
Problem Set 11 Solutions 

Problem 11.0 

The easiest way to approach this problem is to pretend that the roof antennas are transmitting to an antenna 
at the horizon. Then for each antenna orientation, we can find the image antenna and the distance from the 
roof that we need to place the antenna to maximize transmission towards the horizon. 

(a) 

A horizontally polarized transmitter at the horizon would require that our antenna be horizontal also (along 
ŷ from the diagram). The image of an antenna parallel to a conducting surface and height h above the 
surface is the same antenna half a wavelength out of phase in time a depth h below the surface. This is 
shown in the figure. 

The difference in path length for the roof-top antenna and its image when looking toward the horizon will 
be D, the height of the antenna above the roof. In order to have a maximum toward the horizon we need 
the total phase delay for the image to be λ so we need the height D to be λ/2. 

The antenna should be oriented along ŷ and placed D = λ/2 above the roof surface. 

(b) 

This case is a little more difficult to solve. To receive a vertically polarized signal from the horizon (signal 
polarized along x̂) the antenna needs to have it’s axis in the x-z plane. For any antenna orientation in 
this plane we can break the problem into an antenna polarized perpendicular to the roof and an antenna 
polarized parallel to the roof (see diagram). In both cases the physical path length difference looking toward 
the horizon is the height of the antenna above the roof D. 

For the antenna polarized perpendicular to the roof, the antenna and it’s image are in phase in time so we 
need the path length difference to be λ. The total electric field in this case will be twice the field of a single 
antenna at an angle Θ = 60◦ from the dipole axis. 

2 cos(Θ))
E = 2x̂E cos( π 

≈ 1.63E .
¯ ◦ sin(Θ) ¯ ◦ 

For the antenna polarized parallel to the roof, the antenna and it’s image are out of phase by λ/2 in time so 
we need the path length difference to be D = λ/2. The total electric field in this case will be twice the field 
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of a single antenna at an angle Θ = 30◦ from the dipole axis. 

2 cos(Θ))
E = 2x̂E cos( π 

≈ 0.84E .
¯ ◦ sin(Θ) ¯ ◦ 

The field for any antenna will fall between the two expressions above, so we know that the best we can do 
is to mount the antenna perpendicular to the roof at a height D = λ above the roof. 

(c) 

The maximum field due to a half wave dipole, using the notation above, is 

E = x̂E
¯ ◦ 

The E will be larger in this case than for a short dipole. 
¯ ◦ 

The ratio of the gains is the ratio of the squares of the electric fields: 

1.632 
R = 12 = 1.632 

In (dB) this is 

RdB = 10log10(R) = 20log10(1.63) = 4.24 [dB] 
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Problem 11.1 

(a) 

To get the voltage induced on the receiving antenna we can use equation 10.3.19, 

VTH = −E ¯ deff 
¯ · 

The wavelength of a 1 MHz signal is 300m, so we can say our receiving dipole is short, and the effective 
length is half the physical length. 

Let us assume that the transmitting dipole is also a short dipole, so it will have a maximum gain of 1.5. Since 
we want the maximum voltage induced on the dipole lets assume that we place the receiver in the direction 
of maximum gain for the transmitter, and that the receiver is aligned with the electric field produced by the 
transmitter. 

I = |2
E
η
|2 

, so 
◦ 

E = [2η I]1/2 
◦ 

We know that the intensity at the receiver is 
1I = PtGT (θ, φ) 4πr2 , so 

1E = [2η GT (θ, φ)Pt 4πr2 ]1/2 
◦ 

1E = [2(377)(1.5)(1 × 103) 1 
� �2]1/2 = 0.3 [V/m]4π 103 

|VTH | = |E ¯ · deff 
¯ | = 0.3 × 0.5 = 0.15 [V ] 

(b) 

A diagram of the system is given below. Notice that the image antenna is half a wavelength out of phase 
(in time) with the actual antenna. 

To solve this problem we need to find the total field at the receiving antenna. This is simply the sum of the 
field due to the antenna (ignoring the ground plane) and the field due to it’s image. The general expression 
for the far field electric field due to a dipole of length deff driven with current I is:

¯◦ 

E
¯
¯ = Θ̂j kη ◦

¯ 
I ◦ deff sin(Θ)e−jkr 
4πr 

From the diagram we know that Θ = π 
2 , and that ˆ y (the phase of the image will show up in the direction Θ = ˆ

of the current). If the height h is much smaller than the distance ra, we can ignore the difference between 
ra and ri in the amplitude of the waves. 

yj ◦E
¯
¯ 

antenna = ˆ kη ◦
4̄  
I
πa

d
r 
eff e−jkra 

¯
¯ yj −kη deff e−jkri ≈ −ˆ deff e−jkriEimage = ˆ ◦

¯ 
I ◦ yj kη ◦

¯ 
I ◦ 

4πri 4πra 

So the total field is: 

Ē 
total = ˆ kη ◦

¯ 
I ◦ deff 

� 
e−jkra − e−jkri 

� 
yj kη ◦

¯ 
I ◦ deff e−jkra 

� 
1 − e−j2kh2/ra 

� 
yj = ˆ

¯ 4πar 4πa r 
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/raAt 1-MHz, λ = 300 [m] so if h << ra = 1000 [m] we can assume that h2 << raλ so e−j2kh2 ≈ 1, and the 
sum is zero. 

The maximum voltage in this configuration is zero. 

(c) 

For h << ra we can say that the angle between the dipole axis and the receiving antenna is π 
2 for both the 

transmitting antenna and it’s image. This implies that Θ̂ = −x̂ for both antennas. In this case, the two 
antennas are in phase and the fields for the two antennas are 

◦
¯ 

¯ 4πar 

E
¯
¯ 

image = −ˆ kη I deff e−jkri ≈ −ˆ kη I deff e−jkri 

xj ◦Ē 
antenna = −ˆ kη I deff e−jkra 

xj ◦
¯
◦ xj ◦

¯
◦ 

4πri 4πra 

So the total field is: 

E
¯
¯ 

total xj kη ◦
¯ 
I ◦ deff 

� 
e−jkra + e−jkri 

� 
xj kη ◦

¯ 
I ◦ deff e−jkra 

� 
1 + e−j2kh2/ra 

� 
xj kη ◦

¯ 
I ◦ deff e−jkra 2= −ˆ 4πar = −ˆ 4πar = −ˆ 4πa r 

/raWhere the last step (e−j2kh2 ≈ 1) follows the same logic as in part (b). 

The electric field is double what we would expect with no ground plane, so the maximum voltage is also 
double. 

|VTH | = 2 × 0.15 = 0.3 [V ] 

(c) 

If we assume that a damp earth conducts fairly well, than the results of parts (b) and (c) suggest that an 
AM broadcast radio station operating near 1-MHz should use vertically polarized antennas. 

The results from parts (b) and (c) required that h2 << raλ. This was true at 1-MHz where the wavelength 
was 300 meters, but we don’t know if this will be true for 1-GHz where the wavelength is 0.3 meters. Consider 
the case of h = 10[m]. h2 = 100 << 1000 × 300, but h2 = 100! << 1000 × 0.3. So this argument does not 
apply to cell phones operating above 1-GHz. 
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Problem 11.2 

 (a)

We want to find the frequency separation between adjacent nulls. For the first null we know that 

kL1 − kL2 = k(L1 − L2) = nπ with n odd (because the path length difference has to be and odd multiple 
of half a wavelength). We can re-write this in terms of frequency: 

k(L1 − L2) = f 2π (L1 − L2) = nπ, or c


nc 1
f = 2 L1−L2 
, with n odd. 

The next null will occur when the path length difference is now n + 2 times half the wavelength. 

f2 = (n+2)c 1 
2 L1−L2 

So the bandwidth is f2 − f which is: 

B = (n+2)c 1 nc 1 
2 L1−L2 

− 2 L1−L2 

c 3×108 3×108 
B = = = L1−L2 11×103−10×103 1×103 

B = 3 × 105 [Hz] = 0.3 [MHz] 

This suggests that the 6-MHz wide TV signals will have problems with multipath propagation with path 
length differences in the 1 km range. 

(b) 

To give a good answer we would have to have a better idea of how many nulls we could tolerate in any 
one sub-band. If we assume that just one null in the sub-band would be ok, then we want the individual 
sub-bands to be 0.3 MHz (N=20) for this type of problem. In the best case this would put the nulls between 
adjacent sub-bands, and in the worst case there would be one null in each of the sub-bands. 
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Problem 11.3 

The easiest way to solve t
φ as defined for the diagra
will be the product of the 

his problem is to solve for the total far field electric field in the variables Θ and 
m. The easiest way to get the far field pattern is to recognize that the total field 
far field pattern for a single patch with the array factor for two antennas driven 

in phase but separated by 200λ along the ŷ axis. 

We can get the far field of a single patch antenna from equation 11.1.15 by substituting 100λ for Lx and Lz , 
Θ for αx, and φ for αz . � � � � 
E
¯
¯(Θ, φ) = Θ̂ j E e−jkr(100λ)(100λ) sin(100πΘ) sin(100πφ) 

λr ◦ 100πΘ 100πφ 

If we group all the uninteresting terms (those that don’t change with Θ or φ) into one complex number E
� 

¯ ◦we can re-write this as � � � � 
Ē(Θ, φ) = Θ̂E

� sin(100πΘ) sin(100πφ) 

¯ ¯ ◦ 100πΘ 100πφ 

The array factor is 

F = ejkr1 + ejkr2 = ejkr1 + ejkr1 ejkδ = ejkr1 ejkδ/2[e−jkδ/2 + ejkδ/2] = ejkr1 ejkδ/22cos( k δ)2 

F = ejkr1 ejkδ/22cos( 22
π
λ 2Dsin(φ)) = ejkr1 ejkδ/22cos( πλ 200λsin(φ)) = ejkr1 ejkδ/22cos(200πsin(φ)) 

Again we can group all the terms that do not change with Θ or φ, 

F = F 
� 
cos(200πsin(φ))

¯◦ 

So the total field is � � � � 
sin(100πΘ) sin(100πφ)E

¯
¯ 

T = Θ̂E
¯ ◦
� 
F
¯
� 

100πΘ 100πφ cos(200πsin(φ))◦ 

(a) 

sin(100πΘ) 1The nulls in the x-z plane occur when 100πΘ = 0. So, the first null occurs at Θ = 100 . 

(b) 

In the y-z plane the nulls occur when either sin(100πφ) = 0 or cos(200πsin(φ)) = 0. The first condition is 100πφ 
1 2 3 1 3 5met when phi = 100 , 100 , 100 , .... The second condition is met when sin(φ) = 400 , 400 , 400 ... For small values 

of φ, sin(φ) = φ. 
1 3 1So, the first three nulls occur at φ = 400 , φ = 400 , and φ = 100 . 

(c) 

There are two approaches to the problem. The first is to evaluate the square sinc function at the first two 
maxima of |E|2 in the x-z plane. The second is to look at the vector addition that represents the complex 
addition of the phase terms corresponding to the integral over the aperture. 

First lets look at the maxima of sinc2(x). We know the first occurs at x = 0, with value 1. To find the next 
maxima we could take the derivative of sinc2(x) and set it equal to zero and then evaluate to see if we’re at 
a zero or maxima. The easier method is to recognize that the local minima and maxima of sinc(x) are the 
points we’re looking for. 

d sin(x) cos(x) sin(x)= = 0 dx x x − x2 

Which are the points when cos(x) = sin
x 
(x) . So the first maxima after x = 0 is x = 4.4934rad. 

So the ratio of gains is 0.21722 
= 0.047212 

6 



To solve this problem graphically, see the attached diagram. 

The first maxima occurs when all the vectors have zero imaginary part, and is proportio
zero occurs when the vector sum starts and ends at the same point (forms a circle with
The next maxima occurs when the vector sum forms a circle and ends halfway around 
start. In this case the circumference of the circle is C = D2/3 = πA, so A (which is 
magnitude of the sinc function) is A = D 2 . 3π 

The
2

 ratio is then
2

 D 4/(9π ) 4
2 = 2 = 0.045 

nal to D. The first 
 circumference D). 
the circle from the 
proportional to the 

D 9π

7 



� 

� 

Problem 11.4 

(a) 

PTH = kB TRB = (1.38 × 10−23)(100)(5 × 103) = 6.9 × 10−18 [W ] 

(b) 

Psignal = 10 × PTH = 10(1.38 × 10−23)(100)(5 × 103) = IRAeff = 6.9 × 10−17 [W ] 

IR = PtGT 
1 = (1)(1)(4π)−1(3 × 105)−2 = 8.84 × 10−13 [W/m2]4πr2 

Aeff = 10 × PTH /IR = 10(1.38 × 10−23)(100)(5 × 103)(4π)(3 × 105)2 = 7.8 × 10−5[m2] 

So the required antenna effective area is 7.8 × 10−5[m2]. 

Note that the actual distance is closer to 3 × 105 km, which gives us an area of 78 [m2] 

(c) 

The effective area of an aperture antenna is approximatly the physical area of the aperture. We can assume 
that the antenna is square, then the length of each side is Lx = Ly = Aeff .


From equation 11.1.26 we know that the first null will occur at an angle


Θn = ±.


So the spot size on the ground will be


W = 2rtan(Θn) = 2rtan(asin(λ/ Aeff ))


For the distance 3 × 105 [m] this becomes:


W = 2(3 × 105)tan(asin(0.003/0.00883)) = 2.002 × 105 [m] between the first nulls. The area associated with

this is Spot Area = W 2 = 4.008 × 1010 [m2]


For the distance 3 × 105 [km] this becomes:


W = 2(3 × 108)tan(asin(0.003/8.83)) = 2.04 × 105 [m] between the first nulls. The area associated with this

is Spot Area = W 2 = 4.15 × 1010 [m2] 

(d) 

If the spot size is smaller than the diameter of the earth (which we’re told to assume) than we can say that

the field of view of the antenna is filled with the earth at a brightness temperature of TB = 250K. We can

use the result of section 11.3.3 to say that the antenna temperature is now TR = TB = 250K. This is 2.5

times the previous value, so our effective area (which grows linearly with the reciever thermal noise power)

will be 2.5 times it’s previous value.


Aeff, new = 2.5 × Aeff, old


For the distance 3 × 105 [m] this becomes A = 1.95 × 10−4 [m2]


For the distance 3 × 105 [km] this becomes A = 195 [m2]
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