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6.013, Electromagnetic Fields, Forces, and Motion
Prof. Markus Zahn, Sept. 13, 2005
Lecture 2: Electromagnetic Field Boundary Conditions
I. Boundary Conditions

1. Gauss’ Continuity Condition

E;

dS= ndS

T g

n-efE; —Ey) =0

dS = —ndS§

Figure 2-19 Gauss's law applied to a differential sized pill-box surface enclosing some
surface charge shows that the normal component of ¢,E is discontinuous in the surface
charge density.

Zahn, Markus. Figs. 1.13-1.1.17, 1.19 (a) and (b), 1.23, 1.20, 2.19, 3.12 (a).
Electromagnetic Field Theory: A Problem Solving Approach. Robert E. Krieger
Publishing Company, Florida, 1987. Used with permission.

1 nx(E; —E) =0

(a)

Figure 3-12 (a) Stokes' law applied to a line integral about an interface of dis-
continuity shows that the tangential component of electric field is continuous across
the boundary.

Zahn, Markus. Figs. 1.13-1.1.17, 1.19 (a) and (b), 1.23, 1.20, 2.19, 3.12 (a).
Electromagnetic Field Theory: A Problem Solving Approach. Robert E. Krieger
Publishing Company, Florida, 1987. Used with permission.

$E+ds=(E, -E,)dI=0=E, -E, =0
C

nx(E, -E,)=0
Equivalent to ®, = ®, along boundary
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3. Normal H

¢u0 H.da=0
S

4. Tangential H

$H-ds=[3-da+2 [e,E-da
C S dt S
Ha
Hye 0§ - H, 0 = Kd¥
Hbt Hat = K
Surface current K out ﬁx[ﬁa v J:R
of page (amp/meter) °
5. Conservation of Charge Boundary Condition
$3-da+-L[pav=0
S dt \%2
ne[3,-3,}F So.=0
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Il. Boundary Condition Problems

1. Electric Field from a Sheet of Surface Charge

a. Electric Field from a Line Charge

= 0

also shown in Figure 2-8a.

dqgy = A,dz
'\\\\
(re+z2)if2 dE
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An infinitely long wuniform distributaion of line charge only has a radially
directed electric field because the z components of the electric field are
canceled out by symmetrically located incremental charge elements as

$> dE = dE, +dE,
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Another way: Gauss’ Law

A
— | 9
] A e
L
N S
__-ad‘ﬂ;
Gaussian Surface

[ eoE+da = goE 2mrL = 2oL
S

— }\'O
C 2mgyr

m

6.013, Electromagnetic Fields, Forces, and Motion
Prof. Markus Zahn

Lecture 2
Page 4 of 8



b. Electric Field from a Sheet Charge

- diy=oydx
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(c)

(a) The electric field from a uniformly surface charged sheet of infinite extent is found by summing the contributions from
each incremental line charge element. Symmetrically placed line charge elements have x field components that cancel, but

contributions from each incremental surface charge element.

y field components that add. (b) Two parallel but oppositely sheets of surface charge have fields that add in the region
between the sheets but cancel outside. (c) The electric field from a volume charge distribution is obtained by summing the

dE
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Checking Boundary condition at y=0

E, (y=0,)-E (y=0)="2
€

%0 _|_% |_°%

2¢g, 28, ) g,

c. Two sheets of Surface Charge (Capacitor)

ZG—OTy y > -a —;—OTy y>a
- € - €
E, - 0 E, - 0

——OTy y<-a G—OTy y<a

2¢, 2¢,
b - - GO -
E=E, +E, = gly ly| <a
0 ly| > a
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2. Magnetic Field from a Sheet of Surface Current
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(c) (d)

A uniform surface current of infinite extent generates a uniform magnetic field oppositely directed on
each side of the sheet. The magnetic field is perpendicular to the surface current but parellel to the
plane of the sheet. (b) The magnetic field due to a slab of the volume current is found by
superimposing the fields due to incremental surface currents. (c) Two parallel but oppositely directed
surface current sheets have fields that add in the region between the sheets but cancel outside the
sheet. (d) The force on a current sheet is due to the average field on each side of the sheet as found
by modeling the sheet as a uniform volume current distributed over an infinitesimal thicknessA.

From a line current |

I
" onr

b, :—Sln¢IX+COS¢Iy

Thus from 2 symmetrically located line currents
dl

dH, = ————(-sin¢)
21r(X2 +y? )%
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Check boundary condition at y=0:

He(y =0,)-H, (y=0_) =K,

Ko Ko} .
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