-ELECTROMAGNETICS AND APPLICATIONS

6.013 Content:

Fundamentals and Applications

Fields, media, and boundaries

Circuits

Motors, generators, and MEMS

Limits to computation speed

Microwave communications and radar

Wireless communications and waves

Optical devices and communications

Acoustics

Prerequisites:

6.003 or 6.02+6.007

[6.002+8.02+18.02]

Appendices B-E

Handouts:

Administration sheet, Equations

Subject outline, lecture notes

Prob. set 1, Objectives & Outcomes

WHAT ARE E AND H?

Lorentz Force Law:

$$\overline{f} = q(\overline{E} + \overline{v} \times \mu_o \overline{H})$$
 [Newtons]
$$4\pi \times 10^{-7}$$
Velocity [m/s]
Charge [Coulombs]

"EM fields were invented to explain forces"

- Find \overline{E} by setting $\overline{v} = 0$ and measuring \overline{f}
- Find \overline{H} by setting $\overline{v} = 0$, $\overline{E} = 0$, and measuring \overline{f} (requires 2 \overline{f} measurements using 2 \overline{v} tests)

INTEGRAL MAXWELL'S EQUATIONS

Graphical Equations:

$$\oiint_{S} \overline{D} \bullet \hat{\mathsf{n}} \mathsf{da} = \oiint_{V} \rho \; \mathsf{dv} \qquad \mathsf{Gauss}$$

$$\oiint_S \overline{B} \bullet \hat{\mathsf{n}} \mathsf{d} \mathsf{a} = \mathbf{0}$$

$$\oint_{\mathbf{C}} \overline{\mathbf{E}} \bullet d\overline{\mathbf{s}} = -\frac{\partial}{\partial t} \iint_{\mathbf{A}} \overline{\mathbf{B}} \bullet \hat{\mathbf{n}} da \qquad \qquad \iff$$

$$\overline{D} = \varepsilon \overline{E}, \quad \overline{B} = \mu \overline{H}$$

$$\overline{B} = \mu \overline{H}$$

Constitutive relations

EXAMPLE: SPHERICAL CHARGE

Example I. Sphere of radius R, charge density ρ_o

Spherical symmetry precludes θ and ϕ components for \overline{E}

Solution:

$$r < R \Rightarrow \varepsilon E_r(4\pi r^2) = \rho_o(\frac{4}{3}\pi r^3) \Rightarrow E_r = \frac{\rho_o r}{3\varepsilon}$$
 [V/m]

Surface = $4\pi r^2$

Equivalently,
$$r > R \Rightarrow E_r = \frac{\rho_o R^3}{3\epsilon r^2}$$

EXAMPLE: CYLINDRICAL CHARGE

Example 2. Cylinder of radius R, charge density ρ_{\circ}

Cylindrical symmetry precludes θ and z components for \overline{E}

Solution:

HOLLOW SPHERICAL CHARGE

Example 3:

Hollow sphere of inner radius R_o , charge density ρ_o

Spherical symmetry precludes θ and ϕ components for \overline{E}

Solution:

Surface = $4\pi r^2$

Hollow cylinders also have zero E

CYLINDRICAL CURRENT J[A/m²]

Example 4. Uniform current J_z for r < R:

$$\oint_{C} \overline{H} \cdot d\overline{s} = \iint_{A} \overline{J} \cdot \hat{n} da + \frac{\partial}{\partial t} \iint_{A} \overline{D} \cdot \hat{n} da$$

$$r > R$$
: $2\pi r H_{\theta} = I = J_{o}\pi R^{2} \Rightarrow H_{\theta} = I/2\pi r [A/m]$

$$r < R$$
: $2\pi r H_{\theta} = J_{o}\pi r^{2}$ $\Rightarrow H_{\theta} = J_{o}r/2$ [A/m]

Example 5. Hollow current J_z :

Hollow cylinders also have zero H for r < R_o

STATIC POTENTIALS Φ(Volts)

Example 6. Spherical charge density ρ_0 , radius R:

What is the electric potential $\Phi(r)$ [volts] for r > R?

Solution:
$$\Phi_a - \Phi_b = \int_a^b \overline{E} \cdot d\overline{r}$$
 (Volts)

$$\Phi(\mathbf{r}) - \Phi_{\infty} = \int_{\mathbf{r}}^{\infty} \overline{\mathbf{E}} \cdot \mathbf{d} \, \overline{\mathbf{r}} = \Phi(\mathbf{r})$$

$$\Phi(r) = \int_{r}^{\infty} \frac{Q}{4\pi} r^{-2} \left. \hat{r} \cdot d\overline{r} \right. = -\frac{Q}{4\pi} r^{-1} \Big|_{r}^{\infty}$$

$$\Phi(r) = \frac{Q}{4\pi r}$$
 Volts, $(r > R)$

Absolute potentials are defined relative to infinity: $\Phi(\infty) \triangleq 0$

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.