OPTICAL COMMUNICATIONS

Free-Space Propagation:

- Similar to radiowaves (but more absorption by clouds, haze)
- Same expressions: antenna gain, effective area, power received
- Examples: TV controllers, inter-building and interplanetary links

Guided Wave Propagation:

- Optical fibers guide waves
- Rays inside fiber impact wall beyond critical angle
 total reflection and wave trapping
- Little attenuation $0.5 < \lambda < 2$ microns (can go >100 km)

Devices:

- Detectors: phototubes, photodiodes, avalanche photodiodes
- Sources: LED's, laser diodes, fiber amplifiers, gas lasers
- Modulators: amplitude and frequency, mixers, switches
- Other: filters, spectral multiplexers and combiners

Mars

UNDERSEA OPTICAL FIBER CABLES

Fiber Communications Around the Globe

2008: undersea about ×1.5, some are dark Figure by MIT OpenCourseWare.

- Fiber optics dominates long-distance telecommunications
- In-line Erbium-Doped Fiber Amplifiers (EDFA's) make extremely wideband transoceanic transmission possible without repeaters
- Without fiber communications there would be no World Wide Web

WDM MULTIPLEXED LINK

WAVELENGTH DIVISION MULTIPLEXING (WDM):

- Multiple wavelengths combined onto one fiber
- All wavelengths amplified simultaneously and independently in each Optical Amplifier (OAMP)

WAVES IN FIBERS

Optical Fiber – Simple Picture:

- Total internal reflection in the higher ε glass core traps light
- Small $\Delta \varepsilon \Rightarrow \text{very shallow reflection angles.}$
- Only certain angles are allowed: waves must interfere constructively
 modes (characterized by Bessel functions)
- Mode velocity = $f(\varepsilon)$'s, core size, mode)

OPTICAL WAVEGUIDES

Dielectric slab waveguide example:

Waves reflect if $\theta_i > \theta_c$

Glass/air
$$\theta_c = \sin^{-1}(n_g^{-1})$$

 $n_g \cong 1.5 \implies \theta_c \cong 41.8^{\circ}$

Cladding/core
$$\theta_c = \sim \sin^{-1}(0.98)$$

 $\Rightarrow \theta_c \cong 78.5^{\circ}$

Slab waveguide fields:

$$\overline{E} = \hat{y}E_{o} \begin{cases} sink_{X}x \\ cosk_{X}x \end{cases} e^{-jk_{Z}z} |x| \le d$$

$$\overline{E} = \hat{y}\underline{E}_1 e^{-\alpha x - jk_z z}$$
 for $x > d$,

$$\overline{E} = \pm \hat{y}\underline{E}_1 e^{+\alpha x - jk_z z}$$
 for $x < -d$

Boundary conditions for TE_n:

$$\overline{E}$$
// and $\partial E_y/\partial x$ continuous $\nabla \times \overline{E} = \hat{z} \partial E_y/\partial x - \hat{x} \partial E_y/\partial z = -\partial \overline{H}/\partial t$

ELECTROMAGNETIC FIELD DISTRIBUTION

Magnetic Field:

$$\overline{H} = -(\nabla \times \overline{E})/j\omega\mu_0$$

Inside the slab, |x| < d:

Outside,
$$x > d$$
: $\overline{H} = (\underline{E}_1/\omega\mu_0)(-\hat{x}k_z - \hat{z}j\alpha)e^{-\alpha x - jk_zz}$

Matching Boundary Conditions at x = d:

Dispersion relations: $k_x^2 + k_z^2 = \omega^2 \mu_0 \varepsilon$ inside the slab, |x| < d

 $-\alpha^2 + k_z^2 = \omega^2 \mu_o \varepsilon_o$ outside, |x| > d [let $\mu = \mu_o$]

Continuity of \overline{E} : $E_0 \cos k_X d e^{-jk_Z z} = \underline{E}_1 e^{-\alpha d - jk_Z z}$ for $TE_{1.3.5...}$

Continuity of \overline{H} : $\left(-jk_{X}E_{O}/\omega\mu_{O}\right)$ sink $_{X}d$ e $^{-jk_{Z}z}=-\left(j\alpha\underline{E}_{1}/\omega\mu_{O}\right)$ e $^{-\alpha d-jk_{Z}z}$

 k_{x} tan $k_{x}d = \alpha$ (ratio of continuity equations) Therefore:

 $k_x^2 + \alpha^2 = \omega^2 \mu_0 (\epsilon - \epsilon_0)$ (from dispersion equations)

DIELECTRIC SLAB WAVEGUIDES TEodd n

Field continuity equations:

 $k_x \tan k_x d = \alpha$

(ratio of continuity equations) $k_x^2 + \alpha^2 = \omega^2 \mu_0 (\varepsilon - \varepsilon_0)$ (from dispersion equations)

Transcendental equation, graphical solution:

FIBER WAVEGUIDE DESIGN

Loss mechanisms:

Rayleigh scattering from random density fluctuations Loss ∞ f⁴ (scattering makes sky blue) Infrared absorption dominates for $\lambda > \sim 1.6$ microns Minimum total attenuation $\cong 0.2$ dB km⁻¹

Fiber structure:

Typical: 10- μ m core in 125- μ m diameter glass, with 100- μ m-thick plastic protective cladding (bundled in cables)

Manufacturing: solid or hollow preform grown by vapor deposition of SiO_2 and GeO_2 (using e.g. $Si(Ge)Cl_4 + O_2 = Si(Ge)O_2 + 2Cl_2$) Architecture: various – single or multimode, polarization-selective

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.