
6.1 Problem 6.1 

GIVEN 

Infinitely-long stripline for which d = 1 µm and the medium between the plates has µ = µ0 

and � = 4�0. 

6.1.1 FIND 

Width, W , for which the characteristic impedance of the line is 50 Ω. Discuss whether ideal 
parallel plate model is valid for these dimensions. 

WORK 

For an ideal parallel plate transmission line, Z0 = ηd/W , where η is the characteristic 
impedance of the medium (for EM waves). As before, η = 

�
µ/� = 

�
µ0/(4�0) = η0/2 = 

188.5 [Ω]. Then the inverse problem is solved as W = dη/Z0 = 1 × 188.5/50 = 3.77 [µm] . 
Since W/d = 3.77, it is acceptable to approximate the line as an ideal parallel plate config-
uration to first order, but we should not expect very accurate results. 

6.1.2 FIND 

For a 1 V DC step signal, what is the intensity, I, (time average Poynting vector magnitude 
[W]) of the TEM field propagating between the plates? 

WORK 

For the parallel plate waveguide, the electric field runs from top to bottom plate and has 
magnitude, E = V/d = 106 [V/m]. Then the time-average Poynting vector is found from 
�S� = |E2/(η)| = 1012/188.5 = 5.305 × 109 W/m2 . There is no factor of because the signal 
is a step and not a sinusoid. Multiplying by the cross-sectional area 

I = �S�A = �S�Wd = �S�d2W/d = �S�d2η/Z0 

= |E2/(η)|d2η/Z0 = (Ed)
2/(Z0) = v 2 /(Z0) = 1/50 = 0.02 [W] 

. (6.1) 
+

Even though we derived this for the parallel plate geometry, it is general for TEM lines 
(and will work for sinusoids after including the factor of ). 

Let’s check the magnetic field. It can be found by drawing an Ampèrian loop, C encircling 
a single strip of the line, and noting that the field is much stronger between the plates than 
outside. Then 

� 
C H
� d�l = Ienc ≈ HW = ⇒ H = I/W . For a single pulse, v+ and i+ are · 

related by v+ = Z0i+, so i+ = v+/Z0 = 1/50 = 0.02 [A], and H = I/W = 0.02/3.77×10−6 ∼= 
5.305 × 103 [A/m]. But �S�� = E� × H� = ẑ5.305 × 109 W/m2, which is exactly what we got 
before. 
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6.1.3 FIND 

Evaluate the time average electric and magnetic energy densities per meter, W � e and W � m 

[J/m]. 

WORK 

The fields were determined in the previous section. The energy density stored in the electric 
field is �E2/2; multiplying by the cross-sectional area gives the energy density per meter of 
the line, 

2�E2 η d2E2 v+W � = Wd = � = e 2 Z0 2 2Z0c	 , (6.2) 
= 0.01/(1.5 × 108) = (2/3) × 10−10 ≈ 6.67 × 10−11 [J/m] 

since c = (L�C �)−1/2 = (µ�)−1/2 = c0/2. 
Likewise, for the magnetic energy, 

W 2H2 i2 2 

W � = WdµH2/2 = µ
Z0 

= +Z0 
= 

v+ 
m η 2 2c 2Z0c ,	 (6.3) 
= (2/3) × 10−10 ≈ 6.67 × 10−11 [J/m] 

the same as for the electric field, as expected. 

6.1.4 FIND 

Show that the average power on the line, c(W � + W � ), is equal to the intensity, I, found in e m

part (b). 

WORK 

The quantity, c(W � + W � ), is e m

2 2v v
c(W � + W � ) = 2cW � = 2c + = + .	 (6.4) e m e 2Z0c Z0 

This is exactly what we got before. Note that this implies the phase velocity, c, is also 
the group velocity (the line is non-dispersive). In general, transmission lines are dispersive. 

6.1.5 FIND 

Show 

1.	 that for two arbitrary signals flowing in opposite directions, f+(t−z/c) and f−(t+z/c), 
with v(z, t) = f+ + f−, the total power flowing down the line in the +ẑ direction at 
any (t, z) is the power flowing in +ẑ less the power flowing in −ẑ; 
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2. whether or not this superposition holds for two waves traveling in the same direction. 

WORK 

It is generally a good idea to apply superposition at the level of fields. In the transmission 
line problem, we get away with working in terms of voltage and current signals with the 

2convention that i+ = Z0v+, but i− = Z0v−. We have seen that I+ = v+/Z0 = v+i+. The 
same would be true if the subscript were permuted to −. If there are two signals on the line, 
we may apply superposition at the level of the voltage and current in the following way: 

2 2I+,net = (v+ + v−)(i+ − i−) = (v+ + v−)(v+ − v−)/Z0 = (v+ − v−)/Z0 = I+ − I− , (6.5) 

which is what we set out to demonstrate. However, for two signals propagating in the same 
direction (and at the same phase velocity), 

I+,net = (v+,1 + v+,2)(i+,1 + i+,2) = (v+,1 + v+,2)(v+,1 + v+,2)/Z0 
. (6.6) 2 2= (v+,1 + v+,2 + 2v+,1v+,2)/Z0 = I+,1 + I+,2 + 2v+,1v+,2/Z0 

The cross-coupling term destroys the superposition of powers. 
Superposition is one of the defining features of linear field and wave phenomena. It can 

be a subtle topic at times and a source of confusion, as this problem demonstrates. But you 
can see your way through by applying some physical reasoning and a few simple rules. 
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6.2 Problem 6.2 

GIVEN 

TEM line, � = 30 [cm], air-filled, Z0 = 100 [Ω], excited at one end by a matched voltage 
source, V (t), where V (t) is a step function 2u(t) volts. 

6.2.1 FIND 

Sketch and quantitatively dimension V (z) and I(z) on the line at t1 = 15 × 10−10 [s] for the 
case where the load is a 300 [Ω] resistor. 

WORK 

Make the transformation, z� = z − �, so that at the load, z� = 0. 
If the line is filled with air, then c = c0, and the propagation time across the line is 

τ = �/c = 0.3/3 × 108 = 10−9 [s]. This means that t = 15 × 10−10 [s] = 3�/(2c). This means 
the line voltage is 

v(z �, t = t1) = v+(1 + ΓLu((t − τ − z �/c))) = v+(1 + ΓLu( + z �)). (6.7) 
2 

At t = 0, the source sees a voltage divider across the terminals of the line, so v+ = Vs/2 = 
1 [V]. ΓL is the reflection coefficient at the load, ΓL = (ZL/Z0 − 1)/(ZL/Z0 + 1) = 1/2. As 
such, in terms of z, 

1 � 
v(z, t = t1) = v+(1 + ΓLu((t − τ − z �/c))) = 1 + u(z − ) . (6.8) 

2 2

Since the source is matched, there will be no further reflections. As expected, the forward 
and reflected steps sum to the steady-state voltage of 3/2 [V]. 

The current is found from 

i(z �, t = t1) = 
v+ 

Z0 
(1 − ΓLu((t − τ − z �/c))) = 

v+ 

Z0 
(1 + ΓLu( 

� 
2 
+ z �)). 

This is 

v(z, t = t1) = v+(1 + ΓLu((t − τ − z �/c))) = 1 + 
1 
2 
u(z − 

� 
2
) . 

Figure 6.1 shows the voltage and current distributions on the line. 

(6.9) 

(6.10) 

6.2.2 FIND 

Repeat for the case when the load is a capacitor with C = 2 × 10−12 [F]. 
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Figure 6.1: Current and voltage distribution at 3�/(2c) for 300 Ω load.
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WORK 

The approach to take here is to replace the line to the left of the load with its Thévenin 
equivalent circuit. This has a source of vth = 2v+u0(t − �/c) and a source impedance of 
Z0 = 100 Ω. The circuit equations lead to 

vth − vc dvc d(vc − vth)
iR = = ic = C = C 

Z0 dt dt 
(6.11) 

d(vc − vth) vc − vth 
= = −

dt Z0C 

This is a first-order ordinary differential equation, and we write the solution by inspection, 

vc − vth = V0e −t/(Z0C)u(t − �/c) ⇒ vc = 2v+(1 − e −t/(Z0C))u(t − �/c), (6.12) 

where we were able to factor out vth = 2v+ because of the initial condition that the capacitor 
is a short. 

The next step is to determine how this load voltage translates into waves on the line. 
The load voltage is the sum of the forward and backward waves, vc = v+ + v− = 2v+(1 − 
e−t/(Z0C))u(t − �/c). Let t� ≡ t − �/c and solve this relation for v−: 

v−(z � = 0, t) = v+(1 − 2e −t�/(Z0C))u(t�) (6.13) 

Lastly, we must make this wave travel in the −ẑ-direction: 

v−(z �, t) = v+(1 − 2 exp 

� 

− 
t� 

Z

+ 

0

z

C 

�/c 
� 

)u(t� + z �/c) (6.14) 

Let us make the transformation to the problem coordinates, z� = z − � and t� = t − �/c, 
and add in v+: 

� 
t + (z − 2�)/c 

� 

vt(z, t) = v+ + v=v+ + v+u(t + z/c − 2�/c)(1 − 2 exp − ) . (6.15) 
Z0C 

The current problem is solved similarly: 

i−(z �, t) = 
v+ 
(1 − 2 exp 

� 

− 
t� + z�/c 

� 

)u(t� + z �/c), (6.16) 
Z0 Z0C 

so 

v+ v+ z − 2� 
� 

t + (z − 2�)/c 
� 

it(z, t) = i+ − i− = + u(t + )(1 − 2 exp − ) . (6.17) 
Z0 Z0 c Z0C 

and note that v+ = 1 V , as before.

Figure 6.2 illustrates the solution.
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Figure 6.2: Current and voltage distribution at 3�/(2c) for capacitive load with C = 2 × 
10−12 F. 
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Figure 6.3: Current and voltage distribution at 3�/(2c). 

6.2.3 FIND 

Repeat for the case when the load is a diode triggering at 1 V (i.e. an ideal diode back-biased 
by a 1 V battery). 

WORK 

This problem is amenable to either the “bounce” approach we used in part (a) or the 
Thévenin equivalent circuit used in part (b). We could also work backwards. In the steady-
state, the voltage on the line will be unity if the diode is shorted, while the current will be 
(2-1) V/100 Ω = 0.01 A (since there is no voltage differential on the line). And we cannot 
have reflections at the source. As such, we can be sure that the diode will reach its threshold 
on the first bounce, and indeed, it does: because v+ = 1 V, the diode will appear as a short. 

Now, since we short voltage sources, ΓL = −1, and v− = −v+. So how do we arrive at 
the steady state solution? The answer is that another wave will be launched when the diode 
becomes a short, again of height, 1 V. This precisely cancels out the effect of the reflected 
wave, so that the system actually reaches steady-state in minimum time. 

At t = 3�/(2c), v(z, t1) = 1 [V] and i(z, t) = 0.01 [A] .

Figure 6.3 illustrates the solution.
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6.3 Problem 3 

GIVEN 

A line driver at one end of a 2 cm-long, Z0 = 200 Ω TEM transmission line triggers a flip-flop 
at the other end with a step function, as illustrated. The dielectric in the line has � = 4�0 

and µ = µ0. The input to the flip-flop can be treated as a 50 Ω load; it triggers (changes the 
output state of the flip-flop) at 4 V. 

6.3.1 FIND 

Sketch and dimension v(t, z) on the line at t = 0.1 ns (10−10 s). 

WORK 

The time required for a signal to traverse the length of the line is τ = �/c. � = 0.02 [m] and 
c = 1/

√
µ� = 1/

√
µ04�0 = c0/2. As such, τ = 2 × 10−2/(3 × 108/2) = (4/3) × 10−10 s. If 

t = t1 = 10−10 = (3/3) × 10−10 s, the signal will have reached 3/4 of the way down the line. 
As such, the first reflection, v−, will not have been generated yet. 

v+ is found from a voltage divider at the source: v+ = Vs200/(50 + 200) = 4Vs/5 = 
4 × 10/5 = 8 [V]. 

As such, the voltage distribution will be 

v+ = 8 [V] for 0 ≤ z < 3� 

v(z) = 4 (6.18) 
0 for 3� ≤ z ≤ �, 

4 

with � = 2 [cm]. 
Figure 6.4 illustrates the voltage distribution for parts (a) and (b). 

6.3.2 FIND 

Repeat (a) for t=0.2 ns. 

WORK: 

Now, with t = t2 = 2 × 10−10 [s], the signal will have travelled another 3�/4. This means it 
reaches the load after travelling a distance, �/4, and then a reflection travels �/2 back toward 
the source. 

Let’s examine the reflection. The reflection coefficient at the load is 

v− ZL − Z0 ZL,n − 1 
ΓL ≡ = = , (6.19) 

v+ ZL + Z0 ZL,n + 1 

where ZL,n is the load impedance normalized by the characteristic impedance of the line, 
Z0. This ratio is ΓL = (0.25 − 1)/(0.25 + 1) = (−3/4)/(5/4) = −3/5. 

15 



� 

0 

2 

4 

6 

8 

10 

v
(z

) 
[V

] 

t=0.1 ns 

t=0.2 ns 

0 0.5 1 1.5 2 
z [cm] 

Figure 6.4: Voltage distribution for parts (a) and (b) of problem 6.3. 

Since v+ = 8 V, v− = ΓLv+ = −3 × 8/5 = −4.8 V. The total voltage is the sum of the 
forward and backward waves. This results in 

v+ = 8 [V] for 0 ≤ z < �/2 
v(z) = (6.20) 

v+ + v− = 8 − 4.8 = 3.2 [V] for �/2 ≤ z ≤ �, 

with � = 2 [cm]. 
Figure 6.4 illustrates the voltage distribution for parts (a) and (b). 

6.3.3 FIND 

Sketch quantitatively the load voltage, vL(t), until the flip-flop is triggered; its trigger voltage 
is 4 V. Note that triggering is excessively delayed. 

WORK 

The load will see step increments every 2τ = 2�/c time interval, starting at t = �/c. The 
first step is from zero (the assumed initial condition on the line) to vL,1 = v+,1 + v−,1, which 
we already saw yielded 3.2 V. The second step will include the second forward and backward 
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reflections, vL,2 = vL,1 + v+,2 + v−,2. vL,1 and all other signal persist because the source is a 
step. You can think of the problem also as applying to infintesimal pulses from the source; 
each one traverses the line, is reflected at the load, goes back to the source and is reflected 
again, and so forth. The source puts out a continuous supply of these infinitesimal pulses 
because it is a step. 

The next two reflections are found as before. Define the source reflection coefficient 
analogously with that at the load, ΓS = (Zs − Z0)/(Zs + Z0). For this problem, since 
Zs = ZL, ΓS = ΓL = −3/5. Then v+,2 = ΓSv−,1 = ΓS ΓLv+,1 = 9 × 8/25 = 2.88 [V], while 
v−,2 = ΓLv+,2 = ΓLΓSΓLv+,1 = −27 × 8/125 = −1.728 [V]. Then vL,2 = v+,1 + v−,1 + v+,2 + 
v−,2 = 8 − 4.8 + 2.88 − 1.728 = 4.352 [V]. This is above the trigger voltage, so the flip-flop 
triggers at 3τ = 4 × 10−10 [s]. 

In general, the nth-step load voltage occurs at time t = (2n − 1)τ , and has step height, 

n n


vL|(2n−1)τ≤t<2nτ = 
� 

v+,i + v−,i = 
� 

v+,i(1 + ΓL)

i=1 i=1


n n−1 

= (1 + ΓL) 
�

(ΓLΓS )
i−1 v+,1 = v+,1(1 + ΓL) 

�
(ΓLΓS )

i , (6.21) 

i=1 i=0 

1 − (ΓLΓS)
n 

= v+,1(1 + ΓL) 
1 − ΓLΓS 

where we have summed the geometric series. For n → ∞, this geometric series results in 
vL,t→∞ = v+,1(1+ΓL)

1 
/ (1−ΓLΓS ) = VS ZS 

Z
+
0 
Z0 
(1+ΓL)/(1−ΓLΓS). Algebra will show that this 

is vL,t→∞ = VS
ZL = vL,ss, as expected. In this case, with VS = 10 V and ZS = ZL = 50 

ZS +ZL 

Ω, vL,ss = 5 [V], above the trigger voltage. However, after interval, τ , at which time the load 
sees the first pulse, the load voltage is 3.2 V, and the flip-flop will not trigger, but will suffer 
at least another two bounce intervals. 

Figure 6.3.3 shows the voltage trace for the load. 

6.3.4 FIND 

Load voltage as t →∞. 

WORK 

We already determined this limit in the last section. It was vL(t →∞) = 5 [V] . This 
corresponds to a voltage divider between the load and source impedances. It underscores 
the lessons that transmission lines are wires, and in the steady state, after the transient has 
decayed, they may be treated like circuit nodes, just as we have always treated them prior 
to learning about transmission lines in 6.013. 
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FIND 

If the line impedance is matched at 50 Ω, would there still be excessive delay? 

WORK 

Matching the line impedance to the source and load eliminates reflections. We achieve the 
steady-state result with the first traversal of the line, so that vL = 0, V, t < τ , and 5V , 
t ≥ τ . Since the load triggers at 4 V, the system achieves the minimum possible delay 
between firing the signal at the source and getting a result at the (flip-flop) load. 

This is one of the many reasons why understanding transients on transmission lines is 
important. A flip-flop is a bit in digital memory, the source, an attempt to change that bit’s 
state. Matching impedances increased the speed of this memory circuit by a factor of three. 

6.3.5 FIND 

Write a simple equation for v(z, t) valid for 0 < t < 0.1 ns, then extend it to 0.2 ns. 

WORK 

v(z, t) = v+,1u(t − z/c) + v−,1u(t − τ + 
z − � 

) = v+,1u(t − z/c) + v−,1u(t + 
z − 2� 

) 
c c 

(6.22) 
where v+,1 = VSZ0/(ZS + Z0) = 8 [V] , v−,1 = ΓLv+,1 = −4.8 [V] and u(x) is the unit step 

function (also called “Heaviside” step function, after Oliver Heaviside, a pioneer of the 
application of Maxwell’s equations to transmission lines). 

This summation can be continued, resulting in a similar expression as obtained for the 
load voltage trace earlier. The differences are that now, a phase contribution from posi-
tion will also occur, and also, there will be two steps per each 2τ interval instead of one, 
corresponding to the appearance of the forward and backward edge at a particular location. 
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6.4 Problem 4 

GIVEN 

Unit-step current source drives given circuit (transmission line of length, D, with Z0 and c, 
terminated in two more transmission lines in parallel, each of infinite length and same Z0, 
c). 

6.4.1 FIND 

Sketch and dimension the voltage on all lines at time, 

1. t = t1 = D/(2c), 

2. t = t2 = 3D/(2c), and 

3. t = t3 = 5D/(2c). 

WORK 

For this problem, it is more convenient to begin by studying the current problem. In the 
steady state, we expect 1 A to flow down the main line, and A to flow down each of the 
parallel branches. 

At z = D, there will be a reflection because of an impedance mismatch. The look-in 
impedance for the parallel branches is simply the parallel combination of their characteristic 
impedances, ZD = Z0||Z0 = Z0/2. The voltage reflection coefficient is then 

ΓD = 
ZD,n − 1

=
1/2 − 1

= − 
1 
. (6.23) 

ZD,n + 1 1/2 + 1 3 

The voltage reflection coefficient at the source is trickier. But remember that when we 
superimpose the contribution from different sources (including incoming signals), we short 
all other voltage sources and open all other current sources. Then the reflected signal sees the 
current source as an open circuit, which means that the source voltage reflection coefficient 
is Γs = 1. 

Now, the first current signal edge, i+,1, will have height, 1 A, since the source is a unit step. 
The reflection will be i1 = −ΓDi+,1, where the negative sign appears because i+ = v+/Z0 

but i− = −v−/Z0, and v− = ΓDv+. After t = 2D/c, there will be another reflection at the 
current source, with i+,2 = −Γsi−,1 = ΓsΓDi+,1. 

Putting these pieces together gives the following line current for 0 ≤ t < (6D/(2c) = 
3D/c): 

� 
z − 2D z + 2D 

� 

i(z, 0 ≤ t < 3D/c) = i+,1 u(t − z/c) − ΓDu(t + ) + ΓsΓDu(t − ) . (6.24) 
c c 
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Noting again that v+ = i+Z0 but v− = −i−Z0 allows for the transformation to voltage: 

z − 2D z + 2D

v(z, 0 ≤ t < 3D/c) = Z0i+,1 u(t − z/c) + ΓDu(t + ) + ΓsΓDu(t − ) . 

cc

(6.25) 

We can now simply evaluate this expression at the three given time snapshots: 

Z0i+,1u((D/2) − z) t = t1 = D/(2c) 

v(z) = 
Z0i+,1 (1 + ΓDu(z + (3D/2) − 2D)) = Z0i+,1 (1 + ΓDu(z − (D/2))) t = t2 = 3D/(2c) 
Z0i+,1 (1 + ΓD + ΓsΓDu((5D/2) − z − 2D)) 

t = t3 = 5D/(2c) 
= Z0i+,1 (1 + ΓD + ΓsΓDu((D/2) − z)) 

 
 

 

(6.26)

where
 i+,1 = 1 [A] , ΓD = −1/3 , and Γs = 1 . 

The formula derived in the last section for the load voltage may be used again after 
replacing ΓL with ΓD; then the voltage at z = D as t → ∞ is vD(t → ∞) = Z0i+,1(1 + 
ΓD)1−Γ

1 
S ΓD 

= Z0i+,1(2/3) 4/
1
3 = v+,1/2 

Again, it is useful to interpret this steady-state result in terms of the current. In the 
steady state, we expect the current on each branch to be half of the current coming out of 
the source, A. A steady-state voltage at D, and everywhere else on the primary line from 
0 ≤ z < D, of v+,1/2 = Z0i+,1/2 produces exactly this branch current. 

This is only the voltage on the primary line, 0 ≤ z < D. The voltage on the branches is 
identical, since they are in parallel. Here, at time t = D/c, an identical voltage step will be 
launched down each of these lines of magnitude, vL = v+,1(1 + ΓD), so that the voltage on 
these branches for 0 ≤ t < 3D/c is 

vbranches(z � , 0 ≤ t < 3D/c) = Z0i+,1u(t − D/c − z �/c) (6.27) 

, where z� = 0 at z = D, and z� measures the length along either of the branches. 
Evaluating at the three snapshots gives: 

 
 

 

0 0 ≤ t = t1 = D/(2c) 

vbranches(z �, t) = Z0i+,1u(3D/(2c) − D/c − z�/c) = Z0i+,1u(D/2 − z�) 0 ≤ t = t2 = 3D/(2c) . 

Z0i+,1u(5D/(2c) − D/c − z�/c) = Z0i+,1u(3D/2 − z�) 0 ≤ t = t3 = 5D/(2c) 

(6.28) 
Figure 6.6 illustrates the solution at the three snapshots for both the primary and branch 

lines. 
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6.5 Problem 5 

GIVEN 

A current source delivering I0 drives a delicate transistor that has an input impedance of 
4Z0 through a TEM line of impedance, Z0. The system has reached a steady state. 

6.5.1 FIND 

At t = 0, the switch at z = D/2 opens for a time interval, D/10c, and then recloses. Sketch 
the voltage, v(z), on the line at t = D/(5c). 

WORK 

The initial current distribution on the line is i(z, t < 0) = I0. This requires the voltage 
distribution to be V0 ≡ v(z, t < 0) = I0ZL = 4I0Z0. 

An intuitive way to think about this problem is that the switch sends a wave proclaiming 
that it has changed from a short to an open circuit it (“darn it”). At time, D/(10c), the 
switch sounds a counter-wave saying that it is now, again, a short (“darn it”). In the 
language of matching boundary conditions, this information is embodied by the statement 
that the current through an open circuit is zero. Since the current on the line is initially 
I0, the switch sends a pulse, i− = −I0 travelling to the left of the open circuit, and another 
pulse, i+ = −I0, traveling to the right. Each pulse lasts for a time, D/(10c), so that its 
length is D/10. Behind the pulse, the distributions return to their steady-state values. 

Then, with the transformations, v+ = Z0i+ and v− = −Z0i−, we have v+ = −Z0I0 and 
v− = −(−Z0I0) = Z0I0. This means that the total voltage on the left-moving pulse is vleft = 
V0 +v− = 5Z0I0, while the total voltage on the right-moving pulse is vright = V0 +v+ = 3Z0I0. 

As such, we can write the total voltage everywhere on the line at time, t = D/(5c), as 

v(z, t = D/(5c)) = V0 + v− [u(z − 3D/10) − u(z − 4D/10)] + v+ [u(z − 6D/10) − u(z − 7D/10)] . 
(6.29) 

Figure 6.7 illustrates this voltage distribution. 

6.5.2 FIND 

Will vL(t) ever exceed the transistor’s breakdown limit of 7Z0I0? Explain. 

WORK 

At the load, the voltage reflection coefficient is ΓL = (ZL,n − 1)/(ZL,n + 1) = 3/5. At the 
source, remembering that for superposition problems, we short voltage sources and open 
current sources, we know that the current source appears as an open circuit, so that ΓS = 1. 
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Figure 6.7: Voltage distribution on the line at time, t = D/(5c), after the switch was initially 
opened. 

0 

1 

2 

3 

4 

5 

6 

7 

v(
z
,t
=

D
/(

5
c
))

 /
 (

Z
0
 I 0

 ) 

24




The load voltage will be smallest after the rightward-moving pulse, v+, hits the load for 
the first time, since this pulse is beneath the initial voltage and ΓL = 3/5 > 0. It will be 
largest after the leftward-moving pulse, v− reaches the load. This will happen after it has 
reflected off of the source, where it suffers no loss because ΓS = 1, and then traverses the 
entire length of the line before reflecting at the load. All subsequent bounces for either pulse 
will have smaller pulses, as the pulse heights/depths will diminish by a factor of ΓL = 3/5 
with each round trip. As such, we need only concern ourselves with a maximum load voltage 
of vL,max = V0 + v−(1 + ΓL) = Z0I0 (4 + 1 × (1 + 3/5)) = 5.6Z0I0 < 7Z0I0 . This is beneath 
the breakdown voltage of the transistor. Note that the period for which the load voltage 
reaches this height is D/(10c), the duration of the pulse. 

The minimum load voltage is vL,min = V0 + v+(1 + ΓL) = Z0I0 (4 − 1 × (1 + 3/5)) = 2.4Z0I0 , 

which also is (presumably) safe for the transistor. Again, this minimum voltage lasts for a 
duration of D/(10c). 
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