
WORK: 

Faraday’s law is 

�∂ B 
∇ × �E = − . (4.1) 

∂t 
In integral form, this is 

   �
∂ dΛ �E · �dl � �= − 

�

B · dA = 
∂

− 
t 

�

, (4.2) 
dt 

�where Λ is the total flux enclosed by the chosen path integral for E. The 
path integral takes us around and around the coil N times (once for each 
turn; assuming that the coil is tightly wound such that all of the turns are 

4.1 Problem 1 

GIVEN: 

A circular-cross-section pill magnet of diameter D produces a nearly uniform 
magnetic field, B0, across its broad face. We wish to estimate B0 using two 
different methods: induced voltage and force measurement. 

4.1.1 Part a 

FIND: 

If the magnet drops through a tube, passing through with N-turn coil during 
the descent, how can you use the resulting voltage signal generated over the 
coil to estimate the magnet’s field strength, B0? 

approximately in the same place, this allows us to pull a factor of N out of 
the right-hand side of Eq. 4.2. In this case, we define an induced voltage 
(historically called the electromotive force, or Vemf , even though it’s not a 
force, at all), so that 

dΛ 
Vemf = − . (4.3) 

dt 
The concept of this question is dicussed in Appendix A.1.1. The math 

is straightforward: let Λ(t) be all the flux which has passed through the 
coil from time, t → −∞, to time, t. When t = 0, the magnet is exactly 
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halfway through the coil. Further, let ΦN be the total flux emanating from 
the north pole of the magnet, and ΦS = −PhiS the flux emanating from the 
south pole (negative because the flux actually enters the south pole). Then 
PhiN = Λ(t = 0)/N , and so 

Λ(t = 0) 1 
� 0 dΛ 

� 0 

ΦN = = dt = V dt, (4.4) 
N N −∞ dt −∞ 

where V is defined to be positive when the north face of the pole is above and 
dropping toward the coil. Applying the simple uniform field approximation to 
the magnet, which is accurate in the region close to the magnet pole’s surface, 
the total flux leaving the north pole is ΦN = B0A, where A = πD2/4 is the 
cross-sectional area of the magnet and D the magnet’s diamater. So, 

1 
� 0 

B0 = V dt . (4.5) 
NA −∞ 

4.1.2 Part b 

FIND: 

What happens when the magnet is dropped down a copper tube? Why? 

WORK: 

When you performed this experiment, you should have observed that the 
magnet falls very slowly through the copper tube; in fact, it rapidly reaches 
a terminal velocity and then descends much more slowly than it did through 
the plastic tube. This seems puzzling at first because the tube is copper, 
copper is not a ferromagnetic material (in fact, it is slightly diamagnetic, 
which means that it is slightly repelled in the presence of a magnetic field, 
and this would tend to lower friction). What’s happening? 

The copper tube is kind of like a stretched-out version of the inductance 
coil in Problem 4.1a. Each differential ring of the copper has flux passing 
through it, and because the field is non-uniform along the axis of symmetry, 
there is a time rate of change of the magnetic field enclosed by this differential 
loops by merit of the motion of the magnet. As such, an EMF is generated 
over these differential rings, setting up an azimuthal eddy current. There is 
a magnetic field associated with this current, and Lenz’s Law (which may 
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be thought of as the sign of Faraday’s Law) tells us that this current acts to 
oppose the change in flux; as such, the eddy currents, too, are diamagnetic 
and tend to repel the magnet. This slows the motion of the magnet. 

The picture is a little more complicated, however. After the magnet 
has reached its terminal velocity, it must be that the force from the eddy 
currents exactly balances the force from the gravitational field. So the kinetic 
energy of the magnet is no longer changing, and nor is the energy stored in 
the magnetic field. But the potential energy must be changing because the 
magnet is still falling through the gravity field. If the pill is not accelerating, 
where’s the energy going? At this point, the usual 6.013 approximation that 
copper is a perfect conductor fails us; if it were, then the energy could not 
be dissipated anywhere. As such, it must be that the losses in the copper 
tube walls are important. In fact, the steady state is reached when the power 
dissipated in the copper tube walls exactly balances the time rate of change 
of potential energy, which is mgv, where m is the mass of the magnet, g is 
the acceleration due to gravity, and v is the magnet’s terminal velocity. The 
terminal velocity is slowest when the resistive “load” in the copper wall is 
“matched” to the inductive source in the form of the falling magnet. And 
there is no terminal velocity due to magnetic effects in the limits of zero 
or infinite conductivity (though the case of infinite conductivity may make 
getting the magnet into the tube tricky). 

4.1.3 Part c 

FIND: 

Using the breakaway force from pulling the magnet away from a high-µ plate, 
again estimate the field strength, B0, of the magnet in the uniform-field 
approximation. 

WORK: 

Approximating the magnet’s field as uniform simplifies this problem con-
siderably. In this case, we can quickly estimate the gap energy density as 
Wm = B0

2/2µ0, and the force as F = WmA = AB0
2/2µ0. This means that 

the field strength of the magnet is B0 = 
�

2µ
A 
0F . In your experiment, the 

scale’s readout of mass assumes (correctly) a downward force from gravity; 
you determine how much of the gravitational load the magnetic attraction 
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can support. Therefore, it is appropriate to determine the breakaway force 
from ∆mg, where ∆m is the mass differential you read off from the digital. 
This gives for the magnet’s field strength 

�
2µ0∆mg 

B0 = , (4.6) 
A 

where again, A = πD2/4 is the cross-sectional area of the magnet. 
The uniform field approximation is good when the magnet is close to 

and aligned with the high-permeability material because the field lines are 
straightened out such that the extend along normal lines from the magnetic 
surface to the ferromanetic plate’s surface. 
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4.2 Problem 2 

GIVEN: 

Linear reluctance motor energized by N-turn coil; stator and linear shaft 
have permeability, µ � µ0. At t = 0, overlap of shaft and stator is area, 
A = 9 × 104 [m2]. Depth of system is 3cm. 

4.2.1 Part a 

FIND: 

Maximum magnetic energy density [J/m3] at t = 0, as well as location of 
maximum energy density. 

WORK: 

The maximum energy density is located in the gap. You can satisfy yourself 
of this by considering the field distribution. The high-µ of the stator core 
confines the magnetic field lines largely to the interior of the core (this is 
the lowest-energy configuration). To complete their (magnetic) circuit, these 
field lines must eventually exit the stator, since they cannot take a closed-
circuit path. They will do this primarily where their path through the air is 
a minimum - this is in the air gap between the linear shaft and the stator. 
Since total flux is conserved, the simplest approximation is to neglect fringing 
fields and assume that all of the flux passes through the smallest air gaps. 
H in the gap is found most simply from Ampére’s law in the approxima-

tion that since Bin stator � Bgap (depending on on the cross-section-to-gap 
area ratio), but B = µH and µin � µ0 such that H is negligible in the 
Ampèrian countour everywhere except in the narrow air gap. Then 

H� · d�l ≈ H2g = Ienc = NI (4.7) 

where g is the gap length both above and below the shaft, so that H = NI .
2g 

The energy density in the gap is found directly from 

1 1 
�
NI 

�2 

Wm = µ0H
2 = µ0 , (4.8) 

2 2 2g 
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so that the total energy is this density multiplied by the volume of the gap, 
V = 2gA, 

wm =
1 
µ0H

2V =
1 
µ0 

�
NI 

�2 

2gA =
1 
µ0 

(NI)2A
, (4.9) 

2 2 2g 2 2g 

For a look at how this problem might be approached from the perspective 
of magnetic circuits, please take a look at Appendix A.2.1. 

4.2.2 Part b 

FIND: 

Force, fz, acting to pull the pole faces together. 

WORK: 

Appendix A.2.2 includes a discussion explaining how to think about the force 
calculations shown here (including how to get the right sign). And to make 
sense of where the flux, λ comes in, see A.2.1. In the meantime, define 
R = 2g/(µ0A) and let λ be the total flux enclosed by the coil; then it can be 
shown that 

f� = −∇wm = −∇(
1

2 
λ2R), (4.10) 

so that when the flux, λ, is held constant (since the system is being controlled 
by a voltage source rather than current), 

1�f = −
2 
λ2∇R. (4.11) 

In the ẑ-direction, this is 

fz = − 
1

2 
λ2 ∂

∂z 
R
. (4.12) 

Remember that R = 2g/(µ0A), where the 2g extends in the z-direction. 
By symmetry, if the stator is squeezed or expanded an amount, dz, the gap 
lengths change by dg = dz/2, so that d/dz → 1

2 d/dg. Finally, dR/dz = 
d1

2 mathcalR/dg = 1/(µ0A), so that 
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fz = −
2

1 
λ2 ∂

∂z 
R 

= −
2

1 
µ

λ

0

2 

A 
= −

2

1
(BA)2/(µ0A) = −

2

B

µ

2

0 
A = −WmA . 

(4.13) 
And there it is: the force is the magnetic stress times the normal area, which 
we knew all along. To evaluate, we know that B in the gaps is 2 T; therefore, 

fz = −(2[T])2/(4π × 10−7[H/m])9 × 10−4[m2] = −1.432 × 103[N] , where the 
negative sign indicates that the force acts to oppose an increase in the gap 
(i.e. it pulls the pole faces toward one another). 

In terms of natural problem parameters, the force might also be expressed 
as 

1 
�
NI 

�2 
1 

�
NIµ0A

�2 
µ0A 

�
NI 

�2 
µ0A(NI)2 

fz = −
2µ0A R 

= −
2µ0A � 

= −
2 2g 

= −
8g2 

(4.14) 
Don’t worry - the negative sign is just what we wanted! Since we did this 
carefully, we assumed a differential motion in the ẑ-direction which is implic-
itly in the positive ẑ-direction. The sign on the force then naturally points 
to oppose this differential motion, just as we expected. The force results in 
a stress on both the cantilevered stator and the shaft; mechanical engineers 
need to know these stresses in order to properly design the components of 
electric machines like this one. 

4.2.3 Part c 

FIND: 

Lateral force, fx, pulling the sliding member into the gap. 

WORK: 

B2 

The answer will be fx = D2g = 9.549[N] . Let’s do this the hard way 
2µ0 

for learning, but remember the not-so-hard-way for doing quickly. Hard way: 
with wm = total magnetic energy = 1

2 λ
2R, 

∂wm λ2 ∂ 
� 

� 
� 

λ2� ∂A λ2�D B2 

fx = − = − = = = D2g, (4.15) 
∂x 2 ∂x µ0A 2µ0A2 ∂x 2µ0A2 2µ0 
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where D is the depth of the unit and the overlap area is A = xD, and again, 
� = 2g is the total gap length. This is just what we expected. Note that 
the lateral force on the shaft points in the direction to increase the overlap 
area - the shaft is pulled into the stator (or equivalently, the stator is pulled 
toward the shaft). 

4.2.4 Part d 

FIND: 

Output voltage induced over the N -turn coil if the shaft is withdrawn at a 
velocity, v, assuming the instantaneous overlap area is still 9 × 10−4[m2]. 

WORK: 

The magnetic circuit gives the simple Ohmic-styled relation, NI = λR, so 
that λ = NI/R = NIµ0A/�. Faraday’s law then asserts that the induced emf 
voltage is the time rate of change of the total enclosed flux, Vemf = −dλ/dt; 
the sign of the circuit voltage depends on the sense in which the leads are 
attached. Given that the problem statement allows for a varying voltage over 
the leads, let us assume that now, the current-turn product is clamped by a 
current source, so that NI is a constant. Then 

d 
�
NIµ0A

� 
NIµ0D dx 

V = −N 
dt � 

= −N
� dt 

= NBgDv = 0.06Nv[V] (4.16) 

The voltage is positive because withdrawing the rod tends to reduce the 
flux passing through the magnetic circuit, and Lenz’s law tells us that the 
induced current is set up in such a way as to oppose this change in flux. This 
means that the current will try to send more flux through the magnetic circuit 
in the original direction, which requires an induced voltage that strengthens 
the original current. 
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4.3 Problem 3 

GIVEN: 

Leaky capacitor, everywhere permittivity, �, but having a nconductivity, σa 

from the top electrode to the mid-plane, and σb from the mid-plane to the 
bottom electrode. σa = 10σb. Total dielectric thickness is 2d. The capacitor 
is charged to 1000 VDC. 

4.3.1 Part a 

FIND: 

Total capacitance of this device. 

WORK: 

Neglecting fringing fields, the geometry of this problem lends itself to the 
assumption that all field quantities are uniform in the x̂- and ŷ-directions 
(where the ẑ-direction points from the bottom electrode to the top electrode. 
As such, the equipotential lines should be planes parellel with the bottom 
and top electrodes. By continuity of the potential, it must be that there 
exists a an equipotential in the interfacial plane between the two dielectrics; 
that is, everywhere on that plane is of uniform potential. This allows us to 
break up this inhomogeneous problem into two homogeneous problems that 
we already know how to solve; the boundary condition at the interface knits 
the two solutions together. In particular, we can treat the top half of the 
system as a leaky capacitor, and the bottom half as another leaky capacitor 
(leaky capacitor refers to the fact that the structure has both capacitive and 
resistive character - it “leaks” charge in DC). 

So, the capacitance of the top half is Ca = �A/d, and that of the bottom 
half is the same, Cb = �A/d = Ca. The resistance of the top half is Ra = 
d/(σaA); of the bottom half, Rb = d/(σbA) = 10Ra. An equivalent circuit 
can be drawn as in Figure 4.1. 

In the high-frequency limit, the resistances do not contribute significantly 
to the total impedance of the structure, so the circuit is reduced to two series 
capacitances. These combine like resistors in parallel: Ctotal = C1C2/(C1 + 
C2), so 
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Figure 4.1: (a) Sketch of the actual problem geometry; (b) equivalent circuit 
of the problem. 

CaC b Ca �A 
Ctotal = = = , (4.17) 

Ca + Cb 2 2d 

which is just the capacitance of the structure excluding the inhomo-
geneity. This makes sense because in the high-frequency limit, the effective 
impedance for the displacement current vanishes, so that the displacement 
current (the second half of Ampère’s law) shorts out the ohmic current (the 
first part). In this case, conductivity is no longer important, and the inho-
mogeneity in the dielectric effectively disappears. 

4.3.2 Part b 

FIND: 

Voltage, Vm, at the midpoint junction between the two dielectrics. 
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�	 � 

WORK: 

The simplest way to solve this problem is to use the circuit diagram in Figure 
4.1. Vm is the node voltage in between the two parallel RC pairs. Since the 
capacitor is maintained at a DC voltage, it is now appropriate to look at the 
circuit in the low-frequency limit, where the capacitos are open circuits. In 
this case, the resistors comprise a voltage divider, so that Vm = V Rb/(Ra + 
Rb). With Rb = 10Ra (see Part a), Vm = 10V/11 = 1000[V]/1.1 ≈ 909[V] . 

4.3.3 Part c 

FIND: 

Net free and polarization surface charge densities, ρfm and ρpm. 

WORK: 

Perhaps the field approach provides the simplest method for finding the 
charge on the interfacial layer. The program will be as follows: 

1.	 find the fields in each homogeneous region 

2.	 apply the boundary condition for the component of D� normal to the 
boundary and extract the surface charge density from the difference in 
Dn. 

Neglecting fringing fields, the E� field in region a is E�a = −ẑ(V − Vm)/d, 
while in region b, E�b = −ẑ(Vm)/d. With the constitutive relation, D = �E, 
Da = �a = −ˆ )/d and Db z�(Vm The ˆEa z�(V − Vm = −ˆ )/d. z components are 
normal to the interface, so 

ρfm = Dbz − Daz = (Vm − (V − Vm)) = (2Vm − V ) , (4.18) 
d	 d

or 

� Rb − Ra � σa/σb − 1 9000 �	 � 
ρfm = 

d
V 
Rb + Ra 

= 
d
V 
σa/σb + 1 

= 
11 d

[C/m 2] ≈ 818.2 
d

[C/m 2] . 

(4.19) 
A polarization surface charge also exists. To determine it, start with 
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∇ · P� = −ρp, (4.20) 

where the negative sign for the volumetric polarization density, ρp, indicates 
that the polarization field lines extend from negative to positive polariza-
tion charges. Performing the same pillbox integration trick that led to the 
boundary condition for D normal to the boundary will give 

Pn2 − Pn1 = −ρps, (4.21) 

where the polarization lines point from medium 1 to medium 2 and ρps is the 
polarization surface charge. By definition, D� = �0E� + P� , so P� = D� − �0E� . 
Then the normal component pops out as Pn = Dn − �0En. Then 

ρpm = Pna − Pnb = Dna − Dnb − �0(Ena − Enb) = (Enb − Ena)(�0 − �) 

(4.22) 
or 

ρpm = V 
�0 − � 
d 

σa/σb − 1 
σa/σb + 1 

≈ 818.2 
�0 − � 
d 

[C/m 2] (4.23) 

This is expected to be a negative quantity. 

4.3.4 Part d 

FIND: 

If the capacitor is shorted momentarily such that the charge at plane, m, 
remains constant, before being opened again, to what peak voltage, Vp, does 
the external voltage rise before decaying to zero? With what approximate 
time constant does the open circuit voltage decay? Does this present a dan-
gerous situation? 

WORK: 

Figure 4.1 again provides a simple means for solving this problem, though 
the field approach informs us what happens physically and helps to define 
initial conditions and predict steady-state behavior. 

At time t = 0−, the circuit is shorted, but the charge at the interface, m, 
is unable to discharge. At time t = 0, the circuit is then opened. Gauss’ law 
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presribes the fields in both regions, a and b: (Da+Db)A = Qm ⇒ �(Ea+Eb) = 
ρfm = 2Vm0�/d, since Ea = Eb = (Vm − Vtop)/d = (Vm − Vbottom)/d and 
Vtop = Vbottom at time t = 0, and defining Vbottom to be the ground. This 
means that the initial conditions are: 

Vm(t = 0) = 
ρfm d 

= 
V0 Rb − Ra 

= 
9000 

[V] ≈ 409.1[V] 
2 � 2 Rb + Ra 22 (4.24) 

V1(t = 0) = 0 

where V1(t) is the voltage on the top electrode, Vm(t) is the voltage at the 
midplane interface, and both of these voltages are referenced to the bottom 
electrode. Next, we can write the differential equations that govern these 
voltages: 
iRa = iCa = (Vm − V1)/Ra = −VCa /Ra = Ca 

dVCa 
dt 

dVm−V1 1 ⇒ 
dt = −

RaCa 
(Vm − V1) 

dVm Vm 
dt = −

RbCb 

These are two decoupled differential equations which may be solved imme-
diately as 

(Vm − V1) = (Vm − V1)t=0e −t/τ1 Vm = Vm(t = 0)e−t/τ2 (4.25) 

where τ1 ≡ RaCa and τ2 ≡ RbCb. From this follows (noting that (Vm − 
V1)t=0 = Vm(t = 0) since the top and bottom electrodes are initially shorted 
and the bottom electrode is always the reference) 

V1 = Vm(t) + Vm0e −t/τ1 = Vm0(e
−t/τ2 − e −t/τ1 ) (4.26) 

V1 is the required voltage; it is the potential difference between the top and 
bottom electrodes after the system has been shorted for a moment and then 
opened. Since σa = 10σb but all other parameters of the two homogeneous 
regions are identical, Rb = 10Ra and τ2 = 10τ1. This means that while the 
two exponentials initially balance to zero, the negative term in the equation 
decays rapidly, leaving behind a positive excess that decays more slowly as 
approximately τ2 = �/σb . The peak voltage is found by locating the critical 
point for this equation where the derivative with respect to time is zero. This 
is t∗ = ln(τ2/τ1)τ1τ2/(τ2 − τ1). Substituting into Equation 4.26 gives for the 
peak voltage 
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Figure 4.2: Voltage over the capacitor; time is non-dimensionalized with 
τa = �/σa. Initially, the voltage grows as (1-e−t/τ ) (not exponential growth, 
but exponential asymptote), and finally decays with time constant, τb = 
�/σb = 10τa. The top figure is in linear time; the bottom plots time on a 
logarithmic axis. 

��
τ2 

�−τ1/(τ2−τ1) �
τ2 

�−τ2/(τ2−τ1)
� 

Vp = Vm0 
τ1 

− 
τ1 (4.27) 

= Vm0 

�
10−1/9 − 1010/9

� 
≈ 0.6968Vm0 ≈ 285.1[V] 

Figure 4.3.4 shows the voltage over the whole capacitor over time. 
In summary, the voltage over the capacitor is shorted for a moment, then 

creeps up to over a quarter of its original value and decays with a time 
constant of approximately τ2 = �/σb . This may	 not be surprising to us 
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because we knew that the behavior of this system is akin to two RC pairs in 
series. But this is not what the problem looks like in the lab! Remember that 
we have been modeling a single high-voltage capacitor in a single package. A 
technician who thinks he or she is playing it safe by discharging the capacitor 
find find himself or herself in for a nasty shock if the discharge was too quick 
and the handling afterward too soon. 
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4.4 Problem 4 

GIVEN: 

Transistor controlled by free charge density, ρf , within a zone of width, W , 
where � = 4�0 and σ = 1 [S/m]. 

FIND: 

If the voltages on the transistor electrodes bounding that zone abruptly 
change, forcing ρf to take values characterizing the next transistor state, 
with what time constant, τ , is the new ρf distribution established? Can 
τ be significantly less than W/c, where c is the speed of light within the 
semiconductor? Discuss briefly. 

WORK: 

Assuming a medium is linear, homogeneous, and isotropic, and also has 
ohmic and dielectric character, the time constant for charge decay is τ = 
�/σ. This follows immediately from taking the divergence of Ampère’s law, 
substituting from Gauss’ law for electric fields, and solving the ordinary 
differential equation for the free charge density, ρf . 

Let’s examine the quantity numerically with the given parameters: τ = 
�/σ = 4�0/σ ≈ 3.54 × 10−10 [s]. For comparison, the propagation time for 
information to be transferred between the electrodes is W/c. Dimensions 
of integrated circuits are already in the tens of nanometers. Conservatively 
assuming W � 100 [nm], and noting that when � = 4�0, c = c0/2 in a 
nonmagnetic material,this leads to W/c � 10−7/(3 × 108/2) = 2 × 10−15/3 
[s]. In this example, the light propagation time is much smaller than the 
exponential decay rate of the charge density; however, conductivity varies 
over many orders of magnitude, and so this need not always be the case. 

The question of whether the exponential decay time can exceed the prop-
agation time of information through the structure is subtle. However, the 
basic idea is that the speed of light is the limiting speed of information and 
mass transfer. The case of changing ρ would seem like mass transfer because 
we know that the charges are attached to masses which are certainly moving 
inside the structure. However, the actual quantity is density. Consider a 
discretized grid in 2D. Imagine four particles are located in a square in this 
grid, and that these four particles each move along separate diagonals into 
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the corner boxes of a 9 × 9 subgrid. In the region occupied by particles, the 
density is transitioned from 4 particles/grid to 4/9 particles per grid, while 
the particles have only moved a distance of 

√
2 box lengths. This example 

serves to show that the density can vary rapidly even if the particles vary 
slowly. 

However, it is true that ohm’s law is limited in that it describes the 
steady-state, average motion of particles that is set up after many collisions. 
First of all, this average velocity must always be smaller than that of light, 
and second, the transport cannot be considered “ohmic” until many collisions 
have occurred (i.e. until after many collision times, τc). Before this time, 
the charged particles behave more like free charged particles accelerating 
continuously under an electric field. So, we can say with a fair degree of 
certainty that a charged particle cannot hope to travel from one electrode to 
another in a time shorter than W/c (and if it did, physicists would be very 
excited and would have something to do). 

A simpler problem to consider that might illustrate this point is that of a 
regular parallel plate capacitor. Assume a charge carrier density of n charge 
carriers per unit volume, and that each charge carrier has charge, q. Also, 
imagine that the capacitor has area, A, thickness, d, dielectric constant �, 
and conductivity, σ (i.e. it is a “leaky” capacitor). If the capacitor is charged 
up initially to V0 and then open-circuited, it will discharge itself according to 
V = V0e

−t/τ , where τ = �/σ. This implies a current, i = V/R = V σA/d = 
V0e

−t/τ /R. The current density is J = i/A, and the corresponding velocity 
of charge carriers, v, must then be J = nqv ⇒ v = J/(nq) = i/(nqA) = 
V0e

−t/τ /(RnqA) = V0e
−t/τ σ/(dnq). 

We run into trouble when v > c, the speed of light. In this case, we had 
better check our assumptions - the two consitutive relations, D = �E and 
J = σE. It is the second of these - the point form of Ohm’s law - that is 
failing - it predicts that the charge carriers can go faster than they actually 
can. 

Again, let’s pick some typical numbers. For a voltage of 1 V, σ = 1 [S/m], 
d=100 [nm], n = 1016 [m−3], and q = 1.6 × 10−19 [C], the maximum velocity 
predicted using Ohm’s law is 6.25 × 109 [m/s], over an order of magnitude 
faster than the speed of light. It would seem we had better be careful be-
fore assuming that ohmic transport is the dominant transport mechanism in 
semiconductors for these time and space scales. 
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4.5 Problem 5 

GIVEN: 

Plane wave with 1 GHz frequency and power flux density, 1 kW/m2 incident 
on a black absorbing surface. 

FIND: 

Average pressure, p, exerted on surface by plane-wave radiation. 

WORK: 

There are several ways to approach this problem. The direct method from 
electromagnetics is as follows: the instantaneous momentum of a plane wave,�q, 
is 

S� E� × H�
� = (4.28) q/A = ,

2 2c c

where S� is the Poynting vector and c is the speed of light. The average 
momentum flux traversing a unit area per unit time is then 

d�q/A 
� = c

�S�� 
= ŝ

1 E2 

= 
�E2 

, (4.29) � 
dt c2 2η c 2 

where ŝ is the unit vector pointing in the direction of the wave’s propagation. 
The extra factor of c appears because we compute the average momentum 
contained by the wave and then examine the momentum flux (i.e. how much 
of that momentum is crossing a reference plane per unit area per unit time). 

In this case, the surface is black, so all the momentum flux striking it is ab-
sorbed. The pressure is p = F/A = dq/dt/A = �E2/2. It is given that �S� = 

1 [kW/m2]; hence p = �S�/c ≈ 103[W/m 2]/3 × 108[m/s] ≈ 3.333 × 10−6 [N/m2] . 
Another approach is to consider the equivalent flux of photons. The 

photon energy is hf , and to achieve a power flux of 1 [kW/m2], there must 
be �S� = hfnc ⇒ n = �S�/(hfc) photons per unit volume traveling at the 
speed of light. The momentum of each photon is q = h/λ; as such, the 
momentum flux (which is also the pressure) is 
p = h nc = h �S� c = �S� = �S� ≈ 3.333 × 10−6[N/m2], as before. 

λ λ hfc fλ c 
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4.6 Problem 6 

GIVEN: 

Laplace’s equation for Φ in 3D; boundary conditions are such thatseparation 
constant in each dimension is 0. 

4.6.1 Part a 

FIND: 

General form of solution for Φ for this case. 

WORK: 

Laplace’s equation is 

∇2Φ = 0. (4.30) 

In Cartesian coordinates, this is 

∇2Φ = ∂2Φ + ∂2Φ + ∂2Φ = 0, (4.31) x y z 

introducing the notation, ∂xi 
∂ . Assuming the solution is separable, ↔ 

∂xi 

Φ(x, y, z) = X(x)Y (y)Z(z), and substituting into Laplace’s equation gives 

∇2Φ = Y Z∂2X + XZ∂2Y + XY ∂2Z = 0, (4.32) x y z 

from which it follows that 

∂2X ∂y 
2Y ∂2Zx z+ + = 0. (4.33) 

X Y Z 

The only way this can be true for arbitrary x, y, and z is if each ratio 
term is a constant. Let kx 

2 = (∂x
2X)/X, ky 

2 = (∂y 
2Y )/Y , and kz 

2 = (∂z 
2Z)/Z; 

then k2 = −(ky 
2 + kz 

2). For this problem, we will assume that the boundary x 

conditions are such that kx 
2 = ky 

2 = kz 
2 = 0. Integrating twice each decoupled 

component, X(x), Y (y), and Z(z), separately yields X(x) = Ax+B, Y (y) = 
Cy + D, and Z(z) = Ez + F . Now, multiply all together to get the most 
general solution for these separation constants: 
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Φ(x, y, z) = X(x)Y (y)Z(z) = (Ax + B)(Cy + D)(Ez + F ) 
(4.34) 

= C1xyz + C2xy + C3yz + C4zx + C5x + C6y + C7z + C8, 

where the constants, Ci, i from 1 to 8, are chosen to satisfy the boundary 
conditions. 

4.6.2 Part b 

FIND: 

If the potential is Φ = 0 on three intersecting edges of a cube, and 10 [V] 
at the opposite corner, what is the value of Φ at the intermediate corners? 
(Note: Laplace’s equation is ubiquitous; we could as well be solving for the 
temperature at these corners, for example.) 

WORK: 

The general solution in Equation 4.34 may be applied to satisfy the given 
boundary conditions. Place the coordinate system along the vertex where 
the three zeroed edges intersect. Along any axis, at least two coordinates 
are zero, this means that the first four constants in the general solution can 
be non-zero, but all the rest must be zero. But symmetry also restricts 
the solution. For the expanded form, you can readily convince yourselfthat 
C2 = C3 = C4 = C. For the factored form, in order to require that C5, C6, 
and C7 are zero, we need that DF = BF = BD = 0. But symmetry in 
this case requires that the problem is invariant if the axes are permuted; as 
such, A = C = E and B = D = F . In other words, symmetry means that 
Equation 4.34 can be written as 

Φ(x, y, z) = (Ax + B)(Ay + B)(Az + B) (4.35) 

Then it follows that B = D = F = 0. Immediately, we recognize that 
the only term that survives is the xyz term. If the cube has length, �, then 
10 = C1�

3 ⇒ C1 = 10/�3 ([V] in this application). Along the intermediate 
corners, either x or y or z is zero; therefore, the xyz term vanishes, leaving 
Φ(intermediate corners) = 0 .
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Appendix A 

Appendix for HW4 

A.1 Problem 1 

A.1.1 Part a: Concept 

The important conceptual point of this question is that the induced voltage 
signal records all of the flux which passes through it (scaled by a factor of 
N). Since the magnet passes through the coil from north to south pole, and 
the field lines all emanate from the north pole and enter at the south pole, all 
of the flux passing out of the north pole of the magnet will pass through the 
coil, and afterward, all of flux entering the south pole will pass through the 
coil. But Faraday’s law in Eq. 4.3 tells us that the incremental change in flux 
passing through the coil per unit time is exactly the induced voltage (with a 
factor of N). This means that the voltage keeps track of how much new flux 
is passing through the coil at any given instant. If we add up (integrate) all 
of these incremental changes for the entire descent, we’ll get zero, because 
about half of the time, the flux passes through the coil in one direction, and 
the other half of the time, it passes through in the other direction. But if we 
just integrate the incremental flux changes up until the time the magnet is 
halfway through the coil, we must have found how much flux is leaving the 
northern face of the magnet. 

This is an incredible result, because it allows us to have a very funda-
mental characterization of the magnet without knowing very much about 
the exact nature of the fields or about the magnet’s motion. And we can 
even use this flux to extract a B0 for out simple model of the fields from the 
magnet, even though this model could not have produced the voltage trace 
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� 

� 

in the manner prescribed in the problem statement. 

A.2 Problem 2 

A.2.1 Part a: Magnetic Circuits 

Let’s calculate the magnetic flux, λ, in the system. We know H in the gap, 
and so we can find B here. In the uniform field approximation, λgap = 
BgapA = µ0HgapA = NI µ0

�
A , where � = 2g is the total path length through 

the air gaps. By conservation of flux, and in the approximation that all the 
flux crosses through air only at the narrowest gaps, we know that λgap = 
λstator = λshaft - that is, all the flux exiting the NI coil completes a circuit 
through the stator and shaft. This should turn on a light in your memory. 

Let’s examine this relation a little more closely: how about putting NI 
on one side, so that we have 

NI = λ. (A.1) 
µ0A 

This relation should set off another light. The first term looks suspiciously 
like the resistance in a straight block of ohmic material, where the conduc-
tivity, σ, is replaced by the permeability, µ0. And the rest of the relation 
looks like Ohm’s law with the subsitution, NI ↔ V and λ ↔ I. In fact, the 
analogy between electrostatic circuits and magnetostatic circuits is complete. 
We define the quantity, R = 

µ0

�
A , as the magnetic reluctance, analogous to 

electrical resistance. The current-turn product, NI, is sometimes referred to 
as the magnetostatic force, or MMF, even though (again) it’s not a force at 
all. 

In general, we can break up the Ampèrian contour integral into the sum 
of H · � products in each homogeneous sub-medium, and then impose con-
servation of flux, so that 

n n n n 

NI = H� d�l ≈ 
� 

Hi�i = 
� Bi 

�i = 
� �i 

λi = 
� 

Riλi (A.2) · 
µi µiA 

i=1 i=1 i=1 i=1 

for any closed path with n homogeneous regions. This is Kirchoff’s loop law 
for magnetostatic circuits. Kirchoff’s node law is the statement that all of the 
flux entering a “node” also exits the node (conservation of magnetic flux). 
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� �

Why is this useful? Because it’s now relatively simple to calculate the 
flux, λ, the inductance, L = λ/i or mutual inductances for more complicated 
systems, and other useful quantities. For example, L = λ/i = N 

� 
i 

1 for a 
Ri 

singly-excited system. 
And now the term, “reluctance motor”, finally means something. The 

idea is to get a force based on the tendancy for the system to adjust so 
as to minimize energy. But if energy is wm = 

2
1 � 

i µiHi 
2Ai�i, and if Hi = 

Bi/µi = λi/(µiAi), then wm = 1 � 
i λi 

2Ri = 1 � 
(NI)2/Ri, the system 

2 2 i

where λ is prescribed (by a voltage source) has minimum energy for minimum 
reluctance. 

Also, more complex systems are now readily handled by applying the 
normal parallel and series combination rules for reluctances that are used for 
resistances. So we now have a crank-turn procedure for arbitrary magneto-
static configurations provided we can always neglect fringing fields. 

A.2.2	 Part b: A (Slightly) More Mathematically For-
mal Discussion on Calculating Forces 

A differential amount of mechanical work, dw, is defined through f dx.· 
By convention, we say that work is done by the force field on an object 
when dw > 0 (i.e. when the differential movement is in the direction of the 
force), and that external work is done on the field when dw < 0 (i.e. when 
the motion opposes the force’s direction). In the latter case, the energy 
is stored as potential in the field. The potential energy is defined for the 

r
latter situation from an arbitrary reference position as U = − 

� 
�r

�

0 
f� d�r,· 

where the negative sign appears such that the potential energy is a positive 
quantity when the path direction opposes that of the force. Going in the 
other direction leads to a specification of the force if the potential is known, 

f� = −∇U . This always works when the system is curl-free (i.e. ∇× → 0), 
which, in integral form, says that any line integral which starts and ends 
in the same place is zero. This makes the potential a scalar, conservative 
field. Whenever you do energy calculations and reach a conceptual standstill, 
you can always return to these definitions, especially in the application of a 
gravitational potential (to which you have grown accustomed since birth). 

A confusing point to the energy calculations that we do in 6.013 is that 
we intutively know that the force acts to bring the pole faces together and 
minimize reluctance, but our calculations seem to show that this tends to 
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make the fields, and therefore the stored energy, stronger (i.e. we seem to 
be maximizing energy instead of minimizing it). The confusion is exactly 
analogous to the situation of P = V 2/R = I2R (remembering that total 
magnetic energy place a similar role in magnetostatic calcuations that power 
does in quasielectrostatic calculations). When voltage is prescribed, P is 
minimized for maximum R; when current is prescribed, it is minimized for 
minimum R. The same is true of magnetostatic circuits, substituting wm for 
P , NI for V , R for R, and λ for I. Confusingly, where we normally think of 
V as specified in a quasielectrostatic circuit, it is λ that is typically specified 
in a magnetostatic circuit1 . And R is minimized when the gap length is 
minimized, so the pole faces tend to pull together. 

As usual, significant words and ideas can be hidden in a few deceptively 
simple formulations. 

1Ironically, this is so because the voltage is specified in the driving electrical circuit. 
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