c  si  cst  ) (acoustic critical angle) (13.2.10)

When θi > θc, then ktx becomes imaginary, analogous to (9.2.32), the transmitted acoustic wave 
is evanescent, and there is total reflection of the incident acoustic wave.  Thus: 

0.5 
ktx = ± j  ( k  2 2

t − k z ) = ± j α  (13.2.11)

p ( x,z  ) = p e−αx j − k  zz  (13.2.12)t  to  
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It follows from the complex version of (13.1.7) that: 

ut = −∇p t jωρ  o = ( αx̂  +  jk  z ẑ )pt jωρ  o (13.2.13) 

The complex power flow in this acoustic evanescent wave is pu * , analogous to (9.2.35), so the 
power flowing in the -x direction is imaginary and the time-average real power flow is: 

Re{pu * } 2 = ẑ(kz 
22ωρ  o ) p e− α2 z  ⎣⎡W m  -2  ⎤⎦ (13.2.14)to 

The fraction of power reflected from an acoustic boundary can be found by applying the 
boundary conditions and solving for the unknown reflected amplitude.  If we define pro  and pto 

as Γpio  and Tp io , respectively, then matching boundary conditions at x = z = 0 yields: 

pio + pro = p to ⇒1+ Γ = T (13.2.15) 

We need an additional boundary condition, and may combine u = −∇p j  ωρo (13.1.7) with the 
expression for p  (13.2.3) to yield: 

ui = −( jk  xix + jk  z ẑ) ⎡ ˆ jωρ ⎤p e+ jkixx− jk iz z 
⎣   oi ⎦ (13.2.16)io

Similar expressions for ur  and ut  can be found, and enforcing continuity of u⊥  across the 
boundary at x = z = 0 yields: 

kxi k− Γ xi k= xt T (13.2.17)
ωρoi ωρoi ωρot 

k ρ η cos  θ T 1− Γ = T xt oi = T i t ≡ (13.2.18)kxiρot ηt cos  θi ηn 

where we define the normalized angle-dependent acoustic impedance ηn ≡ (ηtcosθi/ηicosθt) and 
we recall kxt = ktcosθt, kt = ω/cst, and ηt = cst ρot. Combining (13.2.15) and (13.2.18) yields: 

η −1
Γ = n (13.2.19)

ηn + 1

2η
T = +1 Γ = n (13.2.20)

η +n 1
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These expressions for Γ and T are essentially the same as for electromagnetic waves, (7.2.31) 
and (7.2.32), although the expressions for ηn are different. The fraction of acoustic power 
reflected is |Γ|2. Acoustic impedance η(z)  for waves propagating perpendicular to boundaries 
therefore also are governed by (7.2.24): 

η − j tη  ankz  
( )  L oη z = ηo (13.2.21)

η −o j tη ankz 	L 

The Smith chart method of Section 7.3.2 can also be used. 

There can even be an acoustic Brewster’s angle θB when Γ = 0, analogous to (9.2.75). 
Equation (13.2.19) suggests this happens when ηn = 1 or, from (13.2.18), when ηicosθt = 
ηtcosθB. After some manipulation it can be shown that Brewster’s angle is: 

− (η η )2 −1	
θ = 1 t i 

B	 tan (13.2.22)2
1 c− ( s c

t s i )

Example 13.2A 
A typical door used to block out sounds might be 3 cm thick and have a density of 
1000 kg m-3, large compared to 1.29 kg m-3 for air. If cs = 330 m s-1 in air and 1000 m s-1 in the 
door, what are their respective acoustic impedances, ηa and ηd?  What fraction of 500-Hz 
normally incident acoustic power would be reflected by the door?  The fact that the door is not 
gaseous is irrelevant here if it is free to move and not secured to its door jamb. 

Solution: 	 The acoustic impedance η = ρocs = 425.7 in air and 106 in the door (13.1.23). The 
impedance at the front surface of the door given by (13.2.21) is 
ηfd = ηd(ηa - jηdtan kz)/(ηd - jηatan kz), where k = 2π/λd and z = 0.03. λd = cd/f = 
1000/500 = 2, so kz = πz = 0.094, and tan kz = 0.095. Thus ηfd = 425.7 + 3.84 and 
ηfd/η 2

a = 1.0090. Using (13.2.19) the reflected power fraction = |Γ|  = 
|(ηn – 1)/(ηn + 1)|2 where ηn = ηfd/ηa = 1.0090, we find |Γ|2 ≅ 2×10-5. Virtually all 
acoustic power passes through. If this solid door were secure in its frame, shear 
forces (neglected here) would lead to far better acoustic isolation. 

13.2.2 Acoustic plane-wave transmission lines 

Acoustic plane waves guided within tubes of constant cross-section satisfy the boundary 
conditions posed by stiff walls: 1) u⊥ = 0, and 2) any u// and p is permitted.  If these tubes curve 
slowly relative to a wavelength then their plane-wave behavior is preserved.  The viscosity of 
gases is sufficiently low that frictional losses at the wall can usually be neglected in small 
acoustic devices.  The resulting waves are governed by the acoustic wave equation (13.1.20), 
which has the solutions for p, uz, and η given by (13.1.21), (13.1.22), and (13.1.23), respectively.  
Wave intensity is governed by (13.1.26), the complex reflection coefficient Γ is given by 
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(13.2.19), and impedance transformations are governed by (13.2.21).  This set of equations is 
adequate to solve most acoustic transmission line problems in single tubes once we model their 
terminations. 

Two acoustic terminations for tubes are easily treated: closed ends and open ends.  The 
boundary condition posed at the closed end of an acoustic pipe is simply that u = 0.  At an open 
end the pressure is sufficiently released that p ≅ 0 there.  If we intuitively relate acoustic velocity 
u(t,z) to current i(z,t) in a TEM line, and p(z,t) to voltage v(t,z), then a closed pipe is analogous 
to an open circuit, and an open pipe is analogous to a short circuit (the reverse of what we might 
expect).75  Standing waves exist in either case, with λ/2 separations between pressure nulls or 
between velocity nulls. 

13.2.3 Acoustic waveguides 

Acoustic waveguides are pipes that convey sound in one or more waveguide modes.  Section 
13.2.2 considered only the special case where the waves were uniform and the acoustic 
velocity⎯u was confined to the ±z direction. More generally the wave pressure and velocity must 
satisfy the acoustic wave equation, analogous to (2.3.21): 

2 2 ⎧ ⎫( p
∇ + ω  c2

s )⎨ ⎬ = 0 (13.2.23)
⎩ ⎭u  

Solutions to (13.2.23) in cartesian coordinates are appropriate for rectangular waveguides, 
as discussed in Section 9.3.2. Assume that two of the walls are at x = 0 and y = 0.  Then a wave 
propagating in the +z direction might have the general form: 

⎧sink x x ⎫⎧sink y 
p( x, z  ) = p y ⎫

y, − jkzz 
o ⎨ ⎬⎨ ⎬e (13.2.24)
⎩co sk x x ⎭⎩cos k y y ⎭ 

The choice between sine and cosine is dictated by boundary conditions on u , which can be 
found using u = −∇p j  ωρo (13.2.13). Since the velocity u  perpendicular to the waveguide 
walls at x = 0 and y = 0 must be zero, so must be the gradient ∇p in the same perpendicular x and 
y directions at the walls.  Only the cosine factors in (13.2.24) have this property, so the sine 
factors must be zero, yielding: 

p = p  − jkzz
ocosk  x x cosk  y ye (13.2.25)

H = ⎡⎣ x̂ kz {sin k  xx or  cos k  xx}
− ŷ ( jk jk z 

y ko )cos k xx sin k y y + ẑ (kz 
(13.2.26) 

ko )cos k xx cos k y y ⎤ e− z 
⎦

75 Although methods directly analogous to TEM transmission lines can also be used to analyze tubes of different 
cross-sections joined at junctions, the subtleties place this topic outside the scope of this text. 
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 Since u⊥  (i.e. ux  and uy ) must also be zero at the walls located at x = a and y = b, it 
follows that kxa = mπ, and kyb = nπ, where m and n are integers: 0,1,2,3,...  Substitution of any 
of these solutions (13.2.25) into the wave equation (13.1.9) yields: 

2k2 2 2
x + k2

y + k2 
z = (mπ 2 a) + (nπ 2 b) + (2π λ  ) = k = ω ρ  γPo = ω2  c2 = (2π λ 2 

z s o s s ) (13.2.27)

2 ⎛ ⎞ 2 2m nπk 2 − 2 2 ω π
z = ks kx − ky = ⎜ ⎟ −

⎝ ⎠c s 
( a ) − 

mn  
( → ±b )  jα at  ω  n (13.2.28)

Therefore each acoustic mode Amn has its own cutoff frequency ωmn where kz becomes 
imaginary.  Thus each mode becomes evanescent for frequencies below its cutoff frequency fmn, 
analogous to (9.3.22), where: 

fmn = ωmn 
⎡2π =  c m 2a  ⎢⎣

+ c n  2b  
0.5 

( ⎤ 
s )2 ( s )2 Hz   (cutoff frequency) (13.2.29)

⎦⎥ [ ]  

λ = c f ⎡
mn = ⎢(m  2a  

⎣ )2 + (n  2b  
−0.5 

)2⎤
mn s ⎥ [ ]m  (cutoff wavelength) (13.2.30)

⎦

Below the cutoff frequency fmn for each acoustic mode the evanescent acoustic mode 
propagates as e− jk zz = e-αz, analogous to (9.3.31), where the wave decay rate is: 

⎡α = ⎢(m aπ
⎣

)2 + (nπ b − ω  
0.5 

)2 ( s )2⎤
mn c (13.2.31)⎥⎦ 

The total wave in any acoustic waveguide is that superposition of separate modes which matches 
the given boundary conditions and sources, where one (A00) or more modes always propagate 
and an infinite number (m→∞, n→∞) are evanescent and reactive.  The expression for p follows 
from (13.2.25) where e− jk -αzzz →  e , and the expression for u  follows from u = −∇p  ( jωρo  ) 
(13.2.13). 

13.2.4 Acoustic resonators 

Any closed container trapping acoustic energy exhibits resonances just as do low-loss containers 
of electromagnetic radiation.  We may consider a rectangular room, or perhaps a smaller box, as 
a rectangular acoustic waveguide terminated at its ends by walls (velocity nulls for uz).  The 
acoustic waves inside must obey (13.2.27): 

k2
x + k2

y + k2 
z = (mπ 2 a) + (nπ 2 b) + (qπ 2 d) = ω2  c2 

s (13.2.32)
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where kz = 2π/λz has been replaced by kz = qπ/d using the constraint that if the box is short- or 
open-circuited at both ends then its length d must be an integral number q of half-wavelengths 
λz/2; therefore d = qλz/2 and 2π/λz = qπ/d. Thus, analogous to (9.4.3), the acoustic resonant 
frequencies of a closed box of dimensions a,b,d are: 

fmnq = c ⎡
s ⎢(m 2a  
⎣

2 + n  2b  + q 2d  
0.5 

) ( )2 (  )2⎤  Hz   (resonant frequencies) (13.2.33)⎥⎦ [ ]  

A simple geometric construction yields the mode density (modes/Hz) for both acoustic and 
electromagnetic rectangular acoustic resonators of volume V = abd, as suggested in Figure 
13.2.2. 

mcs/2a 

ncs/2b 

qcs/2d 

0 

2cs/2a 

f 

Δf 

Figure 13.2.2 Resonant modes of a rectangular cavity. 

Each resonant mode Amnq corresponds to one set of quantum numbers m,n,q and to one cell in 
the figure. Referring to (13.2.11) it can be seen that frequency in the figure corresponds to the 
length of a vector from the origin to the mode Amnq of interest.  The total number No of acoustic 
modes with resonances at frequencies less than fo is approximately the volume of the eighth-
sphere shown in the figure, divided by the volume of each cell of dimension 
(cs/2a) × (cs/2b) × (cs/2d), where each cell corresponds to one acoustic mode.  The approximation 
improves as f increases.  Thus: 

N ≅ π 3(  )⎦
⎡4 f 3 3×8 ⎤ (c3 

s 8abd = 4πf V 3c o ) 3 
⎣ o  o s [modes < f o ] (13.2.34)

In the electromagnetic case each set of quantum numbers m,n,q corresponds to both a TE 
and a TM resonant mode of a rectangular cavity, so No is then doubled: 

≅ π  V  3C   3 N 2 
o 8 fo (electromagnetic modes < fo) (13.2.35)

The number density no of acoustic modes per Hertz is the volume of a thin shell of thickness 
Δf, again divided by the volume of each cell: 
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n π 2 3  ⎡ 1⎤o f 4 f (8c s 8abd ) = Δf 4 f V c ≅ Δ ×  π 2 3 modes Hz− s (13.2.36)⎣ ⎦ 

Thus the modes of a resonator overlap more and tend to blend together as the frequency 
increases. The density of electromagnetic modes in a similar cavity is again twice that for 
acoustic modes. 

Typical examples of acoustic resonators include musical instruments such as horns, 
woodwinds, organ pipes, and the human vocal tract.  Rooms with reflective walls are another 
example.  In each case if we wish to excite a particular mode efficiently the source must not only 
excite it with the desired frequency, but also from a favorable location. 

One way to identify favorable locations for modal excitation is to assume the acoustic 
source exerts pressure p across a small aperture at the wall or interior of the resonator, and then 
to compute the incremental acoustic intensity transferred from that source to the resonator using 
(13.1.27): 

I R  *= e{pu  2} (13.2.37)

In this expression we assume⎯u is dominated by waves already present in the resonator at the 
resonant frequency of interest and that the vector⎯u is normal to the surface across which p is 
applied. Therefore pressure sources located at velocity nulls for a particular mode transfer no 
power and no excitation occurs. Conversely, power transfer is maximized if pressure is applied 
at velocity maxima.  Similarly, acoustic velocity sources are best located at a pressure maximum 
of a desired mode.  For example, all acoustic modes have pressure maxima at the corners of 
rectangular rooms, so velocity loudspeakers located there excite all modes equally. 

The converse is also true. If we wish to damp certain acoustic modes we may put absorber 
at their velocity or pressure maxima, depending on the type of absorber used.  A wire mesh that 
introduces drag damps high velocities, and surfaces that reflect waves weakly (such as holes in 
pipes) damp pressure maxima.  High frequency modes are more strongly damped in humid 
atmospheres than are low frequency modes, but such bulk absorption mechanisms do not 
otherwise discriminate among them. 

Because the pressure and velocity maxima are located differently for each mode, each mode 
typically has a different Q, which is the number of radians before the total stored energy wT 
decays by a factor of e-1. Therefore the Q of any particular mode m,n,p is (7.4.34): 

Q = ω w o T  Pd  (acoustic Q) (13.2.38)

The resonant frequencies and stored energies are given by (13.2.33) and (13.1.25), respectively, 
where it suffices to compute either the maximum stored kinetic or potential energy, for they are 
equal. The power dissipated Pd can be found by integrating the intensity expression (13.2.37) 
over the soft walls of the resonator, and adding any dissipation occurring in the interior. 
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Small changes in resonator shape can perturb acoustic resonant frequencies, much like 
electromagnetic resonances are perturbed.  Whether a gentle indentation increases or lowers a 
particular resonant frequency depends on whether the time average acoustic pressure for the 
mode of interest is positive or negative at that indentation.  It is useful to note that acoustic 
energy is quantized, where each phonon has energy hf Joules where h is Planck’s constant; this is 
directly analogous to a photon at frequency f.  Therefore the total acoustic energy in a resonator 
at frequency f is: 

wT = nhf  [J] (13.2.39) 

If the cavity shape changes slowly relative to the frequency, the number n of acoustic 
phonons remains constant and any change in wT results in a corresponding change in f. The 
work ΔwT done on the phonon field when cavity walls move inward Δz is positive if the time 
average acoustic pressure Pa is outward (positive), and negative if that pressure is inward or 
negative: ΔwT = PaΔz. It is well known that gaseous flow parallel to a surface pulls on that 
surface as a result of the Bernoulli effect, which is the same effect that explains how airplane 
wings are supported in flight and how aspirators work.  Therefore if an acoustic resonator is 
gently indented at a velocity maximum for a particular resonance, that resonant frequency f will 
be reduced slightly because the phonon field pulling the wall inward will have done work on the 
wall.  All acoustic velocities at walls must be parallel to them.  Conversely, if the indentation 
occurs near pressure maxima for a set of modes, the net acoustic force is outward and therefore 
the indentation does work on the phonon field, increasing the energy and frequency of those 
modes. 

The most pervasive example of this phenomenon is human speech, which employs a vocal 
tract perhaps 16 cm long, typically less in women and all children.  One end is excited by brief 
pulses in air pressure produced as the vocal chords vibrate at the pitch frequency of any vowel 
being uttered.  The resulting train of periodic pressure pulses with period T has a frequency 
spectrum consisting of impulses spaced at T-1 Hz, typically below 500 Hz.  The vocal tract then 
accentuates those impulses falling near any resonance of that tract. 

u(z,t) 

A001 A001  A001 

0 0 

p(z,t) 

0 

u(z,t) p(z,t) 

u(z,t) 

u(z,t) 

(a) (b) (c) 

u(z,t) 

z 

p(z,t) u(z,t) 

D 

Figure 13.2.3 Acoustic resonances in tubes. 
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Figure 13.2.3 illustrates the lowest frequency acoustic resonances possible in pipes that are: 
(a) closed at both ends, (b) open at both ends, and (c) closed at one end and open at the other; 
each mode is designated A001 for its own structure, where 00 corresponds to the fact that the 
acoustic wave is uniform in the x-y plane, and 1 indicates that it is the lowest non-zero-frequency 
resonant mode.  Resonator (a) is capable of storing energy at zero frequency by pressurization (in 
the A000 mode), and resonator (b) could store energy in the A000 mode if there were a steady 
velocity in one direction through the structure; these A000 modes are generally of no interest, and 
some experts do not consider them modes at all. 

A sketch of the human vocal tract appears in Figure 13.2.4(a); at resonance it is generally 
open at the mouth and closed at the vocal chords, analogous to the resonator pictured in Figure 
13.2.3(c). This structure resonates when its length D corresponds to one-quarter wavelength, 
three-quarters wavelength, or generally (2n-1)/4 wavelengths for the A00n mode, as sketched in 
Figure 13.2.3(b). For a vocal tract 16 cm long and a velocity of sound cs = 340 m s-1, the lowest 
resonant frequency f001 = cs/λ001 = 340/(4 × 0.16) = 531 Hz. The next resonances, f2 and f3, fall 
at 1594 and 2656 Hz, respectively. 
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Figure 13.2.4 Human vocal tract. 

If the tongue now indents the vocal tract at the arrow indicated in (a) and (b) of Figure 
13.2.4, then the three illustrated resonances will all shift as indicated in (c) of the figure.  The 
resonance f1 shifts only slightly upward because the indentation occurs between the peaks for 
velocity and pressure, but nearer to the pressure peak.  The resonances shift more significantly 
down for f2 and up for f3 because this indentation occurs near velocity and pressure maximum for 
these two resonances, respectively, while occurring near a null for the complimentary variable. 
By simply controlling the width of the vocal tract at various positions using the tongue and teeth, 
these tract resonances can be modulated up and down to produce our full range of vowels. 

These resonances are driven by periodic impulses of air released by the vocal cords at a 
pitch controlled by the speaker.  The pitch is a fraction of the lowest vocal tract resonant 
frequency, and the impulses are sufficiently brief that their harmonics range up to 5 kHz and 
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more. Speech also includes high-pitched broadband noise caused by turbulent air whistling past 
the teeth or other obstacles as in the consonants s, h, and f, and impulsive spikes caused by 
temporary tract closures, as in the consonants b, d, and p.  Speech therefore includes both voiced 
(driven by vocal chord impulses) and unvoiced components.  The spectral content of most 
consonants can similarly be modulated by the vocal tract and mouth. 

It is possible to change the composition of the air in the vocal tract, thus altering the velocity 
of sound cs and the resonant frequencies of the tract, which are proportional to cs (13.2.30). Thus 
when breathing helium all tract resonance frequencies increase by a noticeable fraction, 
equivalent to shortening the vocal tract.  Note that pitch is not significantly altered by helium 
because the natural pitch of the vocal chords is determined instead primarily by their tension, 
composition, and length.  

13.3 Acoustic radiation and antennas 

Any mechanically vibrating surface can radiate acoustic waves.  As in the case of 
electromagnetic waves, it is easiest to understand a point source first, and then to superimpose 
such radiators in combinations that yield the total desired radiation pattern.  Reciprocity applies 
to linear acoustics, so the receiving and transmitting properties of acoustic antennas are 
proportional, as they are for electromagnetic waves; i.e. G(θ,φ) ∝ A(θ,φ). 

The acoustic wave equation for pressure permits analysis of an acoustic monopole radiator: 

⎡ 2 ( )2 ⎤∇ + ω⎣ c s ⎦p = 0 (13.3.1) 

If the acoustic radiator is simply an isolated sphere with a sinusoidally oscillating radius a , then 
the source is spherically symmetric and so is the solution; thus ∂/∂θ = ∂/∂φ = 0. If we define 
ω/cs = k, then (13.3.1) becomes: 

⎡r−2 ( 2 2⎤ 2d r  d dr  2 −1 2⎤) + k p = ⎡d  dr  + 2r  d dr  ⎣ ⎣ + k p = ⎦  ⎦ 0 (13.3.2)

This can be rewritten more simply as: 

d rp  2( ) d r  2 + k2 ( )rp =  0 (13.3.3)

This equation is satisfied if rp  is an exponential, so a radial acoustic wave propagating outward 
would have the form: 

p( )r = Kr − −1e jkr   ⎡⎣N m  -2  ⎤⎦ (13.3.4) 

The associated acoustic velocity u(r)  follows from the complex form of Newton’s law 
(13.1.7): ∇ ≅p − j ωρo u [N m-3]: 
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u( )r = −∇  p j  ωr = r̂K(η r  )−1 ⎡1 + ( jkr  ) −1 ⎤e − jkr 
o s ⎣ ⎦ (13.3.5) 

The first and second terms in the solution (13.3.5) correspond to the acoustic far field and 
acoustic near field, respectively.  When kr >> 1 or, equivalently, r >> λ/2π, then the near field 
term can be neglected, so that the far-field velocity corresponding to (13.3.4) is: 

u r( ) = r̂K(η r  )−1
ff s e− jkr ⎡⎣m s  -1 ⎤⎦  (far-field acoustic velocity) (13.3.6)

The near-field velocity from (13.3.5) is: 

( )−1
unf = − jKr̂ kη r2 e− jkr  ⎣⎡ -

s m s  1  ⎤⎦  (near-field acoustic velocity) (13.3.7) 

Since k = ω/cs, the near-field velocity is proportional to ω-1, and becomes very large at low 
frequencies. Thus a velocity microphone, i.e., one that responds to acoustic velocity u rather 
than to pressure, will respond much more strongly to low frequencies than to high ones when the 
microphone is held close to one’s lips (r <<λ/2π); this effect is usually compensated 
electronically. The advantage of velocity microphones is that they are largely deaf to ambient 
noise originating in their far field (r >> λ/2π), although they are sensitive to local wind 
turbulence. 

The acoustic intensity I(r) can be computed using (13.1.22) for a sphere of radius a 
oscillating with a surface velocity uo at r = a. In this case u(a ) = r ̂u o , and substituting this value 
for u  into (13.3.7) yields the constant K = juoηsa2 ; this near-field equation is appropriate only if 
a << λ/2π. Thus, using (13.3.4) and (13.3.6), the far field intensity is: 

⎡⎣W m  -2  ⎤⎦ (13.3.8){ }  
22 I R  = pu  *  2  2 2  = K  2  η r  = η 2  π e s s u  oa  2

Integrating I over a sphere of radius r yields the total acoustic power transmitted: 

2

Pt = π2 ηs
ωa2 u [ ]o cs W (acoustic power radiated) (13.3.9) 

where 2π/λ = ω/cs has been substituted. Thus Pt is proportional to ηsω2a4(uo/cs)2. This suggests 
the importance of using a high frequency ω and large radius a if substantial power is to be 
radiated using a velocity source uo . 

If we imagine a Thevenin equivalent acoustic source providing a “current” of uo, then, using 
(13.3.9), the acoustic radiation resistance of this acoustic antenna is: 

2Rr = Pt ( 2) = 4πηs(ka 2 )2 
u ⎡⎣kg s-1  ⎤o ⎦ (13.3.10)
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Arrays of such acoustic sources can synthesis a wide variety of antenna patterns because 
superposition applies and thus acoustic pressure and velocities will tend to cancel in some 
directions and add in others. For example, two such equal sources spaced distance d along the z 
axis, close compared to a wavelength and driven out of phase, would radiate the far-field 
pressure: 

p( )r ≅ ( jk  η 2 − jkr1 − jkr 2 2 − jkr  
sa uo ) ⎤e (13.3.11)r)(e − e ) = (2k  η a uo r  sin  ⎡(kd  2  cos  s ) θ⎣ ⎦

where r1,2 ≅ r ± (d/2)cosθ. In the limit where kd = 2πd/λ << 1, (13.3.11) becomes: 

p r( ) ≅ (k2d  η 2
sa uo r)cosθ e− jkr  (13.3.12) 

The radiated intensity I(θ) for this acoustic dipole is sketched in Figure 13.3.1(a), and is 
proportional to p2 and therefore to k4 and ω4. 

+- z 

I(θ) 

θ 

(a) 

+- + 

(b) (c) 

Figure 13.3.1 Acoustic radiators: (a) dipole, (b) loudspeaker, (c) baffled loudspeaker. 

Thus it radiates poorly at low frequencies.  Its acoustic antenna gain G(θ) is 3cos2θ, which can 
be computed by comparing the acoustic intensity I to the total acoustic power radiated Pt, just as 
is done for electromagnetic antennas.  That is, the acoustic gain over an isotropic radiator is: 

G ,(θ φ  =  ) I(θ φ  ,  ,r  ) ⎣⎡Pt 4πr2⎤⎦ (acoustic antenna gain) (13.3.13) 

2ππ 

t = ∫ ∫I(θ φ  ) 2 sin  d  d  [ ]  (13.3.14)P  ,  ,r r  θ θ φ  W

0 0 


A common way to produce this dipole acoustic pattern is illustrated in Figure 13.3.1(b) for 
the case of a loudspeaker with no baffling to block radiation from the back side of its vibrating 
speaker cone; the back side is clearly 180o out of phase with the velocity of the front side.  The 
radiation from an unbaffled loudspeaker can unfortunately reflect from the walls of the room and 
interfere with the sound from the front side, reinforcing those frequencies for which the two rays 
add in phase, and diminishing those frequencies for which they are out of phase.  As a result, 
most good loudspeakers are baffled so the reverse wave is trapped and cannot interfere with the 
primary wave radiated forward.  This alters the acoustic impedance of the loudspeaker, but it can 
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be electrically compensated.  The result is an acoustic monopole that radiates total power in 
proportion to p2, k2, and therefore ω2, rather than ω4 as for the dipole. 

A linear array of monopole acoustic sources of total length L has a diffraction pattern 
similar to that for an array of Hertzian dipoles.  If the sources are all in phase, then they radiate 
maximum power broadside (θ ≡ 0) where all rays remain in phase.  They exhibit their first null at 
θ ≅ ±λ/L. See Section 10.4 for more discussion of arrays of radiators.  Acoustic array 
microphones have similar directional patterns, and microphones feeding parabolic reflectors of 
large dimension L have even higher gains, where the gain of an acoustic antenna is proportional 
to its effective area.  The effective area of a parabolic reflector large compared to a wavelength is 
approximately its physical cross-section if it is uniformly illuminated without spillover, as shown 
in (11.1.25) for electromagnetic waves. 

13.4 Electrodynamic-acoustic devices 

13.4.1 Magneto-acoustic devices 

One of the most common electro-acoustic devices is the loudspeaker, where larger units typically 
employ a magnetic solenoid (see Section 6.4.1) to drive a large lightweight cone that pushes air 
with the driven waveform.  The frequency limits are within the mechanical resonances of the 
system, which are the natural frequencies of oscillation of the cone.  The low frequency 
mechanical limit is typically set by the resonance of the rigid cone oscillating within its support 
structure. An upper mechanical limit is set by the natural resonance modes of the cone itself, 
which are lower for larger cones because the driven waves typically propagate outward from the 
driven center, and can reflect from the outer edge of the cone, setting up standing waves.  The 
amplitude limit is typically set by the strength of the system and its linearity.  As shown in 
Section 6.1.2, mechanical motion can generate electric voltages in the same systems, so they also 
function as microphones. 

Another magneto-acoustic device uses magnetostriction, which is the shrinkage of some 
magnetic materials when exposed to large magnetic fields.  They are used when small powerful 
linear motions are desired, typically on the order of microns.  To obtain larger motions the drive 
head can be connected to a mechanically tapered acoustic transmission line resembling a small 
solid version of a trumpet horn that smoothly matches the high mechanical impedance of the 
driver over a large area to the low mechanical impedance of the small tip.  The small tip moves 
much greater distances because acoustic power is conserved if the taper is slow compared to a 
quarter-wavelength, much like a series of quarter-wave transformers being used for impedance 
transformation; small tips moving large distances convey the same power as large areas moving 
small distances.  Such acoustic-transmission-line transformers can be used in either direction, 
depending on whether high displacements or high forces are desired. 

13.4.2 Electro-acoustic devices 

The simplest electro-acoustic device is perhaps a capacitor with one plate that is free to move 
and push air in response to time-varying electric forces on it, as discussed in Section 6.2.2. 
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These can be implemented macroscopically or within micro-electromechanical systems 
(MEMS). 

Some materials such as quartz are piezo-electric and shrink or distort when high voltages are 
place across them.  Because this warping yields little heat, periodic excitation of quartz crystals 
can cause them to resonate with a very high Q, making them useful for time-keeping purposes in 
watches, computers, and other electronic devices.  These mechanical resonances for common 
crystals are in the MHz range and have stabilities that are ~10-4–10-6, depending mostly on 
temperature stability; larger crystals resonate at lower frequencies.  They can also be designed to 
drive tiny resonant loudspeakers at high acoustic frequencies and efficiencies for watch alarms, 
etc. 

By reciprocity, good piezo-electric actuators are also good sensors and can be used as 
microphones.  Mechanical distortion of such materials generates small measurable voltages.  The 
same is true when the plate separation of capacitors is varied, as shown in Section 6.6.1. 
Mechanically tapered solid acoustic waveguides can also be used for impedance transformations 
between low-force/high-motion terminals and high-force/low motion terminals, as noted in 
Section 13.4.1. Levers can also be used for the same purpose. 

13.4.3 Opto-acoustic-wave transducers 

When transparent materials are compressed their permittivity generally increases, slowing 
lightwaves passing through. This phenomenon has been used to compute Fourier transforms of 
broadband signals that are converted to acoustic waves propagating down the length of a 
transparent rectangular rod. A uniform plane wave from a laser then passes through the rod at 
right angles to it and to the acoustic beam, and thereby experiences local phase lags along those 
portions of the rod where the acoustic wave has temporarily compressed it.  If the acoustic wave 
is at 100 MHz and the velocity of sound in the bar is 1000 m/s, then the acoustic wavelength is 
10 microns.  If the laser has wavelength 1 micron, then the laser light will pass straight through 
the bar and will also diffract at angles ±λ laser/λacoustic = 10-6/10-5 = 0.1 radian. Several other 
beams will emerge too, at ~±0.2, 0.3, etc. [radians]. There will therefore be a diffracted laser 
beam at an angle unique to each Fourier component of the acoustic signal, the strength of which 
depends on the magnitude of the associated optical phase delays along the rod.  Lenses can then 
focus these various plane waves to make the power density spectrum more visible. 

If several exit ports are provided for the emerging light beams, one per angle, the laser beam 
can effectively be switched at acoustic speeds among those ports.  If 100 exit ports are provided, 
then the rod length L should be at least 100 wavelengths, or 1mm for the case cited above.  At an 
acoustic velocity cs of 1000 m/s a new wave can enter the device after L/cs = 10-3/1000 = 10-6 

seconds. 

13.4.4 Surface-wave devices 

Only compressive acoustic waves have been discussed so far, but acoustic shear waves can also 
be generated in solids, and exhibit most of the same wave phenomena as compressive waves, 
such as guidance and resonance. The dominant velocity in a shear wave is transverse to the 
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direction of wave propagation.  By generating shear waves on the surface of quartz devices, and 
by periodically loading those surfaces mechanically with slots or metal, multiple reflections are 
induced that, depending on their spacing relative to a wavelength, permit band-pass and band-
stop filters to be constructed, as well as transformers, resonators, and directional couplers. 
Because quartz has such high mechanical Q, it is often used to construct high-Q resonators at 
MHz frequencies. 
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