
Chapter 11:  Common Antennas and Applications 

11.1 Aperture antennas and diffraction 

11.1.1 Introduction 

Antennas couple circuits to radiation, and vice versa, at wavelengths that can extend into the 
infrared region and beyond. The output of an antenna is a voltage or field proportional to the 
input field strength⎯E(t) and at the same frequency.  By this definition, devices that merely 
amplify, detect, or mix signals are not antennas because they do not preserve phase and 
frequency, although they generally are connected to the outputs of antennas.  For example, some 
sensors merely sense the increased temperature and heating caused by incoming waves.  Chapter 
10 introduced short-dipole and small-loop antennas, and arrays thereof.  Chapter 11 continues 
with an introductory discussion of aperture antennas and diffraction in Section 11.1, and of wire 
antennas in 11.2. Applications are then discussed in Section 11.4 after surveying the basics of 
wave propagation and thermal emission in Section 11.3.  These applications include 
communications, radar and lidar, radio astronomy, and remote sensing. Most optical 
applications are deferred to Chapter 12. 

11.1.2 Diffraction by apertures 

Plane waves passing through finite openings emerge propagating in all directions by a process 
called diffraction. Antennas that radiate or receive plane waves within finite apertures are 
aperture antennas. Examples include the parabolic reflector antennas used for radio astronomy, 
radar, and receiving satellite television signals, as well as the lenses and finite apertures 
employed in cameras, microscopes, telescopes, and many optical communications systems.  As 
in the case of dipole antennas; we assume reciprocity and knowledge of the source fields or 
equivalent currents. 

Since we have already derived expressions for fields radiated by arbitrary current 
distributions, one approach to finding aperture-radiated fields is to determine current 
distributions equivalent to the given aperture fields.  Then these equivalent currents can be 
replaced by a continuous array of Hertzian dipoles for which we know the radiated far fields. 

Consider a uniform current sheet J  [A m-1] occupying the x-z plane, as illustrated in Figure 
11.1.1. Maxwell’s equations are then satisfied by: 

E = z  , ˆE − jky 
o e H = x̂ (Eo ηo ) e− jky (for y > 0) (11.1.1) 

E = z  , ˆE + jky
o e H = − x̂ (Eo  ηo ) e+ jky (for y < 0) (11.1.2) 
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The electric field ẑEo ≡ Eo must satisfy the boundary condition (2.6.11) that: 

s y H = 0+ ( ⎡ E J = ×ˆ ⎡ ( E ⎤ y ) − H y = ⎤⎣ 0− ) =⎦ y ˆ × x ˆ o + x ˆ o (11.1.3) ⎢ ⎥⎣ ηo ηo ⎦

E EJs = − ẑ2 o = −2 o ⎡Am  −1⎤ (11.1.4)
η ⎣ ⎦ o ηo 

Therefore we can consider any plane wave emerging from an aperture as emanating from an 
equivalent current sheet⎯Js given by (11.1.4) provided we neglect radiation from the charges and 
currents induced at the aperture edges.  They can generally be neglected if the aperture is large 
compared to a wavelength and if we remain close to the y axis in the direction of propagation, 
because then the aperture area dominates the observable radiating area.  This approximation 
(11.1.4) for a finite aperture is valid even if the strength of the plane wave varies across the 
aperture slowly relative to a wavelength. 

The equivalent current sheet (11.1.4) radiates according to (11.1.5) [from (10.2.8)], where 
we represent the current sheet by an equivalent array of Hertzian dipoles of length dz and current 
I = J  sdx :

jkId ηE = θ̂ o e− jkr sin  θ  (far-field radiation) (11.1.5)4 rπ 

The far fields radiated by the z-polarized current sheet J s (x,z)  in the aperture A are then: 

jηE ( θ φ, ) ≅ θ ̂ o 
ff  sin θ2 r  λ ∫ ( )J (x,z e -jkr x,z 

z ) dx dz
A (11.1.6) 

j (≅ −θ̂  sin θ
λ r ∫ Eo (x,y ) e -jkr x,z )dx dz 

A
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Figure 11.1.1 Aperture radiation from an equivalent current sheet. 
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To simplify the integral we can assume all rays are parallel by using the Fraunhofer far-field 
approximation: 

e− jkr ( x,z ) ≅ e − jkr o e+ jkr̂ir ' (Fraunhofer approximation) (11.1.7) 

where we define position within the aperture r ' ≡ xx̂ + zẑ , and the distance ro = (x2 + y2+ z2)0.5. 
The Fraunhofer approximation is generally used when r  > 2L2

o /λ. Then: 

jE ff (θ φ, )  ≅ −θ̂  jkr  e− o sin  θ∫ Eoz ( x,  z  ) e+ jkr ̂i 'dx dz  (11.1.8)
λr A 

Those points in space too close to the aperture for the Fraunhofer approximation to apply lie in 
the Fresnel region where r < ~ 2L2/λ, as shown in (11.1.4). If we restrict ourselves to angles 
close to the y axis we can define the angles αx and αz from the y axis in the x and z directions, 
respectively, as illustrated in Figure 11.1.1, so that: 

r ̂ • r ' ≅ x sin  α +x zsin  α ≅ xα +  z x z αz (11.1.9)

Therefore, close to the y axis (11.1.8) can be approximated55 as: 

( jE α ,α ) ≅ −θ̂  + πe − jkr ∫ j2 E (x,z ) (e  xα +z o x α ) 
ff   z 

x z  λr oz  A 
λdx dz (11.1.10) 

which is the Fourier transform of the aperture field distribution Eoz (x,z ) , times a factor that 
depends on distance r and wavelength λ. Unlike the usual Fourier transform for converting 
signals between the time and frequency domains, this reversible transform in (11.1.10) is 
between the aperture spatial domain and the far-field angular domain. 

For reference, the Fourier transform for signals is:   

∞ 
S( )f = ∫ s ( )t e − πj2 ft d t  (11.1.11)

−∞

∞
s t  ( ) = ∫ S( )f e  j2 πf t df  (11.1.12)

−∞ 

The Fourier transform (11.1.11) has exactly the same form as the integral of (11.1.10) if we 
replace the aperture coordinates x and z with their wavelength-normalized equivalents x/λ and 
z/λ, analogous to time t; α is analogous to frequency f. 

Assume the aperture of Figure 11.1.1 is z-polarized, has dimensions Lx × Lz, and is 
uniformly illuminated with amplitude Eo. Then its far fields can be computed using (11.1.10): 

55 In the Huygen’s approximation a factor of (1 + cosα)/2 is added to improve the accuracy, but this has little impact 
near the y axis.  In this expression α is the angle from the direction of propagation (y axis) in any direction. 
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+L 2 j2 zz x + πα  λjE (α α, ) ≅ −θ̂  e− jkr z o dx dz  (11.1.13)+ π
ff x z λr ∫ α  λ

−L 2z 
∫

+ L
−Lx 

2 
e Eo (x, z  )e j2 x x

2

The inner integral yields: 

+L 2x E x, z  + j2πα  xx λ λ ⎡ j Lx − πα   x ∫ λ ⎤o ( )e  dx  = Eo ⎣e+ πα   x ⎦
−L 2  j2παx 

λ − e j Lx 
x 

sin (παx xL 
(11.1.14) 

λ) 
= Eo παx λ 

The outer integral yields a similar result, so the far field is: 

sin πα L λ) sin (πα  zLz j λ) E (θ φ, ) ≅ −θ̂ E e− jkro ( 
• L L  x x  (11.1.15)ff λr oz x z  πα L λ πα    zLz x x  λ

2The total power Pt radiated through the aperture is simply A Eo 2ηo , where A = LxLz, so 
the antenna gain G(αx,αz) given by (10.3.1) is: 

2E α α  
( ff ( x , z ) 2ηoG  α αx , z ) ≅

P 4πr
(11.1.16) 2 

t 
⎞⎛sin (πα 2   L λ) sin (πα  ⎟⎜ zLz  

⎛ 2 ⎞λ)  4π ≅ A ⎜ x x ⎟
λ2 ⎜ 2 ⎟⎜  

⎝ (παx xL λ) ⎠⎝ (πα zLz  
(11.1.17) 2 λ) ⎟ 

⎠

The function (sin x)/x appears so often in electrical engineering that it has its own symbol 
‘sinc(x)’. Note that sinc(0) = 1 since sin(x) ≅ x – (x3/6) for x << 1. This gain pattern is plotted in 
Figure 11.1.2. The first nulls occur when παιLi/λ = π (i = x or z), and therefore αnull = λ/L, 
where a narrower beamwidth α corresponds to a wider aperture L. The on-axis gain is: 

G 0( , 0  ) 4π = A (gain of uniformly illuminated aperture area A) (11.1.18) 
λ2  

Equation (11.1.18) applies to any uniformly illuminated aperture antenna, and such antennas 
have on-axis effective areas A(θ,φ) that approach their physical areas A, and have peak gains Go 

= 4πA/λ2. The antenna pattern of Figure 11.1.2 vaguely resembles that of circular apertures as 
well, and the same nominal angle to first null, λ/L, roughly applies to all.  Such diffraction 
pattterns largely explain the limiting angular resolution of telescopes, cameras, animal eyes, and 
photolithographic equipment used for fabricating integrated circuits. 

- 342 -




 Figure 11.1.2  Antenna gain for uniformly illuminated rectangular aperture. 

The coupling between two facing aperture antennas having effective areas A1 and A2 is: 

Pt P 2 
P = 1 t λG A   1  

r 1 2 = A1A  = P G  G  (11.1.19)
2 2	 2 2  2 t

 1 ( 4π ) 1 2
4 r  π λ r r 

where Pr2	
and Pt  are the power received by antenna 2 and the total power transmitted by 

1

antenna 1, respectively. For (11.1.19) to be valid, r2λ2 >> A1A2; if A1 = A2 = D2, then we require 
r >> D2/λ for validity.  Otherwise (11.1.19) could predict that more power would be received 
than was transmitted.   

Example 11.1A 
What is the angle between the first nulls of the diffraction pattern for a visible laser (λ = 0.5 
microns) illuminating a 1-mm square aperture (about the size of a human iris)?  What is the 
approximate diffraction-limited angular resolution of the human visual system?  How does this 
compare to the maximum angular diameters of Venus, Jupiter, and the moon (~1, ~1, and ~30 
arc minutes in diameter, respectively)? 

Solution:	 The first null occurs at φ = sin-1(λ/L) ≅ 5×10-7/10-3 = 5×10-4 radians = 0.029° ≅ 1.7 arc 
minutes.  This is 70 percent larger than the planets Venus and Jupiter at their points of 
closest approach to Earth, and ~6 percent of the lunar diameter.  Cleverly designed 
neuronal connections in the human visual system improve on this for linear features, 
as can a dark-adapted iris, which has a larger diameter. 

Example 11.1B 
A cell-phone dipole antenna radiates one watt toward a uniformly illuminated square aperture 
antenna of area A = one square meter.  If Pr = 10-9 watts are required by the receiver for 
satisfactory link performance, how far apart r can these two terminals be?  Does this depend on 
the shape of the aperture antenna if A remains constant? 

G(αx,αz)0 

αz 

αx 

nulls 
λ/Lx 
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Solution )0.5 : P = AP G ( × × −9 4πr2 ⇒ r = (AP G 4πP  r = 1 1 1.5 4 10 
0.5 

r t t t t π ) ≅ 10.9 km The on-
axis gain Gt of a uniformly illuminated constant-phase aperture antenna is given by 
(11.1.18). The denominator depends only on the power transmitted through the 
aperture A, not on its shape.  The numerator depends only on the on-axis far field Eff, 
given by (11.1.10), which again is independent of shape because the phase term in the 
integral is unity over the entire aperture.  Since the on-axis gain is independent of 
aperture shape, so is the effective area A since A ,  (θ φ =) G , (θ φ λ) 2  4π . The on-axis 
effective area of a uniformly illuminated aperture approximates its physical area. 

11.1.3 Common aperture antennas 

Section 11.1.2 derived the basic equation (11.1.10) that characterizes the far fields radiated by 
aperture antennas excited with z-polarized electric fields Eo (x,z  ) = ẑE oz  (x,z  ) in the x-z aperture
plane: 

( j E θ φ, )  ≅ θ̂ ff  sinθe− jkr w∫∫ Eoz(x,z )e  jkr ˆ•r' dx dz (11.1.20)
λr A 

The unit vector r̂ points from the antenna toward the receiver and r'  is a vector that locates 
Eo (r')  within the aperture.  This expression assumes the receiver is sufficiently far from the 
aperture that a single unit vector r̂  suffices for the entire aperture and that the receiver is 
therefore in the Fraunhofer region. The alternative is the near-field Fresnel region where 
r 2< D2 /λ , as discussed in Section 11.1.4; D is the aperture diameter.  It also assumes the 
observer is close to the axis perpendicular to the aperture, say within ~40°. The Huygen’s 
approximation extends this angle further by replacing sinθ with (1 + cosβ)/2, where θ is 
measured from the polarization axis and β is measured from the y axis: 

j Eff ( θ φ, ) ≅ θ̂ − jkr − jkr ˆ•r' (1 + cos β)e x,z e2 r  λ w∫∫ Eoz( ) dx dz (Huygen’s approximation) (11.1.21) 
A

Evaluating the on-axis gain of a uniformly excited aperture of physical area A having 
Eoz(x,z) = Eoz is straightforward when using (11.1.21) because the exponential factor in the 
integral is unity within the entire aperture.  The gain follows from (11.1.16).  The results are: 

jE − jkr 
ff (0,0 ) ≅ θ̂ e E dx dz  (on-axis field) (11.1.22) 

λ r w∫∫ oz A

( ) 2E 0,0  ff 2ηo  (on-axis gain) (11.1.23)
P 4

G 0( ,0  ) = 
πr2

T 
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But the total power PT transmitted through the aperture area A can be evaluated more easily than 
the alternative of integrating the radiated intensity I(θ,φ) over all angles.  The intensity I within 

2
the aperture is Eoz 2ηo , therefore:

2
E
P oz


T = A (11.1.24) 2ηo 

Then substitution of (11.1.22) and (11.1.24) into (11.1.23) yields the gain of a uniformly 
illuminated lossless aperture of physical area A: 

( )−2 2 λr ( ) =
(EozA) 2ηo λ2 

G 0,0  
(

= A (gain of uniform aperture) (11.1.25)
E 2 4π

oz 2ηo )A 4  πr2  

The off-axis gain of a uniformly illuminated aperture depends on its shape, although the on-axis 
gain does not. 

Perhaps the most familiar radio aperture antennas are parabolic dishes having a point feed 
that radiates energy toward a parabolic mirror so as to produce a planar wave front for 
transmission, as suggested in Figure 11.1.3(a).  Conversely, incoming radiation is focused by the 
mirror on the antenna feed, which intercepts and couples it to a transmission line connected to 
the receiver.  Typical focal lengths (labeled “f” in the figure) are ~half the diameter D for radio 
systems, and are often much longer for optical mirrors that produce images. 

λ/2 

D 

f = focal length 

phase 
front 

(a) (b) 

4 

3 

2 

1 

DD/2 
θn 

z 

feed 

Figure 11.1.3 Aperture antennas and angle of first null. 

Figure 11.1.3(b) suggests the angle θn at which the first null of a uniformly illuminated 
rectangular aperture of width D occurs; it is the angle at which all the phasors emanating from 
each point on the aperture integrate in (11.1.10) to zero.  In this case it is easy to pair the phasors 
originating D/2 apart so each pair cancels at θn.  For example, radiation from aperture element 2 
has to travel λ/2 farther than radiation from element 1 and therefore they cancel each other. 
Similarly radiation from elements 3 and 4 cancel, and the sum of all such pairs cancel at the null 
angle: 
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λθ = sin −1( D) r[ adians ] n (11.1.26)

where θn ≅ λ/D for λ/D << 1. 

Approximately the same null angle results for uniformly illuminated circular apertures, for 
which integration yields θn ≅ 1.2λ/D.  Consider the human eye, which has a pupil that normally 
is ~2 mm in diameter, but can dilate to ~1 cm in the dark.  For a wavelength of 5×10-7 meters, we 
find the normal diffraction-limited angular resolution of the eye is ~λ/D = 5×10-7/(2×10-3) = 
2.5×10-4 radians or ~0.014 degrees, or ~0.9 arc minutes.  For comparison, the planets Venus and 
Jupiter are approximately 1 arc minute in diameter at closest approach, and the moon and sun are 
approximately 30 arc minutes in diameter. 

A large astronomical telescope like the 200-inch system at Palomar has a nominal 
diffraction limit of λ/D ≅ 5×10-7/5.08 ≅ 10-7 radians or ~0.02 arc seconds, where there are 60 arc 
seconds in an arc minute, and 60 arc minutes in a degree.  This is adequate to resolve an 
automobile on the moon.  Unfortunately mirror surface imperfections, focus misplacement, and 
atmospheric turbulence limit the actual angular resolution of Palomar to ~1 arc second on the 
very best nights; normal daytime turbulence is far worse. 

Practical issues generally shape the design of parabolic radio antennas.  First, mechanical 
(gravity and wind) and thermal issues (temperature gradients) usually limit their angular 
resolution to ~1 arc minute; most antennas are too small relative to λ to achieve this resolution, 
however. Second, the antenna feed that illuminates the parabola tends to spray its radiation in a 
broad pattern that extends past the edge of the reflector creating backlobes. Third, the finite 
extent of the aperture results in an antenna pattern with sidelobes and unwanted responsiveness 
to directions beyond the main lobe. 

Equation (11.1.10) showed how the angular dependence of the far-fields of an aperture was 
proportional to the Fourier transform of the aperture excitation function.  For example, (11.1.17) 
and Figure 11.1.2 showed the radiation pattern of a uniformly illuminated aperture measuring Lx 

by Lz. Significant energy was radiated beyond the first nulls at αx = λ/Lx and αz = λ/Lz. A finite 
aperture necessarily radiates something at all angles, just as a finite voltage pulse in a circuit has 
at least some energy at all frequencies; the sharper the pulse edges, the more high-frequency 
content they have. Therefore, reducing the sharp discontinuities in field strength at the aperture 
edge, a strategy called tapering, can reduce diffraction sidelobes.  Antenna feeds are typically 
designed to reduce field strengths by factors of 2-4 at the mirror edges for this reason, but the 
resulting effective reduction in aperture diameter produces a slightly broader main lobe, just as 
the Fourier transform of a narrower pulse produces a broader spectral band.   

A final consideration is sometimes important when designing aperture antennas, and that 
involves aperture blockage, which results when transmitted radiation reflected from the mirror is 
blocked or scattered by the antenna feed at the focus of the parabola.  Not only does the scattered 
radiation contribute to side or back lobes, but it also is lost to the main beam.  Example 11.1C 
illustrates these issues. 
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Example 11.1C 
A uniformly illuminated square aperture is 1000 wavelengths long on each side.  What is its 
antenna gain G(αx, αz) for α << 1?  What is the gain Go' if the center of this fully illuminated 
aperture is blocked by a square absorber 100 wavelengths on a side?  What is the extent and 
approximate magnitude of the sidelobes introduced by the blockage? 

Solution: The on-axis gain Go = A4π/λ2 = 10002 × 4π. The angular dependence is proportional 
2

to the square of the far-field, E ( α αx , z ) , where the far field is the Fourier transform
of the aperture field distribution.  The full solution for G(αx, αz) is developed in 
Equations (11.1.13–17). If the blocked portion of the aperture is illuminated so the 
energy there is absorbed, then the total transmitted power Pt in the expression 
(11.1.16) for gain is unchanged, while the area over which Eff' is integrated in 
(11.1.13) is reduced by the 1 percent blockage (1002 is 1 percent of 10002). Therefore 

2
Eff ' (0,0  ) , the numerator of (11.1.16), and Go'(0,0) are all reduced by a factor of 

0.992 ≅ 0.98. Thus Go' ≅ 0.98 Go. If the blocked portion of the aperture were not 
illuminated so as to avoid the one percent absorption, then Go'(0,0) would be reduced 
by only 1 percent: Go' = A'4π/λ2. The sidelobes for the blocked aperture follow from 
the Fourier transform (11.1.13), where the aperture excitation Eo(x,z) is the sum of a 
positive square “boxcar” function 1000λ on a side, and a negative square boxcar 100λ 
on a side. Since this transform is linear, Eff (αx ,αz )  is the sum of the transforms of 
the positive and negative boxcar functions, and the antenna sidelobes therefore have 
contributions from each.  Most important is the main lobe of the diffraction pattern of 
the smaller “blockage” boxcar, which has magnitude ~0.012 that of Go', and a half-
power beamwidth θBB that is 10 times greater than the main lobe of the larger boxcar: 
θBB ≅ λ/DB = λ/100λ.  The total antenna pattern is the square of the summed 
transforms and more complicated; the innermost few sidelobes are approximately 
those of the original antenna, while the blockage-induced sidelobes are more 
important at greater angles. 

11.1.4 Near-field diffraction and Fresnel zones 

Often receivers are sufficiently close to the source that the Fraunhofer parallel-ray approximation 
of (11.1.7) is invalid. 	Then the Huygen’s approximation (11.1.21) can be used: 

j ˆ ( )w∫∫ ( ) -jk r (x,y)Eff ≅ θ 1+ cosβ E2 r oz x,z e dx dz  (Huygen’s approximation) (11.1.27)
λ A

for which the distance between the receiver and the point x,y in the aperture is defined as r(x,y). 
This region close to a source or obstacle where the Fraunhofer approximation is invalid is called 
the Fresnel region. 
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If the phase of Eoz in the source aperture is constant everywhere, then contributions to 
Eff(0,0) from some parts of the aperture will tend to cancel contributions from other parts 
because they are out of phase. For example, contributions from the central circular zone where 
r(x,y) ranges from ro to ro + λ/2 will largely cancel the contributions from the surrounding ring 
where r(x,y) ranges from ro + λ/2 to ro + λ; it is easily shown that these two rings have 
approximately the same area, as do all such rings over which the delay varies by λ/2.56  Such 
rings are illustrated in Figure 11.1.4(a). 

ro 

r = (r1 
2 + ro 

2)0.5 = ro + λ/2
r1 

Fresnel 
zone 

blocked for 
Fresnel zone plate 

r = ro + λ 
receiver 

⎯Efar field 0 

θ 

blockage 

uniform 
plane 
wave 

(a) (b) 

0 
ztransparent rings 

Figure 11.1.4 Fresnel zone plate. 

One technique for maximizing diffraction toward an observer is therefore simply to 
physically block radiation from those alternate zones contributing negative fields, as suggested in 
Figure 11.1.4(a). Such a blocking device is called a Fresnel zone plate. The central ring having 
positive phase is called the Fresnel zone. Note that if only the central zone is permitted to pass, 
the received intensity is maximum, and if the first two zones pass, the received intensity is nearly 
zero because they have approximately the same area.  The second zone is weaker, however, 
because r and θ are larger. Three zones can yield nearly the same intensity as the first zone alone 
because two of the three zones nearly cancel, and so on.  By blocking alternate zones the 
received intensity can be many times greater than if there were no blockage at all.  Thus a multi-
ring zone plate acts as a lense by focusing energy received over a much larger area than would be 
intercepted by the receiver alone. This type of lense is particularly valuable for focusing very 
short-wave radiation such as x-rays which are difficult to reflect or diffract using traditional 
mirrors or lenses. 

Another advantage of zone plate lenses is that they can be manufactured lithographically, 
and their critical dimensions are usually many times larger than the wavelengths involved.  For 
example, an x-ray zone plate designed to operate at λ = 10-8 [m] at a distance ro of one centimeter 

56 The area of the inner circle (radius a) is πa2 = π[(ro + λ/2)2 - ro
2] ≅ πroλ if λ << 2ro.  The area of the immediately 

surrounding Fresnel ring (radius b) is π(b2 - a2) = π[(ro + λ)2 - ro
2] - π[(ro + λ/2)2 - ro

2] ≅ πroλ, subject to the same 
approximation.  Similarly, all other Fresnel rings can be shown to have approximately the same area if λ << 2ro. 
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will have a central zone of diameter 2[(r  + λ/2)2 - r 2]0.5 ≅ 2(r λ)0.5 -5
o o o  = 2×10  meters, a dimension 

easily fabricated using modern semiconductor lithographic techniques. 

Another example of diffraction is wireless communications in urban environments, which 
often involves line-of-sight reception of waves past linear obstacles slightly to one side or 
slightly obscuring the source. Again Huygen’s equation (11.1.27) can be used to determine the 
result. Referring to Figure 11.1.4(b), if there is no blockage, traditional equations can be used to 
compute the received intensity.  If exactly half the path is blocked by a wall obscuring the 
bottom half of the illuminated aperture, for example, then the integral in (11.1.27) will yield 
exactly half the previous value of Eff, and the power (proportional to E 2

ff ) will be reduced by a 
factor of four, or ~6dB. If the observer moves up or down less than ~half the radius of the 
Fresnel zone, then the received power will vary only modestly.  For example, an FM radio (say 
108 Hz) about 100 meters beyond a tall wide metal wall can have a line of sight that passes 
through the wall a distance of ~(rλ)0.5/2 = 17 meters below its top without suffering great loss; 
(rλ)0.5 is the radius of the Fresnel zone.  Conversely, a line-of-sight that passes less than ~17 
meters above the top of the wall will also experience modest diffractive effects. 

The Fresnel region approximately begins when the central ray arrives at distance ro, more 
than λ/16 ahead of rays from the perimeter of an aperture of diameter D.  That is: 

( )2D + r2 − r � λ 
o o > (11.1.28)2  16  

For D << R this becomes: 

⎛ 2 ⎞ 2 
r ⎜ ⎛ D ⎞ 
o ⎜ ⎟ + −1 1⎟ D ≅ >� λ (11.1.29)

⎜ ⎝ 2r o ⎠ ⎟ 8R 16 
⎝ ⎠ 

Therefore the Fresnel region is: 

� 2D2 
ro <  (Fresnel region) (11.1.30)

λ

11.2 Wire antennas 

11.2.1 Introduction to wire antennas 

Exact solution of Maxwell’s equations for antennas is difficult because antennas typically have 
complex shapes for which it is difficult to match boundary conditions.  Often complex wave 
expansions with many degrees of freedom are required, and even modern software tools can be 
challenged. Fortunately, most common wire antennas permit their current distributions to be 
guessed accurately relative to the given terminal current, as explained in Section 11.2.2.  Once 
the current distribution is known everywhere, the radiated fields, radiation and dissipative 
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resistance, antenna gain, and antenna effective area can be calculated.  If the antenna is used at a 
frequency far from resonance, the reactance can also be estimated. 

If the antenna is small compared to a wavelength λ then its current distribution I and the 
open-circuit voltage VTh can be determined using the quasistatic approximation.  If the current 
distribution is known, then the radiated far-fields Eff  can be computed using (10.2.8) by 
integrating the contributions ΔEff  from each short current element Id (d is the element length 
and is replaced by ds in the integral), where: 

ΔEff = θ  ˆ jkIdηo e− jkr sin  θ (11.2.1)4 rπ 

jkηo ˆ ( )  − jkrEff ≅ 4 r  ∫θI s e  sin  θds  (11.2.2)
π 

S 

For antennas small compared to λ the factor before the integral of (11.2.2) is nearly constant over 
the integrated length S, so average values suffice.  If the wires run in more than one direction, the 
definition of θ̂  and θ must change accordingly; θ is defined by the local angle between I  and r̂ , 
where r̂  is the unit vector pointing from the antenna to the observer, as suggested in Figure 
10.2.3. Equation (11.2.2), not surprisingly, reduces to (11.2.1) for a short straight wire carrying 
constant current I over a distance d << λ. 

Once the radiated fields are known for a given antenna input current I, the radiated intensity 
can be integrated over a sphere surrounding the antenna to yield the total power radiated PR and 
the radiation resistance Rr, which usually dominates the resistive component of the antenna 
impedance and corresponds to power lost through radiation (10.3.16).  The radiation resistance is 
simply related to PR: 

Rr =
2P

I 2
R [ohms  ]  (radiation resistance) (11.2.3) 

The open-circuit voltage can also be easily estimated for wire antennas small compared to λ. 
For example, the open-circuit voltage induced across a short dipole antenna shown in Figure 
10.3.1 is simply the projection of the incident electric field E  on the electrical centers of the two 
metallic structures comprising the dipole, and Example 10.3D showed how the open-circuit 
voltage across a loop antenna was proportional to the time derivative of the magnetic flux 
through it. In both cases the open-circuit voltage reveals the directional properties of the 
antenna. Computation of the radiation resistance requires knowledge of the radiated fields and 
integration of the radiated power over all angles, however.  Equation (10.3.16) showed that the 
radiation resistance of a short dipole antenna of length d is (2πηo/3)(d/λ)2 ohms.  Slightly more 
complicated integrals over angles yield the radiation resistance for half-wave dipoles of length d 
and N-turn loop antennas of diameter d << λ: ~73 ohms and ~1.9×104N2(d/λ)4 ohms, 
respectively. The higher radiation resistance of loop antennas often makes them the antenna of 
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choice when space is limited relative to wavelength, particularly when they are wound on a 
ferrite core (μ >> μo) that increases their magnetic dipole moment. 

Most wire antennas are not small compared to a wavelength, however, and the methods of 
the next section are then often used. 

11.2.2 Current distribution on wires 

The current distribution on wires is governed by Maxwell’s equations, which are most easily 
solved for simple geometries such as that of a coaxial cable, as discussed in Example 7.1B.  The 
fields for a TEM wave in a coaxial cable are cylindrically symmetric and a function of radius r:   

E( )r,z  = r̂ E ( )o z r V  ⎡⎣ m  -1⎦⎤ (coaxial cable electric field) (11.2.4)

( ) = θH ( )o zH r,z  ˆ r A  ⎡⎣ m-1⎦⎤ (coaxial cable magnetic field)57 (11.2.5)

The energy density and Poynting’s vector are proportional to field strength squared, so they 
decay as r-2.  Therefore the electromagnetic behavior of the line is dominated by the geometry 
near the central conductor where most of the electromagnetic energy is located, and the outer 
conductor can be deformed substantially before the fields near the center are significantly 
perturbed. For example, two-thirds of the power propagates within 10 cm of a 1-mm wire 
centered within a 1-meter outer cylinder, even though this represents only one-percent of the 
volume.  This is easily shown by integrating the energy density from radius a to radius b, 

∫
b 2 −2 2 ln b a  E ro 2πr  dr  = 2  πE  o  ( ) , and com paring the results for different sub-volumes. 
a 

Therefore the fields near the axis of the coaxial cable illustrated in Figure 11.2.1(a) are 
altered but little if the outer conductor is replaced by a ground plane as illustrated in Figure 
11.2.1(b), or even by a second wire, as shown in Figure 11.2.1(c).  The significance of Figure 
11.2.1 is therefore that current distributions on thin wire antennas closely resemble those on 
equivalent TEM lines, provided the lines are not so many wavelengths long that the energy is 
lost before it reaches the end, or so tightly bent that the segments induce strong voltages on their 
neighbors. This TEM approximation is valid for understanding the examples of this section. 

A widely used antenna is the half-wave dipole, illustrated in Figure 11.2.1(d), which 
exhibits essentially no reactive impedance because the electric and magnetic energy storages 
approximately balance.  The radiation resistance for any half-wave dipole in free space is ~73 
ohms.  Section 7.4.2 discusses how these energies balance in any TEM structure of length D = 
nλ/2 where n is an integer.  Typical bandwidths Δω of a half-wave dipole are Δω/ωo = 1/Q ≅ 0.1, 
where Q = ωowT/Pd, as discussed in Section 7.4.3 and (7.4.4). 

57 The magnetic field around a central wire, H = I/2πr, was given in (1.4.3). 
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Figure 11.2.1 Fields near wire antennas resemble fields in TEM coaxial cables. 

Figure 11.2.2 illustrates nominal current distributions on several antenna structures; these 
currents are consistent with those on comparable TEM lines propagating signals at the speed of 
light. The current distributions in the figure represent instantaneous distributions at the moment 
of current maximum. 
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Figure 11.2.2 Current distributions on wire antenna structures. 

In these idealized cases the currents everywhere on the antenna approach zero one-quarter cycle 
later as the energy all converts from magnetic to electric.  The voltage distributions when the 
currents are zero resemble those on the equivalent TEM lines, and are offset spatially by λ/4; at 
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resonance the voltage peaks coincide with the current nulls.  For example, the voltages and 
currents for Figure 11.2.2(a) resemble those of the open-circuited TEM resonator of Figure 
7.4.1(a). The actual current and voltage distributions are slightly different from those pictured 
because radiation tends to weaken the currents farther from the antenna terminals, and because 
such free-standing or bent wires are not true TEM lines. 

Figure 11.2.2(b) illustrates how terminal currents (Io) can be made less than one-third the 
peak currents (3.2 Io) flowing on the antenna simply by lengthening the two arms so they are 
each slightly longer than λ/2 so the current is close to a null at the terminals.  Because smaller 
terminal currents thus correspond to larger antenna currents and radiated power, the effective 
radiation resistance of this antenna is increased well above the nominal 73 ohms of the half-wave 
dipole of (a). The reactance is slightly capacitive, however, and should be canceled with an 
inductor. Figure 11.2.2(c) illustrates how the peak currents can be made different in the two 
arms; note that the currents fed to the two arms must be equal and opposite, and this fact forces 
the two peak currents in the arms to differ.  Figures (d) and (e) show more elaborate 
configurations, demonstrating that wire antennas do not have to lie in a straight line.  The 
patterns for these antennas are discussed in the next section. 

11.2.3 Antenna patterns 

Once the current distributions on wire antennas are known, the antenna patterns can be computed 
using (11.2.2). Consider first the dipole antenna of Figure 11.2.2(a) and let its length be d, its 
terminal current be Io ′, and its maximum current be Io. Then (11.2.2) becomes: 

d 2 
jkηE o ˆ ( )  − jkr

ff ≅ 4 r  ∫ θI s e  sin  θ ds  (11.2.6)

π 
−d 2  

j Iη e  − jkr 
E ≅ θ̂ o o  ⎡cos kd  cos θ − c kd ⎤ 

ff (  os (11.2.7)2 rπ sin  θ ⎢⎣ 2 ) ( 2 )⎥⎦ 

This expression, which requires some effort to derive, applies to symmetric dipole antennas of 
any modest length d; Io is the maximum current, which is not necessarily the terminal current. 
The common half-wave dipole has d = λ/2, so (11.2.7) reduces to: 

E ≅ θ̂( j η r  I e − jk 2πrsin θ)cos ⎡⎣(πff 2 )cos θ⎤⎦ o o   (half-wave dipole) (11.2.8)

The antenna of Figure 11.2.2(b) can be considered to be a two-element antenna array (see 
Section 10.4.1) for which the two radiated phasors add in some directions and cancel in others, 
depending on the differential phase lag between the two rays. Antenna (b) has its peak gain at θ 
= π/2, but its beamwidth is less than for (a) because rays from the two arms of the dipole are 
increasingly out of phase for propagation directions closer to the z axis, even more than for the 
half-wave dipole; thus the gain of (b) modestly exceeds that of (a).  Whether one determines 
patterns numerically or by using the more intuitive phasor addition approach of Sections 10.4.1 
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and 10.4.5 is a matter of choice.  Antenna (c) has very modest nulls for θ close to the ±z axis. 
The nulls are weak because the electric field due to 3.2Io is only slightly reduced by the 
contributions from the phase-reversed segment carrying Io. 

Simple inspection of the current distribution for the antenna of Figure 11.2.2(d) and use of 
the methods of Section 10.4.1 reveal that its pattern has peaks in gain along the ±x and ±y axes, 
and a null along the ±z axes. Extending simple superposition and phase cancellation arguments 
to other angular directions makes it possible to guess the form of the complete antenna pattern 
G(θ,φ), and therefore to check the accuracy of any integration using (11.2.6) for all antenna 
arms.  Similar simple phase addition/cancellation analysis reveals that the more complicated 
antenna (e) has gain peaks along the ±x and ±y axes, and nulls along the ±z axes, although the 
polarization of each peak is somewhat different, as discussed in an example.  Exact 
determination of pattern (e) is confused by the fact that these wires are sufficiently close to each 
other to interact, so the current distribution may be modified relative to the nominal TEM 
assumption sketched in the figure. 

Example 11.2A 
Determine the relative gains and polarizations along the ±x, ±y, and ±z axes for the antenna 
illustrated in Figure 11.2.2(e). 

Solution:	 The two x-oriented wires do not radiate in the ±x direction. The four z-oriented wires 
emit radiation that cancels in that direction (one pair cancels the other), while the two 
y-oriented wires radiate in-phase y-polarized radiation in the ±x direction with 
relative total electric field strength Ey = 2. We assume each λ/2 segment radiates a 
relative electric field of unity.  Similarly, the two y-oriented wires do not radiate in 
the ±y direction. The four z-oriented wires emit radiation that cancels in that 
direction (one pair cancels the other), while the two x-oriented wires radiate in-phase 
x-polarized radiation in the ±y direction with relative total electric field strength Ex = 
2. The four z-oriented wires do not radiate in the ±z direction, and the two out-of­
phase pairs of currents in the x and y directions also cancel in that direction, yielding 
a perfect null.  Thus the gains are equal in the x and y directions (but with x 
polarization along the y axis, and y-polarization along the x axis), and the gain is zero 
on the z axis. 

11.3 Propagation of radio waves and thermal emission 

11.3.1 Multipath propagation 

Electromagnetic waves can be absorbed, refracted, and scattered as they propagate through linear 
media.  One result of this is that beams from the same transmitter can arrive at a receiver from 
multiple directions simultaneously with differing delays, strengths, polarizations, and Doppler 
shifts.  These separate phasors add constructively or destructively to yield an enhanced or 
diminished total response that is generally frequency dependent.  Since cellular telephones are 
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mobile and seldom have a completely unobstructed propagation path, they often exhibit strong 
fading and multipath effects. 

Consider first the simple case where a single beam arrives via a direct path and a reflected 
beam with one-quarter the power of the first arrives along a reflected path that is 100λ longer. If 
the powers of these two beams are constant, then the total received power will fluctuate with 
frequency. If the voltage received for the direct beam is V and that of the second beam is V/2 
corresponding to quarter power, then when they are in phase the total received power is 
1.52|V|2/2R, where R is the circuit impedance.  When they are 180o out of phase the power is 
0.52|V|2/2R, or one-ninth the maximum.  This shift between maximum and minimum occurs each 
time the relative delay between the two paths changes by λ/2.  Because the differential delay D is 
~100λ, this represents a frequency change Δf of only one part in 200; Δf/f = λ/2D.  Note that 
reflections can enhance or diminish the main signal, and clever antenna arrays can always 
compensate for the differential delays experienced from different directions so as to enhance the 
result. 

Since cellular phones can have path differences of ~1 km at wavelengths of ~10 cm, their 
two-beam frequency maxima can be separated by as little as 10-4f, where f can be ~109 Hz. 
Fortunately this separation of 105 Hz is large compared to typical voice bandwidths. 
Alternatively, cellular phone signals can be coded to cover bandwidths large compared to fading 
bandwidths so the received signal strength is averaged over multiple frequency nulls and peaks 
and is therefore more stable. 

Multipath also produces nulls in space if the rays arrive from different directions.  For 
example, if two rays A and B of wavelength λ and arrive from angles separated by a small angle 
γ, then the distance D between intensity maxima and minima along a line roughly perpendicular 
to the direction of arrival will be ~λ/(2sinγ). The geometry is sketched in Figure 11.3.1.  Three 
or more beams can be analyzed by similar phasor addition methods.  Sometimes one of the 
beams is reflected from a moving surface, or the transmitter or receiver are moving, so these 
maxima and minima can vary rapidly with time. 

phase front 
for Ray A 

D 
γ λ/2 

Ray B 

Ray A 

γ 

peak (in phase) 

phase front 
for Ray B 

minimum 

Figure 11.3.1  Maxima and minima created by multipath. 

- 355 -




Example 11.3A 
Normal broadcast NTSC television signals have 6-MHz bandwidth.  If a metal building reflects 
perfectly a signal that travels a distance L further than the direct beam before the two equal-
strength beams sum at the receiving antenna, how large can L be and still ensure that there are 
not two nulls in the 6-MHz passband between 100 and 106 MHz? 

Solution:	 The differential path L is L/λ wavelengths long. If this number of wavelengths 
increases by one, then L/λ' = L/λ + 1 as λ decreases to λ'; this implies λ/λ' = 1 + λ/L 
= f '/f = 1.06.  When the direct and reflected signals sum, the 2π phase change over 
this frequency band will produce one null, or almost two nulls if they fall at the band 
edges. Note that only the differential path length is important here.  Therefore L = 
λ/(1.06 - 1) ≅ 16.7λ = 16.7c/f ≅ 16.7×3×108/108 = 50.0 meters. 

11.3.2 Absorption, scattering, and diffraction 

The terrestrial atmosphere can absorb, scatter, and refract electromagnetic radiation.  The 
dominant gaseous absorbers at radio and microwave wavelengths are water vapor and oxygen. 
At submillimeter and infrared wavelengths, numerous trace gases such as ozone, NO, CO, OH, 
and others also become important.  At wavelengths longer than 3 mm only the oxygen absorption 
band ~50 - 70 GHz is reasonably opaque. Horizontal attenuation at some frequencies 57-63 GHz 
exceeds 10 dB/km, and vertical attenuation can exceed 100 dB.  The water vapor band 20-24 
GHz absorbs less than 25 percent of radiation transmitted toward zenith or along a ~2-km 
horizontal path. 

More important at low frequencies is the ionosphere, which reflects all radiation below its 
plasma frequency fo, as discussed in Section 9.5.3.  Radio waves transmitted vertically upward at 
frequency f are reflected directly back if any ionospheric layer has a plasma frequency fp < f, 
where fp is given by (9.5.25) and is usually below 15 MHz.  The ionosphere generally extends 
from ~70 to ~700 km altitude, with electron densities peaking ~300 km and exhibiting 
significant drops below ~200 km at night when solar radiation no longer ionizes the atmosphere 
fast enough to overcome recombination. 

Above the plasma frequency fp radio waves are also perfectly reflected at an angle of 
reflection θr equal to the angle of incidence θi if θi exceeds the critical angle θc(f) (9.2.30) for 
any ionospheric layer. The critical angle θc(f) = sin-1(εion/εo), where the permittivity of the 
ionosphere εion(f) = εo[1 - (fp/f)2]. Since εo > εion at any finite frequency, there exists a grazing 
angle of incidence θi where waves are perfectly reflected from the ionosphere at frequencies well 
above fp. The curvature of the earth precludes grazing incidence with θi → 90° unless the 
bottom surface of the ionosphere is substantially tilted.  Therefore the maximum frequency at 
which radio waves can bounce around the world between the ionosphere and the surface of the 
earth is limited to ~2fp, depending on the height of the ionosphere for the frequency of interest. 

The most important non-gaseous atmospheric absorbers are clouds and rain, where the latter 
can attenuate signals 30 dB or more. Rain is a major absorber for centimeter-wavelength 
satellite dishes, partly in the atmosphere and partly as the rain accumulates on the antennas.  At 
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longer wavelengths most systems have enough sensitivity to tolerate such attenuation.  In 
comparison, clouds are usually not a problem except for through-the-air optical communication 
systems. 

Atmospheric refraction is dominated by water vapor at radio wavelengths and by 
atmospheric density at optical wavelengths.  These effects are not trivial.  The radio sun can 
appear to set almost one solar diameter later on a very humid summer day (the sun emits strong 
radio waves too), and weak scattering from inhomogeneities in atmospheric humidity was once 
used as a major long-distance radio communications technique that avoided reliance on signals 
reflected from the ionosphere, as well as providing bandwidths of several GHz.  Refraction by 
the ionosphere is even more extreme, and the angles of refraction can be computed using the 
properties of plasmas noted in Section 9.5.3 and Snell’s law (9.2.26). 

It is often convenient to model urban multipath and diffractive communications links by a 
power law other than r-2. One common model is r-3.8, which approximates the random weaking 
of signals by sequences of urban obstacles as signals 1.5-5 GHz propagate further.  In any study 
of wireless communications systems propagation effects such as these must always be 
considered. 

11.3.3 Thermal emission 

A final effect impacting wireless communications systems is thermal noise arising from the 
environment, plus other forms of interference.  Usually the thermal noise is considered 
interference too, but in radio astronomy and remote sensing it is the signal of interest.  Thermal 
noise arises from electromagnetic radiation emitted by electrons colliding randomly with other 
particles in thermal equilibrium at temperature T.  These collisions cause electrons to accelerate 
in random directions and therefore radiate.  Thus every material object or medium radiates 
thermal noise provided that object or medium is coupled to the radiation field to any degree at 
all.  Decoupled media perfectly reflect or transmit electromagnetic radiation without loss and are 
rare. 

Thermal radiation propagating in a single-mode transmission line has intensity: 

hf 58I W/Hz [ ] = hf kT ≅ kT for hf � kT  (thermal intensity) (11.3.1) 
e −1 

Because there is a one-to-one relationship between intensity I and the corresponding 
brightness temperature T, the brightness temperature T[K] = I/k often replaces I because of its 
more natural physical significance. T is the temperature of a matched load (R = Zo) that would 
naturally radiate the same intensity I = kT Watts/Hz for hf << kT.  This Rayleigh-Jeans 
approximation for I is valid at temperatures T above 50K for all frequencies f below ~100 GHz. 

Thus the Thevenin equivalent circuit of a resistor at temperature T includes a voltage source 
producing a generally observable gaussian white voltage vTh(t) called Johnson noise. This 

58 eδ = 1 + δ + δ2/2! +… for δ << 1. 
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source voltage vTh(t) radiates kTB [W] down a matched transmission line within the bandwidth 
B [Hz].  This Johnson noise voltage vTh(t) also divides across the Thevenin resistance R and its 
matched load Zo = R to produce the propagating line voltage v+(t, z=0) = vTh/2. But the radiated 
power is: 

2 (vTh 
22)

P+ =	 [ ]v+ = = kTB  W  (thermal noise power) (11.3.2)Zo Zo 

Therefore within bandwidth B the root-mean-square open-circuit thermal voltage vThrms across a 
resistor R at temperature T is: 

vThrms = 4kTBRV[ ]  (Johnson noise) (11.3.3) 

A TEM line of impedance Zo does not add any Johnson noise to that of the resistor if the line is 
lossless and therefore decoupled from the radiation. 

Any antenna matched to its TEM transmission line therefore receives thermal noise power 
kTAB [W] from the environment, where TA is defined as the antenna temperature. TA is the gain-
weighted average of the brightness temperature TB of the environment over 4π steradians: 

1 T  A =  d	∫ T G   4π B(θ,φ) (θ,φ ) Ω  (antenna temperature) (11.3.4)
4π 

If the entire field of view has brightness temperature TB = To, and if the antenna is lossless so 
that G(θ,φ) = D(θ,φ), then TA = To since ∫ D ,(θ φ Ω)d =4π 

4π (10.3.3).

11.3.4 Radio astronomy and remote sensing 

An antenna looking down at the earth sees a brightness temperature TB, which is the sum of 
thermal radiation emitted by the earth plus downward propagating power that is then reflected 
from the same surface:  T 2

B = ξT + |Γ| TB', where the emissivity of the earth ξ = 1 - |Γ|2, Γ is the 
wave reflection coefficient of the earth, and TB' is the brightness temperature of the radiation 
reflected from the earth into the antenna beam.  The radiation from space at microwave 
frequencies has a brightness temperature near 2.7K arising from the "big bang" that occurred at 
the birth of the universe, and reaches temperatures over 7000K in the direction of the sun and 
certain astronomical objects, depending on frequency.  The science of radio astronomy involves 
the study of such celestial radio waves. 

The emissivity 1 - |Γ|2 of the terrestrial surface is typically 0.85-0.98 over land and >� 0.3 
over ocean. Since most communications antennas point horizontally, about half their beam 
intercepts the earth (~260K) and half intercepts space (~4K at microwave frequencies), so the 
thermal noise from the environment typically adds ~132K to the antenna temperature and total 
system noise. 
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The study of natural radio, infrared, and visible emission from the earth is called remote 
sensing, although one can also remotely sense biological, manufacturing, and other systems. 
Today many satellites in polar and geostationary orbits routinely observe the earth at tens to 
thousands of wavelengths across the radio and optical spectrum for meteorological and other 
geophysical purposes. For example, a satellite observing in the opaque 53-67 GHz oxygen 
resonance band can not see much lower than 70 km altitude at the very centers of the strongest 
spectral lines, and therefore those channels observe the temperature of the atmosphere at those 
high altitudes. At nearby frequencies where the atmosphere is more transparent these sensors see 
the air temperatures at lower altitudes.  Combinations of such observations yield the temperature 
profile of the atmosphere all over the globe, enabling better numerical weather predictions. 
Channels near the centers of water vapor, ozone, and other spectral lines can similarly measure 
their abundance and altitude profiles for similar purposes.  Channels in the more transparent 
bands see closer to the terrestrial surface and permit estimates to be made of rain rate, surface 
winds, soil moisture, and other parameters. 

Communications, radioastronomy, and remote sensing systems all receive non-thermal 
radio interference as well.  Man-made interference comes from other transmitters in the same or 
nearby bands, automobiles, microwave ovens, motors, power supplies, corona around power 
lines, and other electrical devices.  Each unshielded wire in any electrical device is a small 
antenna that radiates.  For example, computers can emit highly structured signals that reveal the 
state of the computation and, in special cases, even the contents of registers.  Poorly shielded 
power supplies often radiate at very high harmonics of their fundamental operating frequencies. 
Fortunately, regulations increasingly restrict radio emissions from modern electrical and 
electronic systems.  Natural non-thermal emission arises from lightning, solar bursts, the planet 
Jupiter, and other sources. 

11.4 Applications 

11.4.1 Wireless communications systems 

Section 11.4.1 introduces simple communications systems without using Maxwell’s equations 
and Section 11.4.2 then discusses radar and lidar systems used for surveillance and research. 
Optical communications is deferred to Chapter 12, while the design, transformation, and 
switching of the communications signals themselves are issues left to other texts. 

Wireless communications systems have a long history, beginning with wireless telegraph 
systems installed several years after Hertz’s laboratory demonstrations of wireless links late in 
the nineteenth century.  These systems typically used line-of-sight propagation paths, and 
sometimes inter-continental ionospheric reflections.  Telephone, radio, and television systems 
followed. In the mid-twentieth century, the longer interstate and international wireless links 
were almost entirely replaced by more capable and reliable coaxial cables and multi-hop 
microwave links.  These were soon supplemented by satellite links typically operating at 
frequencies up to ~14 GHz; today frequencies up to ~100 GHz are used.  At century’s end, these 
longer microwave links were then largely replaced again, this time by optical fibers with 
bandwidths of Terahertz. At the same time many of the shorter links are being replaced or 
supplemented by wireless cellular technology, which was made practical by the development of 
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inexpensive r.f. integrated circuits. Each technical advance markedly boosted capacity and 
market penetration, and generally increased performance and user mobility while reducing costs. 

Most U.S. homes and offices are currently served by twisted pairs of telephone wires, each 
capable of conveying ~50 kbs - 1.5 Mbps, although coaxial cables, satellite links, and wireless 
services are making significant inroads.  The most common wireless services currently include 
cell phones, wireless phones (within a home or office), wireless internet connections, wireless 
intra-home and intra-office connections, walkie-talkies (dedicated mobile links), satellite links, 
microwave tower links, and many specialized variations designed for private or military use.  In 
addition, optical or microwave line-of-sight links between buildings offer instant broadband 
connectivity for the “last mile” to some users; the last mile accounts for a significant fraction of 
all installed plant cost. Weather generally restricts optical links to very short hops or to weather-
independent optical fibers. Specialized wireless medical devices, such as RF links to video 
cameras inside swallowed pills, are also being developed. 

Broadcast services now include AM radio near 1 MHz, FM radio near 100 MHz and higher 
frequencies, TV in several bands between 50 and 600 MHz for local over-the-air service, and TV 
and radio delivered by satellite at ~4, ~12, and ~20 GHz.  Shortwave radio below ~30 MHz also 
offers global international broadcasts dependent upon ionospheric conditions, and is widely used 
by radio hams for long-distance communications. 

Wireless services are so widespread today that we may take them for granted, forgetting that 
a few generations ago the very concept of communicating by invisible silent radio waves was 
considered magic.  Despite the wide range of services already in use, it is reasonable to assume 
that over the next few decades numerous other wireless technologies and services will be 
developed by today’s engineering students. 

Communications systems convey information between two or more nodes, usually via 
wires, wireless means, or optical fibers.  After a brief discussion relating signaling rates (bits per 
second) to the signal power required at the wireless receiver, this section discusses in general 
terms the launching, propagation, and reception of electromagnetic signals and messages in 
wired and wireless systems. 

Information is typically measured in bits.  One bit of information is the information content 
of a single yes-no decision, where each outcome is equally likely.  A string of M binary digits 
(equiprobable 0’s or 1’s) conveys M bits of information.  An analog signal measured with an 
accuracy of one part in 2M also conveys M bits because a unique M-bit binary number 
corresponds to each discernable analog value.  Thus both analog and digital signals can be 
characterized in terms of the bits of information they convey.  All wireless receivers require that 
the energy received per bit exceed a rough minimum of wo ≅ 10-20 Joules/bit, although most 
practical systems are orders of magnitude less sensitive.59 

59 Most good communications systems can operate with acceptable probabilities of error if Eb/No >~10, where Eb is 
the energy per bit and No = kT is the noise power density [W Hz-1] = [J].  Boltzmann's constant k ≅ 1.38×10-23 

[J oK-1], and T is the system noise temperature, which might approximate 100K in a good system at RF frequencies. 
Thus the nominal minimum energy Eb required to detect each bit of information is ~10No ≅ 10-20 [J]. 
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To convey N bits per second [b s-1] of information therefore requires that at least ~Nwo 
watts [W] be intercepted by the receiver, and that substantially more power be transmitted.  Note 
that [W] = [J s-1] = [J b-1][b s-1]. Wireless communications is practical because so little power Pr 
is actually required at the receiver. For example, to communicate 100 megabits per second 
(Mbps) requires as little as one picowatt (10-12W) at the receiver if w -20

o = 10 ; that is, we require 
Pr > Nw ≅ 108×10-20

o  = 10-12 [W]. 

It is fortunate that radio receivers are so sensitive, because only a tiny fraction of the 
transmitted power usually reaches them.  In most cases the path loss between transmitter and 
receiver is primarily geometric; the radiation travels in straight lines away from the transmitting 
antenna with an intensity I [W m-2] that grows weaker with distance r as r-2. For example, if the 
transmitter is isotropic and radiates its power Pt equally in all 4π directions, then I(θ,φ,r) = 
Pt/4πr2 [W m-2]. The power Pr intercepted by the receiving antenna is proportional to the 
incident wave intensity I(θ,φ) and the receiving antenna effective area A(θ,φ) [m2], or “capture 
cross-section”, where the power Pr received from a plane wave incident from direction θ,φ is: 

P = θI ( φ, r  ) r , A (θ, φ)  [W]  (antenna gain) (11.4.1) 

The power received from an isotropic transmitting antenna is therefore Pr = (Pt/4πr2)A(θ,φ), so in 
this special case the line-of-sight path loss between transmitter and receiver is Pr/Pt = 
A(θ,φ)/4πr2, or that fractional area of a sphere of radius r represented by the receiving antenna 
cross-section A.  Sometimes additional propagation losses due to rain, gaseous absorption, or 
scattering must be recognized too, as discussed in Section 11.3.2. 

In general, however, the transmitting antenna is not isotropic, but is designed to radiate 
power preferentially in the direction of the receivers.  We define antenna gain G(θ,φ), often 
called “gain over isotropic”, as the ratio of the intensity I(θ,φ,r) [W m-2] of waves transmitted in 
the direction θ,φ (spherical coordinates) at distance r, to the intensity that would be transmitted 
by an isotropic antenna. That is: 

θ φ  ≡ 

P 4
I ,(θ φ,r  

G ,( )  )   (antenna gain) (11.4.2) 
πr2


t 

If the radiated power is conserved, then the integral of wave intensity over a spherical surface 
enclosing the antenna is independent of the sphere’s radius r.  Therefore the angular distribution 
of power and G(θ,φ) plotted in spherical coordinates behave much like a balloon that must push 
out somewhere when it is pushed inward somewhere else, as suggested in Figure 11.4.1.  The 
maximum gain Go often defines the z axis and is called the on-axis gain.  The angular width θB 

of the main beam at the half-power points where G(θ,φ) ≅ Go/2 is called the antenna beamwidth 
or “half-power beamwidth”.  Other local peaks in gain are called sidelobes, and those sidelobes 
behind the antenna are often called backlobes. Angles at which the gain is nearly zero are called 
nulls. 
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Antennas with G(θ,φ) > 1 generally focus their radiated energy by using lenses, mirrors, or 
multiple radiators phased so their radiated contributions add in phase in the desired direction, and 
largely cancel otherwise. Typical gains for most wire antennas range from ~1.5 to ~100, and 
large aperture antennas such as parabolic dishes or optical systems can have gains of 108 or 
more. The directionality or gain of a mirror or any antenna system is generally the same whether 
it is transmitting or receiving.60  The fundamentals of transmission and reception are presented in 
more detail in Section 10.3.1. 

Consider the following typical example. A television station transmits 100 kW at ~100 
MHz toward the horizon with an antenna gain of ~10.  Because the gain is much greater than 
unity in the desired horizontal direction, it is therefore less than unity for most other downward 
and upward directions where users are either nearby or absent.  The intensity I [W m-2] sensed by 
users on the horizon at 100-km range follows from (11.4.2): 

PI ≅ G t 105
=10× ≅ 10−5  W⎣⎡ /m 2⎤⎦ (11.4.3)

4 r  π 2 
4 1π( 0  5 ) 2  

Whether this intensity is sufficient depends on the properties of the receiving antenna and 
receiver. For the example of Equation (11.4.3), a typical TV antenna with an effective area A ≅ 
2 [m2] would capture IA ≅ 10-5[W/m2] × 2[m2] = 2×10-5 [W].  If the received power is 

2 ( )  2 5 [W], and the receiver has an input impedance R of 100 ohms, then the root­v t  R  ≅ ×10− 

mean-square (rms) voltage vrms ≡ v2 ( )t 
0.5 

would be (0.002)0.5 ≅ 14 mv, much larger than typical 
noise levels in TV receivers (~10 μv).61 

60 The degree of focus is the same whether the waves are transmitted or received.  That is, if we reverse the direction 
of time for a valid electromagnetic wave solution to Maxwell’s equations, the result is also a valid solution if the 
system is lossless and reciprocal.  Reciprocity requires that the complex matrices characterizing ε, μ, and σ near the 
antenna equal their own transposes; this excludes magnetized plasmas such as the ionosphere, and magnetized 
ferrites, as discussed further in Section 10.3.4. 
61 Typical TV receivers might have a superimposed noise voltage of power N = kTB [W], where the system noise 
temperature T might be ~104 K (much is interference), Boltzmann's constant k = 1.38×10-23, and B is bandwidth 
[Hz].  B ≅ 6 MHz for over-the-air television.  Therefore N ≅ 1.38×10-23×104×6×106 ≅ 8×10-13 watts, and a good TV 
signal-to-noise ratio S/N of ~104 requires only ~ 8×10-9 watts of signal S.  Since N ≅ n 2

rms /R, the rms noise voltage ≅ 
(NR)0.5, or ~10 μv if the receiver input impedance R = 100 ohms. 

θ 

z 

y 
isotropic 

G(θ) 

θB 

sidelobes 

main beam 

Go 

Figure 11.4.1 Isotropic and directive antenna gain patterns. 
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Because most antennas are equally focused whether they are receiving or transmitting, their 
effective area A(θ,φ) and gain G(θ,φ) are closely related: 

(  )  θ φ
λ 

4π 
2 (  )  θ,φ (11.4.4)G ,  = A 

Therefore the on-axis gain Go = 4πAo/λ2. This relation (11.4.4) was proven for a short dipole 
antenna in Section 10.3.3 and proven for other types of antenna in Section 10.3.4, although the 
proof is not necessary here.  This relation is often useful in estimating the peak gain of aperture 
antennas like parabolic mirrors or lenses because their peak effective area Ao often approaches 
their physical cross-section Ap within a factor of two; typically Ao ≅ 0.6 Ap. This approximation 
does not apply to wire antennas, however. Thus we can easily estimate the on-axis gain of such 
aperture antennas: 

Go = 0.6  × 4π 
2 Ao (11.4.5)

λ 

Combining (11.4.1) and (11.4.3) yields the link expression for received power: 

Pr = Gt 
Pt Ar[ ]W  (link expression) (11.4.6)

4 r2π

where Gt is the gain of the transmitting antenna and Ar is the effective area of the receiving 
antenna. The data rate R associated with this received power is : R = Pr/Eb [bits s-1]. 

A second example illustrates how a communications system might work.  Consider a 
geosynchronous communications satellite62 transmitting 12-GHz high-definition television 
(HDTV) signals at 20 Mbps to homes with 1-meter dishes, and assume the satellite antenna 
spreads its power Pt roughly equally over the eastern United States, say 3×106 km2. Then the 
intensity of the waves falling on the U.S. is: I ≅ Pt/(3×1012) [W m-2], and the power Pr received 
by an antenna with effective area Ao ≅ 0.6 [m2] is: 

P = A I  = 0.6  Pt = 2×10  −13 P [ ]r o 12 t W (11.4.7)
3 10  × 

If Eb = 10-20 Joules per bit suffices, then an R = 20-Mbps HDTV signal requires: 

E R  −20 × ×  7 = 2×10−13 [ ]Pr = b = 10  (2  10  ) W (11.4.8) 

The equality of the right-hand parts of (11.4.7) and (11.4.8) reveals that one watt of transmitter 
power Pt in this satellite could send a digital HDTV signal to all the homes and businesses in the 

62 A satellite approximately 35,000 km above the equator circles the earth in 24 hours at the same rate at which the 
earth rotates, and therefore can remain effectively stationary in the sky as a communications terminal serving 
continental areas. Such satellites are called “geostationary” or “geosynchronous”. 
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eastern U.S. Since a 20-dB margin63 for rain attenuation, noisy receivers, smaller or poorly 
pointed home antennas, etc. is desirable, 100-watt transmitters might be used in practice. 

We can also estimate the physical area Ap of the aperture antenna on the satellite.  If we 
know Pt and I at the earth, then we can determine the satellite gain G using I = GPt/4πr2 (11.4.2), 
where r ≅ 40,000 km in the northern U.S; here we have I ≅ 3.3×10-12 when Pt = 1 watt.  The 
wavelength λ at 12 GHz is 2.5 cm (λ = c/f). But Ap ≅ 1.5Ao, where Ao is related to G by (11.4.4). 
Therefore we obtain the reasonable result that a 2.5-meter diameter parabolic dish on the satellite 
should suffice: 

2 2 2 2⎤Ap ≅ 1.5A o = (1.5 λ 4π)G = (1.5λ 4π)(4πr I P ) ≅ 5 ⎣⎡m ⎦ (11.4.9)t 

The same result could have been obtained by determining the angular extent of the U.S. coverage 
area as seen from the satellite and then, as discussed in Section 11.1.2, determining what 
diameter antenna would have a diffraction pattern with that same beamwidth. 

Thus we can design digital communications systems for a data rate R [b s-1] if we know the 
range r, wavelength λ, and receiver sensitivity (Joules required per bit).  For analog systems we 
also need to know the desired signal-to-noise ratio (SNR) at the receiver and the noise power N. 
Table 11.4.1 lists typical data rates R for various applications, and Table 11.4.2 lists typical SNR 
values required for various types of analog signal. 

Table 11.4.1 Digital data rates for typical applications and source coding techniques64. 

Applications Data rate R after source coding R before coding 
Intelligible voice >~1200 bps ~64 kbps 
Good voice >~4.8 – 9.6 kbps ~128 kbps 
Excellent voice >~16 kbps ~256 kbps 
CD-quality music 2×128 kbps ~1.4 Mbps 
Talking head, lip read >~64 kbps ~1.4 Mbps 
Good video conference >~128-384 kbps ~12 Mbps 
VHS video >~1.5 Mbps ~30 Mbps 
NTSC studio video >~6 Mbps ~256 Mbps 
HDTV video >~18 Mbps ~1 Gbps 

63 Decibels (dB) are defined for a ratio R such that dB = 10 log10R and R = 10(dB)/10; thus 20 dB → R = 100. 
64 Source coding reduces the number of bits to be communicated by removing redundancies and information not 
needed by the user.  The table lists typical data rates before and after coding. 
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Example 11.4A 
A parabolic reflector antenna of 2-meter diameter transmits Pt = 10 watts at 3 GHz from beyond 
the edge of the solar system (R ≅ 1010 km) to a similar antenna on earth of 50-m diameter at a 
maximum data rate N bits/sec.  What is N if the receiver requires 10-20 Joules bit-1? 

Solution:	 Recall that the on-axis effective area A of a circular aperture antenna equals ~0.6 
times its physical area (πr2), and it has gain G = 4πA/λ2 = (2πr/λ)2. The received 
power is P = P G A  re 4πR  2

c t t	 r  (11.4.6); therefore:
2 2 ⎤ [R P≅ π 2E = ⎡P  (0.6)  2 (2πr rec b t t λ⎣ ) π rr ⎦ 4  R E  b ]

= ⎡ × 2 π×⎣10  (0.6) (2 10.1  )2 π252 ⎤ [⎦ 4 π1 0 26 ×10 −20 ] ≅ 2.2 bps 

11.4.2 Radar and lidar 

Radar (RAdio Direction and Range finding) and lidar (LIght Direction and Range finding) 
systems transmit signals toward targets of interest and receive echoes.  They typically determine: 
1) target distance using the round-trip propagation delay, 2) target direction using echo strength 
relative to antenna orientation, 3) target radial velocity using the observed Doppler shift, and 4) 
target size or scattering properties using the maximum echo strength.  Figure 11.4.2 illustrates 
the most common radar configuration. 

 

Table 11.4.2 Signal-to-noise ratios65 for typical wireless applications. 

Application Desired SNR ≥~ 
Digital communications at ~ 1 bps/Hz 
Digital communications at >~4 bps/Hz 
Amplitude modulated (AM) signals (20 kHz typical) 
Frequency modulated (FM) signals (100 kHz typical) 
NTSC broadcast television (6 MHz typical) 
CD-quality music (55-dB SNR + 40-dB dynamic range) 

10 dB Eb/No 
20 dB Eb/No 
30 dB S/N 
20 dB S/N 
35 dB S/N 
95 dB S/N 

 

2 [Wm-2] at target 

σs target cross-
section [m2] 

Figure 11.4.2 Radar signals reflected from a target. 

Pt [W] 

Gt range r 

It = GtPt/4πr

Ir = It σs/4πr2 [Wm-2] (received intensity) 

echo 

65 For digital signals the dimensionless signal-to-noise ratio (SNR) given here is the energy-per-bit Eb divided by the 
noise power density No [W Hz-1], where No = kT and T is the noise temperature, say 100-104K typically. For analog 
signals, S and N are the total signal and noise powers, respectively, where N = kTB and B is signal bandwidth [Hz]. 
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To compute the received power, we first compute the intensity It of radiation at the target at 
range r for a transmitter power and antenna gain of Pt and G, respectively: 

It = G Pt
2 ⎣⎡ W/m  2⎤⎦  (intensity at target) (11.4.10)

4 rπ

The target then scatters this radiation in some pattern and absorbs the rest.  Some of this scattered 
radiation reaches the receiver with intensity Ir, where: 

Ir = It 
σs ⎡⎣ W/m  2⎤⎦  (intensity at radar) (11.4.11)

4 r2π

where σs is the scattering cross-section of the target and is defined by (11.4.11). That is, σs is 
the capture cross-section [m2] at the target that would produce Ir if the target scattered incident 
radiation isotropically.  Thus targets that preferentially scatter radiation toward the transmitter 
can have scattering cross-sections substantially larger than their physical cross-sections. 

The received power Pr is then simply IrAr [W], where Ar is the effective area of the 
receiving antenna.  That is: 

σ t sP = I A  = 
It s A = G P σ A (11.4.12)r r r 2 r 2 r4 r  2π ( )  4 rπ 

2 
P = 

σ
π
s ⎛

⎝
G 
π

λ ⎞ [ ]   (radar equation) (11.4.13)r Pt 4 ⎜
4 r2 ⎠

⎟ W 

where we used Ar = Gλ2/4π, and where (11.4.13) is often called the radar equation. The 
dependence of received power on the fourth power of range and the square of antenna gain often 
control radar system design. 

Atmospheric attenuation is often included in the radar equation by means of a round-trip 
attenuation factor e-2αr, where α is the average atmospheric attenuation coefficient (m-1) and r is 
range. Atmospheric attenuation is discussed in Section 11.3.2 and below 200 GHz is due 
principally to oxygen, water vapor, and rain; it is usually not important below ~3 GHz.  Oxygen 
absorption occurs primarily in the lowest 10 km of the atmosphere ~50-70 GHz and near 118 
GHz, water vapor absorption occurs primarily in the lowest 3 km of the atmosphere above ~10 
GHz, and rain absorption occurs up to ~15 km in the largest rain cells above ~3 GHz. 

Lidar systems also obey the radar equation, but aerosol scattering by clouds, haze, or smoke 
becomes more of a concern.  Also the phase fronts of optical beams are more easily disturbed by 
refractive inhomogeneities in the atmosphere that can modulate received echoes on time scales 
of milliseconds with random fading of ten dB or more. 

A simple example illustrates use of the radar equation (11.4.13).  Suppose we wish to know 
the range r at which we can detect dangerous asteroids having diameters over ~300m that are 
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approaching the earth.  Assume the receiver has additive noise characterized by the system noise 
temperature Ts, and that the radar bandwidth is one Hertz because the received sinusoid will be 
averaged for approximately one second.  Detectable radar echos must have Pr > kTsB [W], where 
k is Boltzmann's constant (k = 1.38×10-23) and B is the system bandwidth (~1 Hz); this implies Pr 

≅ 1.4×10-23 Ts watts. We can estimate σs for a 300-meter asteroid by assuming it reflects roughly 
as well as the earth, say fifteen percent, and that the scattering is roughly isotropic; then σs ≅ 104 

[m2]. If we further assume our radar is using near state-of-the-art components, then we might 
have Pt ≅ 1 Mw, Gt ≅ 108, λ = 0.1 m, and Ts ≅ 10K. The radar equation then yields: 

⎡ 2 r ≅ P σ (  λ ) 
0.25 

( )3 ⎤Gt 4 π Pr ≅⎦   5 ×107
⎣ t s km (11.4.14)

This range is about one-third of the distance to the sun and would provide about 2-3 weeks 
warning. 

Optical systems with a large aperture area A might perform this task better because their 
antenna gain G = A4π/λ2, and λ for lidar is typically 10-5 that of a common radar. For antennas 
of the same physical aperture and transmitter power, 1-micron lidar has an advantage over 10-cm 
radar of ~1010 in Pr/Pt. 

Radar suffers because of its dependence on the fourth power of range for targets smaller 
than the antenna beamwidth.  If the radar can place all of its transmitted energy on target, then it 
suffers only the range-squared loss of the return path.  The ability of lidar systems to strongly 
focus their transmitting beam totally onto a small target often enables their operation in the 
highly advantageous r-2 regime rather than r-4. 

Equations (11.4.13) and (11.4.14) can easily be revised for the case where all the radar 
energy intercepts the target.  The radar equation then becomes: 

P = P  RG  λ π  r ( r)2 [ ]t  4 W (11.4.15)

where the target retro-reflectivity R is defined by (11.4.15) and is the dimensionless ratio of 
back-scattered radiation intensity at the radar to what would be back scattered if the radiation 
were scattered isotropically by the target.  For the same assumptions used before, asteroids could 
be detected at a range r of ~3×1012 km if R  ≅ 0.2, a typical value for icy rock.  The implied 
detection distance is now dramatically farther than before, and reaches outside our solar system. 
However, the requirement that the entire radar beam hit the asteroid would be essentially 
impossible even for the very best optical systems, so this approach to boosting detection range is 
usually not practical for probing small distant objects. 

Radar systems often use phased arrays of antenna elements, as discussed in Section 10.4, to 
focus their energy on small spots or to look in more than one direction at once.  In fact a single 
moving radar system, on an airplane for example, can coherently receive sequential reflected 
radar pulses and digitally reassemble the signal over some time period so as to synthesize the 
equivalent of a phased array antenna that is far larger than the physical antenna.  That is, a small 
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receiving antenna can be moved over a much larger area A, and by combining its received 
signals from different locations in a phase-coherent way, can provide the superior angular 
resolution associated with area A.  This is called synthetic aperture radar (SAR) and is not 
discussed further here. 

Example 11.4B 
A radar with 1-GHz bandwidth and 40-dB gain at 10 GHz views the sun, which has angular 
diameter 0.5 degrees and brightness temperature TB = 10,000K. Roughly what is the antenna 
temperature TA and the power received by the radar from the sun if we ignore any radar 
reflections? 

Solution:	 The power received is the intensity at the antenna port I [W/Hz] times the bandwidth 
B [Hz], where I ≅ kTA (11.3.1), and TA is the antenna temperature given by the 
integral in (11.3.4).  This integral is trivial if G(θ,φ) is nearly constant over the solid 
angle ΩS of the sun; then TA ≅ GoTBΩS/4π. Constant gain across the sun requires the 
antenna beamwidth θB >> 0.5 degrees. We can roughly estimate θB by approximating 
the antenna gain as a constant Go over solid angle ΩB, and zero elsewhere; then 
(10.3.3) yields ∫4π G(θ,φ)dΩ = 4π = GoΩB = 104ΩB. Therefore 
ΩB ≅  4π/104 ≅ π(θB/2)2, and θB ≅ 0.04 radians ≅ 2.3 degrees, which is marginally 
greater than the solar diameter required for use of the approximation θB >> 0.5 in a 
rough estimate.  It follows that TA ≅  GoTBΩS/4π = 104×104× π(θS/2)2/4π ≅ 
480 degrees Kelvin, somewhat larger than the noise temperature of good receivers. 
The power received is kTAB ≅ 1.38×10-23×480×109 ≅ 6.6×10-12 watts.  This is a slight 
overestimate because the gain is actually slightly less than Go at the solar limb. 

Example 11.4C 
What is the scattering cross-section σs of a small distant flat plate of area F oriented so as to 
reflect incident radiation directly back toward the transmitter? 

Solution:	 The radar equation (11.4.12) relates the transmitted power Pt to that received, Pr, in 
terms of σs. A similar relation can be derived by treating the power reflected from the 
flat plate as though it came from an aperture uniformly illuminated with intensity 
PtGt/4πr2 [W m-2]. The power Pr received by the radar is then the power radiated by 
the flat-plate aperture, FPtGt/4πr2 [W], inserted as Pt into the link expression (11.4.6): 
Pr = (FPtGt/4πr2)GfAr/4πr2. The gain of the flat plate aperture is Gf = F4π/λ2, and Ar 

= Gλ2/4π, so GfAr = GF. Equating Pr in this expression to that in the radar equation 
yields: Ptσs(Gλ/4πr2)2/4π = (FPtGt/4πr2)GF/4πr2, so σs = F(4πF/λ2). Note σs >> F if 
F >> λ2/4π. Corner reflectors (three flat plates at right angles intersecting so as to 
form one corner of a cube) reflect plane waves directly back toward their source if the 
waves impact the concave portion of the reflector from any angle.  Therefore the 
corner reflector becomes a very area-efficient radar target if its total projected area F 
is larger than λ2. 

- 368 -




MIT OpenCourseWare
http://ocw.mit.edu 

6.013 Electromagnetics and Applications
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

