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6.013 - Electromagnetics and Applications Fall 2005
Lecture 12413 - Transient Waves on Transmission Lines
Prof. Markus Zahn October 25 and 27, 2005

I. Wave equation (Lossless)
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II. Solution for current i(z,t)
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Solution: i(z,t) = Iy (t — 2) +1_ (t + %)
v(z,t) =V (t—2) + Vo (t+2)
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v(z,t) = V4 (t — E) +V_ (t—i— E)
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i(z,t) = Yo [V+ (t — E) V. <t+ 5)}
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III. Transmission Line Transient Waves

A. Transients on Infinitely Long Transmission Lines

1. Initial Conditions
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z z v(z,t)
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Figure 8-6 (a) A semi-infinite transmission line excited by a voltage source at z = 0. (b)
To the source, the transmission line looks like a resistor Z, equal to the characteristic
impedance. (¢) The spatial distribution of the voltage v(z, t) at various times for a
staircase pulse of V(t). (d) If the voltage source is applied to the transmission line
through a series resistance R,, the voltage across the line at z = 0 is given by the voltage
divider relation.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.



B. Reflections from Resistive Terminations

1. Reflection Coefficient
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Figure 8-7 A V. wave incident upon the end of a transmission line with a load
resistor R, is reflected as a V_ wave.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.
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At z=1:v(l,t) = V4 <t—)+V_ <t+c>

C

=i(l,t)Ry,

~ YoR: [V+ (t—i> e <t+i>}

Vo (t+%) R -7
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Special cases:
a. R = Zyp = ', = 0 (matched line)
b. Ry, =0= Ty = —1 (short circuited line)
If Rp < Zy,I' <0
c. R, =00 =T =+1 (open circuited line)
If Ry, > Zy,I', >0
2. Step Voltage
At z=0:

v(z=0,t) +i(0,t)Rs =
V+<Z = 07t) + V—(Z = 07t) + YoRs [V+(Z - 07t) - V—(z = Oat)] =W
ZoVo Rs — Zy

Vi(z=0,8) = TgV_(2 = 0,8) + =0 Tg=5_20
+(z ) sV-(z 7)+Zo+RS7S Rs + Zy

a. Matched Line: Ry = Zy, 'y, =0; Rg = Zp,I's =0
I'py=0=V_ (t + %) =0,Vi(2=0,t) = %, in steady state after time T' = é

b. Short circuited line: Ry, =0,I'y, = —1, Rg = Zp,['s =0
'y =—-1=V, = —-V_. When V, (t— %) and V_ (t+ %) overlap in space,
v(z,t) =0. For t > 2T = %l,v(z,t) =0,i(z,1t) = %'

c. Open circuited line: Ry, = 00,I';, = +1, Rg = Zy,I's =0
Fp=+1=V,=+V_. Fort>2T =2 v(z,t) = Vp,i(z,t) = 0

4



Vo -—:|: Zg, ¢, T=l/c Ky,
z2=0 z=1
(a)
i=Y¥olV, —V_) Rg i=Yo(V, —V_)
+ +
+
vy = 2, vrv. NtV R,
z=0 z=]
PR S e 7 e
Rg +Z, Rg +2Z5 =~ Ry +Z, '+
o = I
(b)

Figure 8-8 (a) A dc voltage V, is switch

ed onto a resistively loaded transmission line

through a source resistance R,. (b) The equivalent circuits at z =0 and z = [ allow us to
calculate the reflected voltage wave amplitudes in terms of the incident waves.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.
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Figure 8-9 (a) A dc voltage is switched onto a transmission line with load resistance
R. through a source resistance R, matched to the line. (b) Regardless of the load
resistance, half the source voltage propagates down the line towards the load. If the
load is also matched to the line (R, = Z,), there are no reflections and the steady state
of v(z, t=T)=V,/2, i(z, t=T) = Y,V,/2 is reached for t=T. (¢) If the line is short
circuited (R, =0), then I';, =—1 so that the V, and V_ waves cancel for the voltage but
add for the current wherever they overlap in space. Since the source end is matched,
no further reflections arise at z =0 so that the steady state is reached for t=2T. (d) If

the line is open circuited (R, =) so
voltage but cancel for the current.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

that ', =+1, the V, and V_ waves add for the
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Figure 8-9

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

3. Approach to the DC Steady State (neither end matched)
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Initial Condition:
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Figure 8-10 The load voltage as a function of time when R, =0 and R, = 3Z, so that
I,I', =4 (solid) and with R, =}Z, so that I'.I'; =% (dashed). The dc steady state is the
same as if the transmission line were considered a pair of perfectly conducting wires in
a circuit.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.
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a. Special Case: Rg =0, Ry = 3Z;.
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b. Special Case: Rg =0, R} = %Zo
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c. Special Case: Rg =0, Ry, = oo (open circuit)
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d. Special Case: Rg =0, Ry, = 0 (short circuit)
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This approximates an inductor: Vy = (Ll)% =1i= }f—?t
e. Special Case: Ry, = oo (open circuit)

I'p=1=V,=W[1-TY

This approximates the transmission line as a capacitor being charged through

the resistor Rg:

v(t) = Vo (1 - e_t/T)
7= RgCl
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Figure 8-11 The (a) open circuit voltage and (b) short circuit current at the z=[end
of the transmission line for R, =0. No dc steady state is reached because the system is
lossless. If the short circuited transmission line is modeled as an inductor in the
quasi-static limit, a step voltage input results in a linearly increasing current (shown
dashed). The exact transmission line response is the solid staircase waveform.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.
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Figure 8-12 The open circuit voltage at z=1 for a step voltage applied at t=0
through a source resistance R, for various values of T}z, which is the ratio of prop-
agation time T = [/¢ to quasi-static charging time 7 = R,Cl. The dashed curve shows the
exponential rise obtained by a circuit analysis assuming the open circuited transmission
line is a capacitor.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.



C. Reflections from Arbitrary Terminations

Iy (e) = Yol[V, (t—le) — V_1{t + Ife)] i
ilz=0t) Vp()=V, (t—Ic)+ V_(t+ 1) o Ip (1)

g +
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Figure 8-13 A transmission line with an (a) arbitrary load at the z=1 end can be
analyzed from the equivalent circuit in (b). Since V, is known, calculation of the load
current or voltage yields the reflected wave V_.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.
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1. Capacitor Cp at z =1, Rg = Zy = VL = %
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2. Inductor L, at z =1

dig,
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dt
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i, = Zo ( e ) A>T

di
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Figure 8-14 (a) A step voltage is applied to transmission lines loaded at z = with a
capacitor Cp or inductor L;. The load voltage and current are calculated from the (b)
resistive-capacitive or (c¢) resistive-inductive equivalent circuits at z=1! to yield
exponential waveforms with respective time constants 7= Z,C, and 7= L,/Z, as the
solutions approach the dc steady state. The waveforms begin after the initial V, wave
arrives at z = [ after a time T = [/c. There are no further reflections as the source end is
matched.

From Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987. Used with permission.

11



