
Chapter 4:  Static and Quasistatic Fields 

4.1 Introduction 

Static electric and magnetic fields are governed by the static forms of Maxwell’s equations in 
differential and integral form for which ∂/∂t → 0: 

∇ ×  E = 0 v∫ E • ds = 0 Faraday’s Law (4.1.1) 
C

∇ ×  H = J v∫ H • ds = ∫∫  J • n̂ da  Ampere’s Law (4.1.2)
C A 

∇ •  D = ρ  w∫∫ (D • n̂) da = ∫∫∫ ρ  dv  = Q Gauss’s Law (4.1.3) 
A V 

∇ •  B = 0 w∫∫ (B• n̂) da  = 0 Gauss’s Law (4.1.4)
A 

As shown in (1.3.5), Gauss’s law (4.1.3) leads to the result that a single point charge Q at the 
origin in vacuum yields produces an electric field at radius r of: 

⎯E(r) = r̂ Q/4πεor2 (4.1.5) 

Superposition of such contributions to E(r)  from a charge distribution ρ(r ')  located within the 
volume V' yields: 

∫∫∫
ρ(r')  E(r) = r̂ dv' Coulomb’s superposition integral (4.1.6)

V' 4πεo| r - r' |2 

where r̂  is outside the integral because r >> 3 V '  . A more complex derivation given in Section 
10.1 yields the corresponding equation for static magnetic fields: 

∫∫∫ 
J'× (r - r') H(r, t) = dv' Biot-Savart law (4.1.7)

V' 4π 3  | r  - r' |  

Any static electric field can be related to an electric potential distribution Φ[volts] because 
∇ ×⎯E = 0 implies⎯E = -∇Φ, where the voltage difference between two points (1.3.12) is: 

2
Φ Φ1 - 2 = ∫ E • ds  (4.1.8) 

1 

Similarly, in current-free regions of space ∇ ×⎯H = 0 implies⎯H = -∇Ψ [Amperes], where Ψ is 
magnetic potential.  Therefore the magnetic potential difference between two points is: 
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∫
2

Ψ1 -Ψ2 = H • ds (4.1.9) 
1 

This definition of magnetic potential is useful in understanding the magnetic circuits discussed in 
Section 4.4.3. 

Often not all source charges and currents are given because some reside on given 
equipotential surfaces and assume an unknown distribution consistent with that constraint.  To 
address this case, Maxwell’s equations can be simply manipulated to form Laplace’s equation, 
which can sometimes be solved by separation of variables, as discussed in Section 4.5, or usually 
by numerical methods.  Section 4.6 then discusses the utility of flux tubes and field mapping for 
understanding static field distributions. 

Quasistatics assumes that the field strengths change so slowly that the electric and magnetic 
fields induced by those changes (the contributions to⎯E and⎯H from the ∂/∂t terms in Faraday’s 
and Ampere’s laws) are sufficiently small that their own induced fields (∝(∂/∂t)2) can be 
neglected; only the original and first-order induced fields are therefore of interest.  Quasistatic 
examples were discussed in Chapter 3 in the context of resistors, capacitors, and inductors.  The 
mirror image technique described in Section 4.2 is used for static, quasistatic, and dynamic 
problems and incidentally in the discussion in Section 4.3 concerning exponential relaxation of 
field strengths in conducting media and skin depth. 

4.2 Mirror image charges and currents 

One very useful problem solving technique is to change the problem definition to one that is 
easier to solve but is known to have the same answer.  An excellent example of this approach is 
the use of mirror-image charges and currents, which also works for wave problems.10 
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Figure 4.2.1 Image charge for an infinite planar perfect conductor. 

10 Another example of this approach is use of duality between E  and H , as discussed in Section 9.2.6. 
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Consider the problem of finding the fields produced by a charge located a distance d above 
an infinite perfectly conducting plane, as illustrated in Figure 4.2.1(a).  Boundary conditions at 
the conductor require only that the electric field lines be perpendicular to its surface.  Any other 
set of boundary conditions that imposes the same constraint must yield the same unique solution 
by virtue of the uniqueness theorem of Section 2.8. 

One such set of equivalent boundary conditions invokes a duplicate mirror image charge a 
distance 2d away from the original charge and of opposite sign; the conductor is removed.  The 
symmetry for equal and opposite charges requires the electric field lines E  to be perpendicular 
to the original surface of the conductor at z = 0; this results in E  being exactly as it was for z > 0 
when the conductor was present, as illustrated in Figure 4.2.1(b).  Therefore uniqueness says that 
above the half-plane the fields produced by the original charge plus its mirror image are identical 
to those of the original problem.  The fields below the original half plane are clearly different, 
but they are not relevant to the original problem. 

This equivalence applies for multiple charges or for a charge distribution, as illustrated in 
Figure 4.2.2. In fact the mirror image method remains valid so long as the charges change value 
or position slowly with respect to the relaxation time ε/σ of the conductor, as discussed in 
Section 4.4.1. The relaxation time is the 1/e time constant required for the charges within the 
conductor to approach new equilibrium positions after the source charge distribution outside 
changes. 
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Figure 4.2.2 Multiple image charges. 

Because the mirror image method works for varying or moving charges, it works for the 
currents that must be associated with them by conservation of charge (2.1.21), as suggested in 
Figure 4.2.3 (a) and (b). Figure 4.2.3(d) also suggests how the magnetic fields produced by these 
currents satisfy the boundary conditions for the conducting plane: at the surface of a perfect 
conductor⎯H is only parallel. 

The mirror image method continues to work if the upper half plane contains a conductor, as 
illustrated in Figure 4.2.4; the conductor must be imaged too.  These conductors can even be at 
angles, as suggested in Figure 4.2.4(b).  The region over which the deduced fields are valid is 
naturally restricted to the original opening between the conductors.  Still more complex image 
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configurations can be used for other conductor placements, and may even involve an infinite 
series of progressively smaller image charges and currents. 
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Figure 4.2.3 Image currents. 
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Figure 4.2.4 Image charges and currents for intersecting conductors. 

4.3 Relaxation of fields, skin depth 

4.3.1 Relaxation of electric fields and charge in conducting media 

Electric and magnetic fields established in conducting time-invariant homogeneous media tend 
to decay exponentially unless maintained.  Under the quasistatic assumption all time variations 
are sufficiently slow that contributions to E  by B t  are negligible, which avoids wave-like∂ ∂
behavior and simplifies the problem.  This relaxation process is governed by the conservation-of­
charge relation (2.1.21), Gauss’s law ( • = ) , and Ohm’s law ( σE) :∇ D ρ J =
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∇ •  + ∂ρ ∂  J t = 0 = ∇ •  ( σ  E ) +  (∂ ∂  t)(∇ • ε  E) = ∇ •  ⎡⎣(σ + ε∂ ∂  t ) E⎤ =⎦ 0 (4.3.1)

Since an arbitrary E  can be established by initial conditions, the general solution to (4.3.1) 
requires (σ + ε∂  ∂  t )∇iE = 0 , leading to the differential equation: 

(∂ ∂  + σ ε  )	ρ = (4.3.2)t 0

where ∇ • E = ρ ε . This has the solution that ρ(r)  relaxes exponentially with a charge 
relaxation time constant τ = ε/σ seconds: 

ρ( )r = ρ  ( )o r e−σ t ε = ρ  ( )o r e− τ t m⎡⎣ -3  ⎤⎦	  (charge relaxation) (4.3.3) 

It follows that an arbitrary initial electric field E r( )  in a medium having uniform ε and σ 
will also decay exponentially with the same time constant ε/σ because Gauss’s law relates E  and  
ρ linearly: 

∇ • E = ρ  ( )t ε	 (4.3.4)

where ∇ • Eo ≡ ρ  o ε . Therefore electric field relaxation is characterized by: 

E r( , t  ) = Eo ( )r e−σ ε t  v  ⎡⎣ m  -1  ⎤⎦	 (electric field relaxation) (4.3.5) 

We should expect such exponential decay because any electric fields in a conductor will 
generate currents and therefore dissipate power proportional to J2 and E2. But the stored 
electrical energy is also proportional to E2, and power dissipation is the negative derivative of 
stored energy.  That is, the energy decays at a rate proportional to its present value, which results 
in exponential decay. In copper τ = εo/σ ≅ 9×10-12/(5×107) ≅ 2×10-19 seconds, short compared to 
any delay of common interest.  The special case of parallel-plate resistors and capacitors is 
discussed in Section 3.1. 

Example 4.3A 
What are the electric field relaxation time constants τ for sea water (ε ≅ 80εo, σ ≅ 4) and dry soil 
(ε ≅ 2εo, σ ≅ 10-5)?  For what radio frequencies can they be considered good conductors? 

Solution: 	 Equation (4.3.5) yields τ = ε/σ ≅ (80×8.8×10-12)/4 ≅ 1.8×10-10 seconds for seawater, 
and (2×8.8×10-12)/10-5 ≅ 1.8×10-6 seconds for dry soil. So long as E  changes slowly 
with respect to τ, the medium has time to cancel E ; frequencies below ~5 GHz and 
~500 kHz have this property for seawater and typical dry soil, respectively, which 
behave like good conductors at these lower frequencies.  Moist soil behaves like a 
conductor up to ~5 MHz and higher. 
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4.3.2 Relaxation of magnetic fields in conducting media 

Magnetic fields and their induced currents similarly decay exponentially in conducting media 
unless they are externally maintained; this decay process is often called magnetic diffusion or 
magnetic relaxation. We assume that the time variations are sufficiently slow that contributions 
to H  by D t∂ ∂  are negligible.  In this limit Ampere’s law becomes: 

∇ ×  H =  J = σE (4.3.6)

∇× (∇× H ) = σ∇× E = −σμ∂ H 2 ( ) 2∂t = −∇ H + ∇ ∇ • H = −∇ H (4.3.7) 

where Faraday’s law, the vector identity (2.2.6), and Gauss’s law (∇ • =B 0)  were used. 

The resulting differential equation: 

H t  σμ∂ ∂ = ∇ 2H (4.3.8)

has at least one simple solution: 

( ) = ˆ − τt 
o H z, t  xH e  m cos  kz  (4.3.9)

where we assumed an x-polarized z-varying sinusoid.  Substituting (4.3.9) into (4.3.8) yields the 
desired time constant: 

τ = μσ  2 2 2 [ ]k =  μσλ  m 4π s (magnetic relaxation time) (4.3.10)

Thus the lifetime of magnetic field distributions in conducting media increases with permeability 
(energy storage density), conductivity (reducing dissipation for a given current), and the 
wavelength squared (λ = 2π/k). 

4.3.3 Induced currents 

Quasistatic magnetic fields induce electric fields by virtue of Faraday’s law: ∇× E  =  -μ∂H/ ∂ t . 
In conductors these induced electric fields drive currents that obey Lenz’s law: “The direction of 
induced currents tends to oppose changes in magnetic flux.” Induced currents find wide 
application, for example, in: 1) heating, as in induction furnaces that melt metals, 2) mechanical 
actuation, as in induction motors and impulse generators, and 3) electromagnetic shielding.  In 
some cases these induced currents are undesirable and are inhibited by subdividing the 
conductors into elements separated by thin insulating barriers.  All these examples are discussed 
below. 
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First consider a simple conducting hollow cylinder of length W driven circumferentially by 
current Iou(t), as illustrated in Figure 4.3.1, where u(t) is the unit step function (the current is zero 
until t = 0, when it becomes Io).  Centered in the outer cylinder is an isolated second cylinder of 
conductivity σ and having a thin wall of thickness δ; its length and diameter are W and D << W, 
respectively. 

WC1 
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H(t) σ 

Iou(t) 
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z 
δ 

Figure 4.3.1 Relaxation penetration of a magnetic field into a conducting cylinder. 

If the inner cylinder were a perfect conductor, then the current Iou(t) would produce an equal 
and opposite image current ~-Iou(t) on the outer surface of the inner cylinder, thus producing a 
net zero magnetic field inside the cylinder formed by that image current.  Consider the integral of 
H ds around a closed contour C1 that threads both cylinders and circles zero net current at t = • 
0+; this integral yields zero. If the inner conductor were slightly resistive, then the same equal 
and opposite current would flow on the inner cylinder, but it would slowly dissipate heat until 
the image current decayed to zero and the magnetic field inside reached the maximum value 
Io/W [A m-1] associated with the outer current Io. These conclusions are quantified below. 

The magnetic field H inside the inner cylinder depends on the currents flowing in the outer 
and inner cylinders, Io and I(t), respectively: 

H(t) = u(t)[Io + I(t)]/W (4.3.11) 

The current I(t) flowing in the inner cylinder is driven by the voltage induced by H(t) via 
Faraday’s law (2.4.14): 

v∫C2 
E • ds = IR = μ  o ∫A 

(dH dt ) • da = μ  oA dH dt (4.3.12) 

where the contour C2 is in the x-y plane and circles the inner cylinder with diameter D.  The area 
circled by the contour A = πD2/4. The circumferential resistance of the inner cylinder is R = 
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πD/σδW ohms.  For simplicity we assume that the permeability here is μo everywhere. 
Substituting (4.3.11) into (4.3.12) yields a differential equation for I(t): 

I(t) = - (μoA/WR) dI/dt (4.3.13) 

Substituting the general solution I(t) = Ke-t/τ into (4.3.13) yields: 

Ke-t/τ = (μoA/WRτ)Ke-t/τ (4.3.14) 

τ = μoA/WR = μoAσδ/πD [s] (magnetic relaxation time) (4.3.15) 

Thus the greater the conductivity of the inner cylinder, and the larger its product μA, the longer it 
takes for transient magnetic fields to penetrate it.  For the special case where δ = D/4π and A = 
D2, we find τ = μoσ(D/2π)2, which is the same magnetic relaxation time constant derived in 
(4.3.10) if we identify D with the wavelength λ of the magnetic field variations.  Equation 
(4.3.15) is also approximately correct if μo → μ for the inner cylinder. 

Since H(t) = 0 at t = 0+, (4.3.11) yields I(t = 0+) = - Io, and the solution I(t) = Ke-t/τ 

becomes: 

I(t) = - Io e-t/τ  [A] (4.3.16) 

The magnetic field inside the inner cylinder follows from (4.3.16) and (4.3.11): 

H(t) = u(t)Io (1 - e-t/τ)/W  [A m-1] (4.3.17) 

The geometry of Figure 4.3.1 can be used to heat resistive materials such as metals 
electrically by placing the metals in a ceramic container that sinusoidal magnetic fields penetrate 
easily. The induced currents can then melt the material quicker by heating the material 
throughout rather than just at the surface, as would a flame.  The frequency f generally must be 
sufficiently low that the magnetic fields penetrate a significant fraction of the container diameter; 
f << 1/τ. 

The inner cylinder of Figure 4.3.1 can also be used to shield its interior from alternating 
magnetic fields by designing it so that its time constant τ is much greater than the period of the 
undesired AC signal; large values of μσδ facilitate this since τ = μoAσδ/πD (4.3.15). Since we 
can model a solid inner cylinder as a continuum of concentric thin conducting shells, it follows 
that the inner shells will begin to see significant magnetic fields only after the surrounding shells 
do, and therefore the time delay experienced increases with depth.  This is consistent with τ ∝ δ. 
The penetration of alternating fields into conducting surfaces is discussed further in Section 9.3 
in terms of the exponential penetration skin depth δ = 2/ωμσ  [m]. 

Two actuator configurations are suggested by Figure 4.3.1.  First, the inner cylinder could 
be inserted only part way into the outer cylinder.  Then the net force on the inner cylinder would 
expel it when the outer cylinder was energized because the polarity of these two electromagnets 
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are reversed, the outer one powered by Io and the inner one by  - Io(1 - e-t/τ). Electromagnetic 
forces are discussed more fully in Chapter 5; here it suffices to note that induced currents can be 
used to simplify electromechanical actuators.  A similar “kick” can be applied to a flat plate 
placed across the end of the outer cylinder, for again the induced cylindrically shaped mirror 
image current would experience a transient repulsive force. Mirror-image currents were 
discussed in Section 4.2. 

The inner cores in transformers and some inductors are typically iron and are circled by 
wires carrying alternating currents, as discussed in Section 3.2.  The alternating currents induce 
circular currents in the core called eddy currents that dissipate power.  To minimize such induced 
currents and losses, high-μ conducting cores are commonly composed of many thin sheets 
separated from each other by thin coats of varnish or other insulator that largely blocks those 
induced currents; these are called laminated cores. A rough estimate of the effectiveness of 
using N plates instead of one can be obtained by noting that the power Pd dissipated in each 
lamination is proportional to V2/R, where V = v∫C

E • ds is the loop voltage induced by H(t) and 

R is the effective resistance of that loop.  By design H(t) usually penetrates the full transformer 
core. Thus V is roughly proportional to the area of each lamination in the plane perpendicular 
to⎯H, which decreases as 1/N. The resistance R experienced by the induced current circulating 
in each lamination increases roughly by N since the width of the channel through which it can 
flow is reduced as N increases while the length of the channel changes only moderately.  The 
total power dissipated for N laminations is thus roughly proportional to NV2/R ∝ NN-2/N = N-2. 
Therefore we need only increase N to the point where the power loss is tolerable and the 
penetration of the transformer core by H(t) is nearly complete each period. 

Example 4.3B 
How long does it take a magnetic field to penetrate a 1-mm thick metal cylinder of diameter D 
with conductivity 5×107 [S/m] if μ = μo?  Design a shield for a ~10-cm computer that blocks 1­
MHz magnetic fields emanating from an AM radio. 

Solution: 	 If we assume the geometry of Figure 4.3.1 and use (4.3.15), τ = μoAσδ/πD, we find τ 
= 1.3×10-6×D×5×107×10-3/4 = 0.016D seconds, where A = πD2/4 and δ = 10-3. If D 
= 0.1, then τ = 1.6×10-2 seconds, which is ~105 longer than the rise time ~10-6/2π of a 
1-MHz signal.  If a smaller ratio of 102 is sufficient, then a one-micron thick layer of 
metal evaporated on thin plastic might suffice.  If the metal had μ = 104μo, then a one-
micron thick layer would provide a safety factor of 106. 

4.4 Static fields in inhomogeneous materials 

4.4.1 Static electric fields in inhomogeneous materials 

Many practical problems involve inhomogeneous media where the boundaries may be abrupt, as 
in most capacitors or motors, or graded, as in many semiconductor or optoelectronic devices. 
The basic issues are well illustrated by the static cases discussed below.  Sections 4.4.1 and 4.4.2 
discuss static electric and magnetic fields, respectively, in inhomogeneous media.  To simplify 
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the discussion, only media characterized by real scalar values for ε, μ, and σ will be considered, 
where all three properties can be a function of position. 

Static electric fields in all media are governed by the static forms of Faraday’s and Gauss’s 
laws: 

∇ × E = 0 (4.4.1)

∇ • D = ρ  f (4.4.2)

and by the constitutive relations: 

D = εE = εo E + P (4.4.3)

J = σE (4.4.4)

A few simple cases illustrate how these laws can be used to characterize inhomogeneous 
conductors and dielectrics. Perhaps the simplest case is that of a wire or other conducting 
structure (1) imbedded in a perfectly insulating medium (2) having conductivity σ = 0. Since 
charge is conserved, the perpendicular components of current must be the same on both sides of 
the boundary so that J1⊥ = J2⊥ = 0 = E2⊥. Therefore all currents in the conducting medium are 
trapped within it and at the surface must flow parallel to that surface. 

Let’s consider next the simple case of an inhomogeneous slab between two parallel perfectly 
conducting plates spaced L apart in the x direction at a potential difference of Vo volts, where the 
terminal at x = 0 has the greater voltage.  Suppose that the medium has permittivity ε, current 
density Jo, and inhomogeneous conductivity σ(x), where: 

σ = σ  o 
⎡ x ⎤1+ ⎡⎣⎢ L ⎦⎥ ⎣Siemens m -1⎤⎦ (4.4.5) 

The associated electric field follows from (4.4.4): 

= σ =  
JE J x o ( x ˆ 1+  V⎡
σ o 

) ⎣ m  -1⎤⎦ (4.4.6)L 

The free charge density in the medium then follows from (4.4.2) and is: 

ρ = ∇ • D = εJ σo )(∂ ∂  x 1 x+ L  ) = ε  Jo f ( )( σoL  C⎣⎡ m  -3 ⎤o ⎦ (4.4.7)

Note from the derivative in (4.4.7) that abrupt discontinuities in conductivity generally produce 
free surface charge ρs at the discontinuity. Although inhomogeneous conductors have a net free 
charge density throughout the volume, they may or may not also have a net polarization charge 
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density ρ =p −∇ • P , which is defined in (2.5.12) and can be deduced from the polarization 

vector P = −D ε  o E = (ε − εo ) E  using (4.4.7): 

ρ ⎡ ⎤p = −∇ • P = −∇ • ⎣(ε − ε o ) E =⎦ (ε − ε o ) Jo σ L  C⎣⎡ m  -3 ⎤o ⎦ (4.4.8)

Now let’s consider the effects of inhomogeneous permittivity ε(x) in an insulating medium 
(σ = 0) where: 

xε = ε  o (1+ ) (4.4.9)L 

Since the insulating slab should contain no free charge and the boundaries force D  to be in the x 
direction, therefore D  cannot be a function of x because ∇ • =D ρ  f = 0 . But D = ε(x)E(x) ; 
therefore the x dependence of E  must cancel that of ε, so: 

) (4.4.10) 

Eo is an unknown constant and can be found relative to the applied voltage Vo: 

Vo = ∫
L

Ex dx = ∫
L ⎡Eo ( ) o 

ˆ E o ( xE = x 1+ L

x ⎤1+ dx = L E ln 2 (4.4.11)
0 0 ⎢ ⎣ L ⎥⎦ 

Combining (4.4.9–11) leads to a displacement vector D  that is independent of x (boundary 
conditions mandate continuity of D ), and a non-zero polarization charge density ρp distributed 
throughout the medium: 

D = εE = x̂ε V (L ln  2  ) o o 
 (4.4.12)

ρ = −∇ •  P = −∇ •  (D − ε  E) = ε  
p o o
∇ •  E

ε o o  V ∂
= (1 x+ L o o  ⎡ ⎤
L ln 2  ∂x 

V)−1 −ε  (4.4.13) 
=  C⎣ m  -3 ⎦ 

( 2 L x+ ) ln 2  

A similar series of computations readily handles the case where both ε and σ are 
inhomogeneous. 

Example 4.4A 
A certain capacitor consists of two parallel conducting plates, one at z = 0 and +V volts and one 
at z = d and zero volts.  They are separated by a dielectric slab of permittivity ε, for which the 
conductivity is small and different in the two halves of the dielectric, each of which is d/2 thick; 
σ1 = 3σ2. Assume the interface between σ1 and σ2 is parallel to the capacitor plates and is 
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located at z = 0. What is the free charge density ρf(z) in the dielectric, and what is E ( )z where z 
is the coordinate perpendicular to the plates? 

Solution:	 Since charge is conserved, J1 = J2 = σ  1E1 = σ  2 E2 , so E2 = σ1E1 σ2 = 3E 1 . But 
(E1+E2)d/2 = V, so 4E d 21  = V, and E1 = V/2d. The surface charge on the lower
plate is ρs z( =0) = Dz 0  = εE1 = ε  V  2d  = [C/m2], and ρs on the upper plate is

−Dz d = −εE2 = −ε 3V  2d  = . The free charge at the dielectric interface is ρs (z = d/2) = 
D2 - D1 = ε(E2 - E1) = εV/d. Charge can accumulate at all three surfaces because the 
dielectric conducts. The net charge is zero.  The electric field between capacitor 
plates was discussed in Section 3.1.2. 

4.4.2 Static magnetic fields in inhomogeneous materials 

Static magnetic fields in most media are governed by the static forms of Ampere’s and Gauss’s 
laws: 

∇ × H = 0	 (4.4.14)

∇ • B = 0	 (4.4.15)

and by the constitutive relations: 

B = μH = μ (o H + M) (4.4.16) 

One simple case illustrates how these laws characterize inhomogeneous magnetic materials. 
Consider a magnetic material that is characterized by μ(x) and has an imposed magnetic field⎯B 
in the x direction. Since ∇ • B = 0  it follows that B  is constant (Bo ) throughout, and that⎯H is a 
function of x: 

BH = o	 (4.4.17)
μ(x) 

As a result, higher-permeability regions of magnetic materials generally host weaker magnetic 
fields H , as shown in Section 3.2.2 for the toroidal inductors with gaps.  In many magnetic 
devices μ might vary four to six orders of magnitude, as would H . 

4.4.3 Electric and magnetic flux trapping in inhomogeneous systems 

Currents generally flow in conductors that control the spatial distribution of⎯J and electric 
potential Φ ( )r . Similarly, high-permeability materials with μ >> μo can be used to form 
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magnetic circuits that guide⎯B and control the spatial form of the static curl-free magnetic 
potential Ψ ( )r . 

Faraday’s law says that static electric fields⎯E are curl-free: 

∇ ×  E = −  ∂B = 0  (Faraday’s law) (4.4.18)
∂t 

Since ∇ ×⎯E = 0 in static cases, it follows that: 

⎯E = -∇Φ (4.4.19) 

where Φ is the electric potential [volts] as a function of position in space.  But Gauss’s law says 
∇iE = ρ/ε  in regions where ρ is constant. Therefore ∇ •⎯E = -∇2Φ = ρ/ε and: 

2 ρ∇ Φ = −   (Laplace’s equation) (4.4.20)
ε

In static current-free regions of space with constant permeability μ, Ampere’s law (2.1.6) 
says: 

∇ ×⎯H = 0 (4.4.21) 

and therefore⎯H,  like⎯E, can be related to a scalar magnetic potential [Amperes] Ψ: 

⎯H = -∇Ψ (4.4.22) 

Since ∇ •⎯H = 0 when μ is independent of position, it follows that ∇•(-∇Ψ) = ∇2Ψ and: 

2∇ Ψ  = 0  (Laplace’s equation for magnetic potential) (4.4.23) 


The perfect parallel between Laplace’s equations (4.4.20) and (4.4.23) for electric and

magnetic fields in charge-free regions offers a parallel between current density⎯J = σ E  [A/m2] 

and magnetic flux density⎯B = μ H , and also between conductivity σ and permeability μ as they 

relate to gradients of electric and magnetic potential, respectively: 

∇2Φ = 0 ∇2Ψ = 0 (4.4.24) 

⎯E = -∇Φ ⎯H = -∇Ψ (4.4.25) 

⎯J = σ E  = - σ∇Φ ⎯B = μ H  = - μ∇Ψ (4.4.26) 

Just as current is confined to flow within wires imbedded in insulating media having σ ≅ 0, so is 
magnetic flux⎯B trapped within high-permeability materials imbedded in very low permeability 
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media, as suggested by the discussion in Section 3.2.2 of how magnetic fields are confined 
within high-permeability toroids. 

The boundary condition (2.6.5) that⎯B⊥ is continuous requires that⎯B⊥ ≅ 0 at boundaries 
with media having μ ≅ 0; thus essentially all magnetic flux⎯B is confined within permeable 
magnetic media having μ >> 0. 

Φo 

+ 

-
R1 R2 

σ = ∞ 

σ = ∞ 

d Ψo 

+ 

-
R1 R2 

μ = ∞ 

μ = ∞ 

d 

(a) (b) 

Figure 4.4.1 Current and magnetic flux-divider circuits. 

Two parallel examples that help clarify the issues are illustrated in Figure 4.4.1.  In Figure 
4.4.1(a) a battery connected to perfect conductors apply the same voltage Φo across two 
conductors in parallel; Ai, σi, di, and Ii are respectively their cross-sectional area, conductivity, 
length, and current flow for i = 1,2. The current through each conductor is given by (4.4.26) and: 

Ii = JiAi = σι∇ΦiA = σιΦoAi/di = Φo/Ri (4.4.27) 

where: 

Ri = di/σiAi  [ohms] (4.4.28) 

is the resistance of conductor i, and I = V/R is Ohm’s law. 

 For the magnetic circuit of Figure 4.4.1(b) a parallel set of relations is obtained, where the 
total magnetic flux Λ = BA [Webers] through a cross-section of area A is analogous to current I 
= JA. The magnetic flux Λ through each magnetic branch is given by (4.4.26) so that: 

Λ i = BiAi = μι∇ΨiAi = μιΨoAi/di = Ψo/Ri (4.4.29) 

where: 

Ri = di/μiA (4.4.30) 

is the magnetic reluctance of branch i, analogous to the resistance of a conductive branch. 

Because of the parallel between current I and magnetic flux Λ, they divide similarly 
between alternative parallel paths.  That is, the total current is: 

Io = I1 + I2 = Φ0(R1 + R2)/R1R2 (4.4.31) 
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The value of Φo found from (4.4.31) leads directly to the current-divider equation: 

I1 = Φo/R1 = IoR2/(R1 + R2) (4.4.32) 

So, if R2 = ∞, all Io flows through R1; R2 = 0 implies no current flows through R1; and R2 = R1 
implies half flows through each branch.  The corresponding equations for total magnetic flux and 
flux division in magnetic circuits are: 

Λo = Λ1 + Λ2 = Ψ0(R1 + R2)/R1R2 (4.4.33) 

Λ1 = Ψo/R1 = ΛoR2/(R1 + R2) (4.4.34) 

Although the conductivity of insulators surrounding wires is generally over ten orders of 
magnitude smaller than that of the wires, the same is not true for the permeability surrounding 
high-μ materials, so there generally is some small amount of flux leakage from such media; the 
trapping is not perfect.  In this case⎯H outside the high-μ material is nearly perpendicular to its 
surface, as shown in (2.6.13). 

Example 4.4B 
The magnetic circuit of Figure 4.4.1(b) is driven by a wire that carries 3 amperes and is wrapped 
50 times around the leftmost vertical member in a clockwise direction as seen from the top.  That 
member has infinite permeability (μ = ∞), as do the top and bottom members.  If the rightmost 
member is missing, what is the magnetic field⎯H in the vertical member R1, for which the length 
is d and μ >> μo?  If both R1 and R2 are in place and identical, what then are⎯H1 and⎯H2? If R2 
is removed and R1 consists of two long thin bars in series having lengths da and db, cross-
sectional areas Aa and Ab, and permeabilities μa and μb, respectively, what then are⎯Ha and⎯Hb? 

Solution: For this static problem Ampere’s law (4.1.2) becomes v∫C
H • ds  =  w∫∫  A

J  • n da = N Iˆ 

= 50×3 =150 [A] = Hd.  Therefore⎯H = ẑ 150/d [A m-1], where ẑ  and⎯H are upward 
due to the right-hand rule associated with Ampere’s law.  If R2 is added, both the 
integrals of⎯H through the two branches must still equal NI, so⎯H remains ẑ 150/d [A 
m-1] in both branches. For the series case the integral of⎯H yields Hada + Hbdb = NI. 
Because the magnetic flux is trapped within this branch, it is constant: μaHaAa = BaAa 

= BbAb = μbHbAb. Therefore Hb = Ha(μaAa/μbAb) and Ha[da + db(μaAa/μbAb)] = NI, 
so⎯Ha = ẑ NI/[da + db(μaAa/μbAb)] [A m-1]. 

4.5 Laplace’s equation and separation of variables  

4.5.1 Laplace’s equation 

Electric and magnetic fields obey Faraday’s and Ampere’s laws, respectively, and when the 
fields are static and the charge and current are zero we have: 
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∇ × E 0=  	 (4.5.1)

∇ × H = 0 (4.5.2)

These equations are satisfied by any E  or  H  that can be expressed as the gradient of a potential: 

E = −∇Φ  (4.5.3) 

H = −∇Ψ  (4.5.4) 

Therefore Maxwell’s equations for static charge-free regions of space are satisfied for any 
arbitrary differentiable potential function Φ(r) or Ψ (r) , which can be determined as discussed 
below. 

Any potential function must be consistent with the given boundary conditions, and with 
Gauss’s laws in static charge- and current-free spaces: 

∇ • D = 0 (4.5.5)

∇ • B = 0 (4.5.6)

where D = εE  and B = μH . Substituting (4.5.3) into (4.5.5), and (4.5.4) into (4.5.6) yields 
Laplace’s equation: 

∇ Φ2 = ∇  2Ψ = 0	 (Laplace’s equation) (4.5.7) 

To find static electric or magnetic fields produced by any given set of boundary conditions we 
need only to solve Laplace’s equation (4.5.7) for Φ or Ψ, and then use (4.5.3) or (4.5.4) to 
compute the gradient of the potential.  One approach to solving Laplace’s equation is developed 
in the following section. 

Example 4.5A 
Does the potential Φ = 1/r satisfy Laplace’s equation ∇2Φ = 0, where r = (x2 + y2 + z2)0.5? 

Solution:	 ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. First: (∂/∂x) (x2 + y2 + z2)-0.5 = -0.5(x2 + y2 + z2)-1.5(2x), 
so (∂2/∂x2) (x2 + y2 + z2)-0.5 = 0.75(x2 + y2 + z2)-2.5(2x)2 - (x2 + y2 + z2)-1.5 . Therefore 
(∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2)(x2 + y2 + z2)-0.5 = 3(x2 + y2 + z2)-2.5(x2 + y2 + z2) - 3(x2 + y2 

+ z2)-1.5 = 0. So this potential satisfies Laplace’s equation.  The algebra could have 
been simplified if instead we wrote ∇2 in spherical coordinates (see Appendix C), 
because only the radial term is potentially non-zero for Φ = 1/r: ∇2 = r -2(∂/∂r)(r2∂/∂r). 
In this case the right-most factor is r2∂r -1/∂r = r2(-r -2) = -1, and ∂(-1)/∂r = 0, so again 
∇2Φ = 0. 
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4.5.2 Separation of variables 

We can find simple analytic solutions to Laplace’s equation only in a few special cases for which 
the solutions can be factored into products, each of which is dependent only upon a single 
dimension in some coordinate system compatible with the geometry of the given boundaries. 
This process of separating Laplace’s equation and solutions into uni-dimensional factors is called 
separation of variables. It is most easily illustrated in terms of two dimensions.  Let’s assume 
the solution can be factored: 

Φ(x,y) = X(x)Y(y) (4.5.8) 

Then Laplace’s equation becomes: 

∇  2Φ = ∂  2 Φ ∂  2 2 2 2 2 2x + ∂  Φ ∂  y = Y(y)d X dx + X(x)d Y dy 2 = 0 (4.5.9) 

Dividing by X(x)Y(y) yields: 

⎡d 2 X(x) dx 22 ⎤⎦ X(x) = − ⎡⎣d Y(y) dy 2 ⎤⎦ ⎣ Y(y) (4.5.10)

Since (4.5.10) must be true for all values of x, y, it follows that each term must equal a constant 
k2, called the separation constant, so that: 

d X2 dx  2 2 2 2 2= −k X  d Y dy  = k  Y  (4.5.11) 

Generic solutions to (4.5.11) are, for k ≠ 0: 

X(x) = A cos kx + B sin kx (4.5.12) 

Y(y) = C cosh ky + D sinh ky (4.5.13) 

An equivalent alternative is Y(y) = C' eky + D' e-ky. Generic solutions when k = 0 are: 

X(x) = Ax + B (4.5.14) 

Y(y) = Cy + D (4.5.15) 

Note that by letting k → jk, the sinusoidal x-dependence becomes hyperbolic, and the hyperbolic 
y dependence becomes sinusoidal--the roles of x and y are reversed.  Whether k is zero, real, 
imaginary, or complex depends upon boundary conditions.  Linear combinations of solutions to 
differential equations are also solutions to those same equations, and such combinations are often 
required to match boundary conditions. 

- 117 -




 

  

These univariable solutions can be combined to yield the three solution forms for x-y 
coordinates: 

Φ(x,y) = (A + Bx)(C + Dy) for k = 0 (4.5.16) 

Φ(x,y) = (A cos kx + B sin kx)(C cosh ky + D sinh ky) for k2 > 0 (4.5.17) 

Φ(x,y) = (A cosh qx + B sinh qx)(C cos qy + D sin qy) for k2 < 0 (k = jq) (4.5.18) 

This approach can be extended to three cartesian dimensions by letting Φ(x,y,z) = 
X(x)Y(y)Z(z); this leads to the solution11: 

Φ(x,y,z) = (A cos kxx + B sin kxx)(C cos kyy + D sin kyy)(E cosh kzz + F sinh kzz) (4.5.19) 

where kx
2 + ky

2 + kz
2 = 0.  Since kx

2, ky
2, and kz

2 must sum to zero, ki
2 must be negative for one 

or two coordinates so that the solution is sinusoidal along either one or two axes and hyperbolic 
along the others. 

Once the form of the solution is established, the correct form, (4.5.16) to (4.5.19), is selected 
and the unknown constants are determined so that the solution matches the given boundary 
conditions, as illustrated in the following example. 

+ + + +++ + + + + ++ + - -- -

V(x) 
y 

x 

Φ = 0 

w w 

V(x) = sin πx/w V(x) = sin 2πx/w 

equipotentials 

⎯E 
⎯E 

(a) (b) 

D 

0 

Figure 4.5.1 Static potentials and fields in a sinusoidally-driven conducting rectangular slot. 

If Φ(x,y,z) = X(x)Y(y)Z(z), then ∇2Φ=YZd2X/dx2 + XZd2Y/dy2 + XYd2Z/dz2.  Dividing by XYZ yields 
X-1d2X/dx2 + Y-1d2Y/dy2 + Z-1d2Z/dz2 =0, which implies all three terms must be constants if the equation holds for 
all x,y,z; let these constants be kx

2, ky
2, and kz

2, respectively.  Then d2X(y)/dx2 = kx
2X(x), and the solution (4.5.19) 

follows when only kz
2 > 0. 
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Consider an infinitely long slot of width w and depth d cut into a perfectly conducting slab, 
and suppose the cover to the slot has the voltage distribution V(x) = 5 sin(πx/w) volts, as 
illustrated in Figure 4.5.1(a).  This is a two-dimensional cartesian-coordinate problem, so the 
solution (4.5.17) is appropriate, where we must ensure this expression yields potentials that have 
the given voltage across the top of the slot and zero potential over the side and bottom 
boundaries of the slot. Thus: 

Φ (x, y ) = A sin (πx w )sinh (πy w ) [volts ] (4.5.20) 

where the sine and sinh options12 from (4.5.17) were chosen to match the given potentials on all 
four boundaries, and where A 5  sinh  (πD w  = )  in order to match the given potential across the 
top of the slot. 

Figure 4.5.1(b) illustrates the solution for the case where the potential across the open top of 
the slot is given as V(x) = sin 2πx/w.  If an arbitrary voltage V(x) is applied across the opening at 
the top of the slot, then a sum of sine waves can be used to match the boundary conditions. 

Although all of these examples were in terms of static electric fields E  and potentials Φ, 
they equally well could have been posed in terms of static H  and magnetic potential Ψ; the 
forms of solutions for Ψ are identical. 

Example 4.5B 
A certain square region obeys ∇2Φ = 0 and has Φ = 0 along its two walls at x = 0 and at y = 0. 
Φ = V volts at the isolated corner x = y = L.  Φ increases linearly from 0 to V along the other 
two walls. What are Φ(x,y) and E (x,  y)  within the square? 

Solution:	 Separation of variables permits linear gradients in potentials in rectangular 
coordinates via (4.5.14) and (4.5.15), so the potential can have the form 
Φ = (Ax + B)(Cy + D) where B = D = 0 for this example.  Boundary conditions are 

matched for Φ(x,y) = (V/L2)xy [V].  It follows that:  E = −∇Φ =  (V L  2 )( x̂y + ŷx) . 

4.5.3 Separation of variables in cylindrical and spherical coordinates 

Laplace’s equation can be separated only in four known coordinate systems: cartesian, 
cylindrical, spherical, and elliptical.  Section 4.5.2 explored separation in cartesian coordinates, 
together with an example of how boundary conditions could then be applied to determine a total 
solution for the potential and therefore for the fields.  The same procedure can be used in a few 
other coordinate systems, as illustrated below for cylindrical and spherical coordinates. 

12 sinh x = (ex − e−x ) 2 and cosh  x = (ex + e−x ) 2 . 
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When there is no dependence on the z coordinate, Laplace’s equation in cylindrical 
coordinates reduces to circular coordinates and is: 

∇ Φ2 =  r −1 (∂ ∂  −2 2 2r)(r∂Φ ∂  r) + r (∂  Φ ∂φ  ) = 0 (4.5.21) 

Appendix C reviews the del operator in several coordinate systems.  We again assume the 
solution can be separated: 

Φ = R(r) Φ( φ  ) (4.5.22)

Substitution of (4.5.22) into (4.5.21) and dividing by R(r)Φ(φ) yields: 

R −1 (d dr 1 2 2 2)(r dR dr ) = −Φ− (d Φ φ  d ) = m (4.5.23) 

where m2 is the separation constant. 

The solution to (4.5.23) depends on whether m2 is zero, positive, or negative: 

Φ(r,φ) = [A + Bφ][C + D (ln r)] (for m2 = 0) (4.5.24) 

Φ(r,φ) =(A sin mφ + B cos mφ)(Crm + Dr-m) (for m2 > 0) (4.5.25) 

Φ(r,φ) = [A sinh pφ + B cosh pφ][C cos(p ln r) + D sin(p ln r)] (for m2 < 0) (4.5.26) 

where A, B, C, and D are constants to be determined and m ≡ jp for m2 < 0. 

A few examples of boundary conditions and the resulting solutions follow.  The simplest 
case is a uniform field in the +x̂  direction; the solution that matches these boundary conditions 
is (4.5.25) for m = 1: 

Φ(r,φ) = Br cos φ (4.5.27)

Another simple example is that of a conducting cylinder of radius R and potential V.  Then 
the potential inside the cylinder is V and that outside decays as ln r, as given by (1.3.12), when 
m = C = 0: 

Φ (r,φ) = (V ln R ln r ) (4.5.28)

The electric field associated with this electric potential is: 

E = −∇Φ = −  r∂Φ ∂  r = r̂ (V  ln R  ˆ ) r−1 (4.5.29)

Thus E  is radially directed away from the conducting cylinder if V is positive, and decays as r-1. 
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A final interesting example is that of a dielectric cylinder perpendicular to an applied 
electric field E = x̂ Eo . Outside the cylinder the potential follows from (4.5.25) for m = 1 and is: 

Φ (r, φ) =  −  E r cos φ +  (AR r o )cos φ (4.5.30)

The potential inside can have no singularity at the origin and is: 

Φ (r,φ) =  −  Eo (Br R )cos φ (4.5.31)

which corresponds to a uniform electric field.  The unknown constants A and B can be found by 
matching the boundary conditions at the surface of the dielectric cylinder, where both Φ and⎯D 
must be continuous across the boundary between regions 1 and 2. The two linear equations for 
continuity (Φ1 = Φ2, and⎯D1 =⎯D2) can be solved for the two unknowns A and B.  The electric 
fields for this case are sketched in Figure 4.5.2. 
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ε > εo 
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x 

Figure 4.5.2 Electric fields perpendicular to a dielectric cylinder. 

If these cylindrical boundary conditions also vary with z, the solution to Laplace’s equation 
becomes: 

Φ(r,φ,z) = Φo[C1ekz + C2e-kz][C3 cos nφ + C4 sin nφ][C5Jn(kr) + C6Nn(kr)] (4.5.32) 

where Jn and Nn are Bessel functions of order n of the first and second kind, respectively, and Ci 
are dimensionless constants that match the boundary conditions.  The rapidly growing 
complexity of these solutions as the dimensionality of the problem increases generally mandates 
numerical solutions of such boundary value problems in practical cases. 

Our final example involves spherical coordinates, for which the solutions are: 

Φ(r,θ,φ) = Φo[C1rn + C2r-n-1][C3 cos mφ + C4 sin mφ][C5Pn
m(cosθ) + C6Qn

m(cosθ)] (4.5.33) 
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where P m
n  and Q m

n  are associated Legendre functions of the first and second kind, respectively, 
and Ci are again dimensionless constants chosen to match boundary conditions.  Certain 
spherical problems do not invoke Legendre functions, however, as illustrated below. 

A dielectric sphere inserted in a uniform electric field x̂ Eo exhibits the same general form of 
solution as does the dielectric rod perpendicular to a uniform applied electric field; the solution is 
the sum of the applied field and the dipole field produced by the induced polarization charges on 
the surface of the rod or sphere.  Inside the sphere the field is uniform, as suggested in Figure 
4.5.2. Polarization charges are discussed more fully in Section 2.5.3.  The potential follows from 
(4.5.33) with n = 1 and m = 0, and is simply: 

Φ(r,θ, φ  ) = −  Eo cos θ ( C r − 3 2  
1 C2R r− ) (4.5.34) 

where C2 = 0 inside, and for the region outside the cylinder C2 is proportional to the induced 
electric dipole.  C1 outside is unity and inside diminishes below unity as ε increases. 

If the sphere in the uniform electric field is conducting, then in (4.5.34) C1 = C2 = 0 inside 
the sphere, and the field there is zero; the surface charge is: 

ρ = −ε  n̂ •∇Φ  = ε  E = 3ε E  cos θ  C⎣⎡ m  −2 ⎤s o r=R o r o o ⎦ (4.5.35)

Outside the conducting sphere C1 = 1, and to ensure Φ(r = R) = 0, C2 must also be unity. 

The same considerations also apply to magnetic potentials.  For example, a sphere of 
permeability μ and radius R placed in a uniform magnetic field would also have an induced 
magnetic dipole that produces a uniform magnetic field inside, and produces outside the 
superposition of the original uniform field with a magnetic dipole field produced by the sphere. 
A closely related example involves a sphere of radius R having surface current: 

Js = φ̂ sin θ  A⎡⎣ m−1⎤⎦ (4.5.36) 

This can be produced approximately by a coil wound on the surface of the sphere with a constant 
number of turns per unit length along the z axis. 

For a permeable sphere in a uniform magnetic field H = − ẑHo , the solution to Laplace’s 
equation for magnetic potential ∇2Ψ = 0 has a form similar to (4.5.34): 

Ψ (r, θ) = Cr cos θ (inside the sphere; r < R) (4.5.37) 

Ψ (r, θ) = Cr −2 cos θ +  H o r cos θ (outside the sphere; r > R) (4.5.38)

Using H = −∇Ψ , we obtain: 
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H (r,  θ =  ) -ẑC (inside the sphere; r < R) (4.5.39)

2H ( r,  θ =) −  C  (R r  ˆ )) ( r̂ cos  θ +  0.5  θ sin  θ −  ẑHo (outside the sphere; r > R) (4.5.40) 

Matching boundary conditions at the surface of the sphere yields C; e.g. equate B = μH  inside to 
B = μoH  outside by equating (4.5.39) to (4.5.40) for θ = 0. 

4.6 Flux tubes and field mapping 

4.6.1 Static field flux tubes 

Flux tubes are arbitrarily designated bundles of static electric or magnetic field lines in charge-
free regions, as illustrated in Figure 4.6.1.   

flux tube of D  or  B 

equipotential surface at Φ1 > Φ2, or Ψ1 > Ψ2 

equipotential surface at Φ2 or Ψ2 

ε, μ 

Ψ, where Ψ1 > Ψ > Ψ2 
A1 

A2 

Figure 4.6.1 Electric or magnetic flux tube between two equipotential surfaces. 

The divergence of such static fields is zero by virtue of Gauss’s laws, and their curl is zero by 
virtue of Faraday’s and Ampere’s laws.  The integral forms of Gauss’s laws, (2.4.17) and 
(2.4.18), say that the total electric displacement D  or magnetic flux B  crossing the surface A of 
a volume V must be zero in a charge-free region: 

( )
A 

D  da  • ˆ∫∫ nw = 0 (4.6.1) 

( )
A 

B  da  • ˆ∫∫ nw = 0 (4.6.2) 

Therefore if the walls of flux tubes are parallel to the fields then the walls contribute nothing to 
the integrals (4.6.1) and (4.6.2) and the total flux entering the area A1 of the flux tube at one end 
(A1) must equal that exiting through the area A2 at the other end, as illustrated: 

w∫∫A1
(D • n̂) da  = −  w∫∫A2 

(D • n̂) da  (4.6.3) 
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w∫∫ (B• n̂) da  = −  w∫∫ (B• n̂)da  (4.6.4)
A1 A2 

Consider two surfaces with potential differences between them, as illustrated in Figure 
4.6.1. A representative flux tube is shown and all other fields are omitted from the figure.  The 
field lines could correspond to either D  or  B .  Constant ε and μ are not required for D  and B 
flux tubes because D  and B  already incorporate the effects of inhomogeneous media.  If the 
permittivity ε and permeability μ were constant then the figure could also apply to E  or  H , 
respectively. 

4.6.2 Field mapping 

E  and H  are gradients of the potentials Φ and Ψ, respectively [see (4.6.2) and (4.6.5)], and 
therefore the equipotential surfaces are perpendicular to their corresponding fields, as suggested 
in Figure 4.6.1. This orthogonality leads to a useful technique called field mapping for sketching 
approximately correct field distributions given arbitrarily shaped surfaces at known potentials. 
The method is particularly simple for “two-dimensional” geometries that depend only on the x,y 
coordinates and are independent of z, such as the pair of circular surfaces illustrated in Figure 
4.6.2(a) and the pair of ovals in Figure 4.6.2(b).  Assume that the potential of the inner surface is 
Φ1 or Ψ1, and that at the outer surface is Φ2 or Ψ2. 

(a) (b) 
Φ1 or Ψ1 

equipotentials 

field lines 

Φ2 or Ψ2 

cell, curvilinear square equipotential boundaries 

Figure 4.6.2 Field mapping of static electric and magnetic fields. 

Because: 1) the lateral spacing between adjacent equipotential surfaces and (in two-
dimensional geometries) between adjacent field lines are both inversely proportional to the local 
field strength, and 2) the equipotentials and field lines are mutually orthogonal, it follows that the 
rectangular shape of the cells formed by these adjacent lines is preserved over the field even as 
the field strengths and cell sizes vary.  That is, the curvilinear square illustrated in Figure 4.6.2(a) 
has approximately the same shape (but not size) as all other cells in the figure, and approaches a 
perfect square as the cells are subdivided indefinitely.  If sketched perfectly, any two­
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dimensional static potential distribution can be subdivided indefinitely into such curvilinear 
square cells. 

One algorithm for performing such a subdivision is to begin by sketching a first-guess 
equipotential surface that: 1) separates the two (or more) equipotential boundaries and 2) is 
orthogonal to the first-guess field lines, which also can be sketched.  These field lines must be 
othogonal to the equipotential boundaries. For example, this first sketched surface might have 
potential (Φ1 + Φ2)/2, where Φ1 and Φ2 are the applied potentials.  The spacing between the 
initially sketched field lines and between the initial equipotential surfaces should form 
approximate curvilinear squares.  Each such square can then be subdivided into four smaller 
curvilinear squares using the same algorithm.  If the initial guesses were correct, then the 
curvilinear squares approach true squares when infinitely subdivided.  If they do not, the first 
guess is revised appropriately and the process can be repeated until the desired insight or 
perfection is achieved. In general there will be some fractional squares arranged along one of the 
field lines, but these become negligible in the limit. 

Figure 4.6.2(a) illustrates how the flux tubes in a co-axial geometry are radial with field 
strength inversely proportional to radius. Therefore, when designing systems limited by the 
maximum allowable field strength, one avoids incorporating surfaces with small radii of 
curvature or sharp points. Figure 4.6.2(b) illustrates how the method can be adapted to 
arbitrarily shaped boundaries, albeit with more difficulty.  Computer-based algorithms using 
relaxation techniques can implement such strategies rapidly for both two-dimensional and three-
dimensional geometries.  In three dimensions, however, the spacing between field lines varies 
inversely with the square root of their strength, and so the height-to-width ratio of the curvilinear 
3-dimensional rectangles formed by the field lines and potentials is not preserved across the 
structure. 
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