Problem #1 6.013 Homework #2 Solutions
Spring 2009

GIVEN: "Whatever" vector, W(x,y,z) = ixsin(y) + iy y (the i's are unit vectors).

FIND: (a) If W were an electric displacement vector, D, what would be the corresponding charge density,
p?
WORK:

..a =
Gauss' law for electric fields: (Qk—_”;x Y Q‘y a‘, 7 g‘? a

~ V-D=p=0xDx+9,Dy+9,D,=3,Dy = 1 [C/m?]

A
FIND: (b) If W were a magnetic field vector, H, what would be the corresponding current density, J?
WORK:
Ampére's law in the steady state:
N1 Cauv\
— = N A . A
viH<cJ=| x § 2 —kakLkS?HB
a0
Qx Qy d _'j\@ H 9 H )
. o N " )
o Wy Hy| +2( H -3y

< ﬁ@xHJ~9~vHx): 2[&X5_gvsm/@]: - %Costtp __._:5—

FIND: (c) Does the magnetic field determined in (b) satisfy all of Maxwell's equations? If not, which one

is violated?
WORK: The constitutive relation for the magnetic field quantities is assumed linear, B=pH, where p is
also assumed to be a constant. In this case, we immediately know that V-B=V-(uH) = uV-W # 0 from

part (a), in which case Gauss' law is violated.

In an Ohmic medium with the constitutive relation, J = oE, with the conductivity, o, a constant,
then E =J/o, and VxJ = -ixsin(y) # 0, in which case Faraday's law of induction (V xE = -0B/dt) would be
violated for the steady state.
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2.2 Problem 2

GIVEN
If the electric field is E(t) = R {Eej“t}, where E is a phasor, then what is
E(t) if

FIND

(a) E=1-j

WORK
e/t = cos(wt) + jsin(wt) by Euler’s theory. If E = E, 4 jE;, where E, and

E; are both real quantities, then

Ee’t = E, cos(wt) — E;sin(wt) 4 j (EZ cos(wt) + E, sin(wt)) , (2.1)
the real part of which is

E(t) = R(Ee™) = E, cos(wt) — E; sin(wt). (2.2)

Alternatively, E may be expressed as the product of a magnitude and an
exponential,

E:\E

e/? where ¢ = arctan <%> Then

Eelvt = ‘E‘ eI WtHe) — ‘EN" (cos(wt + @) + jsin(wt + ¢)) , (2.3)

the real part of which is

E(t) = R(Beit) = ’E

cos(wt + ¢). (2.4)

Now, turn the crank and apply trigonometric identities to get more mean-
ingful answers. In (a), £, =1 and E; = —1, so
E(t) = cos(wt) 4 sin(wt) = V2 sin(wt 4 45°)
Also, the phase angle, ¢, is arctan(—1) = —45°, while the magnitude is
V2, 50
E(t) = V2 cos(wt — 45°) = V2sinwt + 45°




Either description gives the same result. In this case, the second is a little
more straightforward because the magnitude and phase angle of the phasor
may be obtained almost by inspection.

FIND
(b) E =ei™4 -1

WORK

E=e™'—1=y2/2(1-v2+}))

¢ = arctan (':,—ﬁf) = arctan ("\Eﬁ*’z) = —67.5% 112.5°%,...,n(180°) +
112.5°

since arctan() is periodic through 180 degrees. By inspection, we know that
eI™* — 1 lies in the second quadrant of the complex plane, and so we rea-

son that the phase angle is uniquely 112.5 degrees. ‘}::,' ‘ = \HE.E + }_*:}f =

Vi-v2+1i=v2-v2~0.7654
So
E(t) = \/2 — V2cos(wt + 112.5°) ~ 0.7654 cos(wt + 112.5°)

FIND

(c) E=ji+g(1—j)

WORK

Now, the phasor is a vector quantity, which means that E(t) — E (t). We
have to do everything componentwise! (Or we can change the coordinate
system....)

Fortunately, we've already done the work for the y-component in part
(a). By inspection, the phase angle for the Z-component is 90°, and the
magnitude is one, and cos(f + 7/2) = —sin(#). Therefore,

E(t) = —i sin(wt) + §V2sin(wt + 45°) = sin(wt) (—& + §) + cos(wt)f)
This is an example of an elliptically-polarized wave.

s



FIND
E if BE(t) = & cos(wt) + g sin(wt + 7/4).

WORK

The g-component is identified immediately as the same result of the inverse
problem in part(a), so again, F, = 1 — j. By inspection, the & component
has a phase angle of ¢ = 0 and unity magnitude, so £, = 1. Then

(1))
D)

Useful Matlab Commands

Ep = exp(j*pi/4)-1 %Define complex phasor. You can use "i" instead of "j".
angle(Ep) %Get phase angle of phasor.

angle(Ep)*180/pi %Get phase angle of phasor in degrees.
abs(Ep) %Get magnitude of phasor.

%You could also do symbolic manipulation...

syms w t

real ( Ep*xexp(j*w*t) )

%...but you wouldn’t like the result (try it).

%Plot the phasor in the complex plane.

polar([0 angle(Ep)], [0 abs(Ep)])



2.3 Problem 3

GIVEN
H = #sin(1077t — 0.22) + 7 cos (1077t — 0.2z — 27)

2.3.1 Part a
FIND

Frequency.

WORK

First, for clarity, cos (107t — 0.2z — 37) = cos(1077t—0.22) cos (2 ) +sin(107mt—
0.2)sin (%) , and since cos(5m/2) = cos(/2) = 0, while sin(57/2) = sin(7/2) =
1, cos (10°wt — 0.2z — 27) = sin (1077t — 0.22)..

The phase front of the wave is given by the argument of the sinusoidal
functions: 1077t — 0.02z. This is a forward-propogating wave (increase the
time a little bit, and you have to move forward in the Z-direction to catch up
with the same phase). The phase is of the form wt—kz, where w is the angular
frequency (i.e. radians per second) and k the wave vector (i.e. radians per

meter). By inspection, w = 1077, and since w = 27 f, the frequency is

f=w/(2r) =5 x 10°[Hz] = 5[MHz] |, assuming time is given in seconds.

2.3.2 Partb
FIND
Wavelength.

WORK

The wave number, k, can also be identified by inspection. It is 0.2 (the wave
vector is k = 20.2, since the wave is forward-propagating in the z-direction).
Since k = 27/, | A = 27 /k = 27/0.2 = 107 ~ 31.42[m] |

There is a correspondence with the spatial period, or wavelength, A, and
the temporal period, T: w = 27/T and k = 27/ \.




2.3.3 Partc
FIND
Velocity of light in the medium.

WORK

The phase velocity if this wave is given by ¢ = w/k. This is

107
c= % =3 27r = glo8 ~ 1.571 x 10%[m/s] |. For comparison, the speed of

light in vacuum is ~ 3 x 10® [m/s] .

2.3.4 Partd
FIND
E(z,y,z,t)

WORK

E and H can be related through the characteristic impedance, . The am-
plitudes follow the relationship, £ = nH, while the cross-product of E and
H points in the direction of the wave vector, k.

The characteristic impedance, eta, is given by n = \/g , while the velocity
is ¢ = \/L‘Te, so n = pc. If the medium is non-magnetic, then pu ~ py =
47 x 107" [H/m],

As such,

E = @nsin(1077t — 0.22) — gnsin(107rt — 0.22) |, where

n=dr x 1077 x gmg (2.5)
=27? x 10" ~ 197.4[Q). (2.6)

Again, for comparison, the characteristic impedance of vacuum is approx-
imately 377€2.



2.3.5 Part e
FIND

Polarization of wave.

WORK

In light of the fact that the wave may be written as (see parts (a) and (d))
E = sin (1077t — 0.22) (& — §)
we see the wave is linearly polarized, and is oriented at an angle of incli-
nation from the z-axis of -45°.

2.3.6 Partf
FIND

Shortest nonzero time delay, 7, that could be added to the Z-component of
the wave in order to convert it to linear polarization? What is then the angle
of inclination, #, of the electric field tip trajectory from the z-axis?

WORK

For the wave to be linearly-polarized, the z- and y-components must be
multiples of 180°out of phase with each other (including 0°). This means
that the @- and g-components must be the same except for amplitude and
sign (these may or may not be the same). In this case, we require to include
a time delay, 7, such that sin(1077(t — 7) — 0.2z) = sin(1077t — 0.22)

Let A = wt — kz and ¢ = wr, where w = 1077 [rad/s] and k = 0.2
[rad/m]. Then we require sin(A — ¢) = sin(A). The minimal value of ¢ for
which this is true is zero, since the wave is already linearly polarized. As
such, the shortest time delay that could be added is 7 = 0, and again, the
angle of inclination, #, is # = —45°. This is not a big surprise, but it’s useful
to go through the formalism to see how to turn the crank for these problems.

The required condition will be satisfied for all ¢ = nw, where n is any
integer. Then 7 = “E. Therefore, the shortest nonzero time delay that could

be added to the field is |7 = 7/w = 1077 [s]| (for n = 1). In this case, the
angle of inclination is shifted by 90°, so that |§ = 45° |




2.3.7 Partg
GIVEN
Electric field phasor, E = @(j — 1) + y(1 — j).

i

FIND

Polarization.

WORK

By inspection, we see that the magnitudes of the two componets are equal,
while the phase angles differ by 180°. Given the discussion in part (f), we
know that this is a linearly-polarized wave.

Now, let’s work out the details. The complex number, j—1, is the same as
V2534 while 1—j = /2 37/4 = \/2ei(37/447)  The electric field at z = 0 is
then E = /2 (:E‘(:os (wf + 1—“) + 1y cos (u.rf - %)) = v/2cos (wt + %) (z—19).

a linearly-polarized wave with angle of inclination, —45°.



2.4 Problem 4

GIVEN

1-GHz uniform plane wave propagating in the Z-direction in a medium with

permeability, u, and permittivity, €, characterized by the phasor, E = i3.

2.4.1 Part a
FIND

Time average intensity of the wave.

WORK

For this plane wave, the time average intensity is given by | — = — | where

_\/ﬁ
T}: - |
€

2.4.2 Part b
FIND

(i) magnetic energy density, W,,(t), and (ii) electric energy density, W,(t),
atr =y=2=0.

WORK

L2
The magnetic energy density is given from W,,(t) = %,u ‘H , while the elec-

12
tric energy density is given by W,(t) = %e ‘E ‘ . These two quantities are

1
equal, and are both |W,,(t) = W,(t) = §€E§ cos?(wt) |, where Ey = 3 is the

amplitude of the wave, as defined in the phasor. Note that the squared sinu-
soid produces a DC-component to the energy density as well as a sinusoidal
component varying at twice the driving frequency, w.
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Problem 5

GIVEN: shorted cylindrical coaxial conductor,

FIND: Inductance from general expression,

A MNI Aﬁ-d5

1 1

L

WORK: Picture the simple shorted pair of parallel plates for which we calculated our first inductance. It

looked like this: /-) — magretic bield
// I - > (/\CVLW‘CVL+
A \l/

Zz—1" I

4

Aven Wiy $lux (nyerseets, A

The inductance for this ensemble was L = uA/W, where A is the area looking into the page, and W is the
depth into the page. The larger the loop-enclosed area through which flux cross, the larger the
inductance. The further the flux lines travel through the structure, the greater the magnetic reluctance,
the weaker the fields, and the smaller the inductance.

In your mind's eye, stretch this shape in the depth direction and wrap it around itself; you will then get
the configuration given in this problem. The details of the integration are a little more tedious, but the
"meat and potatoes" are the same.

Before getting into the nitty-gritty, note that the shorted end doesn't affect the magnetic fields in either
configuration; this is because the field lines are tangential to the surface. Because the enclosure is a
perfect conductor, and because Hi;: = Hz: + Js, the shorted end can provide any J; to support the external
tangential field (while preventing the fields from penetrating into the perfect conductor such that
H2t=0).

Now, we will calculate the inductance. The program will be to first discern the magnetic field, and then
employ the field quantity in the given integral for the inductance. From Ampére's law in DC,

- DS

wH:=F o §;ﬁ~ﬂ= Tonclocdd © ¥

Circular (azimuthal) symmetry implies that

%F{\ﬂ: H Pz Himes 9 Heghe ) B8
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where ris the radial coordinate from the central conductor. Next,

L= 28 A
]
Lr,,‘
ety = A ”_\ dvdz
U 1Ty
ol
I 1)
- M _\(/0__ - MDD {n D‘(-“
2 fo o[22

Let's compare with the square geometry. The bigger the depth, D, the larger the area over which flux
crosses, and so the bigger the inductance, as before. But now, the other dimension of this area is linked
to the path-length for the field lines, so that the growth in L is much slower (logarithmic) with an

increase in this dimension (rg relative to r;).
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