Recitation 5 Electrostatics Review 6.012 Spring 2009

Recitation 5: Review on Electrostatics

This review is aimed at getting ready for p-n junction. Before the class, have an exercise
on the Boltzman relationship:

1. If the doping of Si is 10'® Boron, what should be the corresponding electrostatic
potential be? (¢ = —6 x 60 = —360mV)

480
2. If ¢ = 480 mV, what is equilibrium electron concentration? (a =8,m, = 10¥cm™3)

3. If doping is Ng = 1020 cm™3,¢ =? (¢ # 600mV, ¢ = ¢rax = 550mV)
The following is the set of equations which relates p(z), E(x), ¢(x) needed for this class
(everything is 1D):
1. Relating charge density to the field:
dE p(x)

dx €

or B(z) — B(0) = /Oxp(x')d:c'

p(z) = charge density in coloumb/cm?, € is permittivity or dielectric constant of the
material in F/cm, €,(vacuum) = 8.85 x 10714 F/cm.

2. Relating electrostatic potential to the field:

d¢
dx

—FE(x)
or ola) —0(0) = - [ B

E(z) has units V/cm and ¢(z) has units of V or mV.
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3. Boundary conditions:

e Continuation of potential at a boundary (infinite field inside semiconductor not
possible)

$(xy) = b(y)
e E-field at the boundary can (usually) have a jump, due to:

— Materials change:

A
/A d(eE(z)) = eFE(x=A)—E(x=-A)

A
= / p(x) dx = 0 no charge at interface
-A

E(0T) = Z—;E(O’)

— A sheet of charge at the interface:

A
/A d(eE(z)) = eEx=A)—aFE(@=-A)

A
= / p(x) dz = Q coulomb/cm?
—-A

E(0%) = gE(O_)—i-g

Examples

Like in Figure 1

,.-fozl.és(lo*:

_";._,2._.,_:" ’ ' >%C{M")

Then, let us work out E(x), by splitting calculations into 4 regions:

1. E(x < —2pm) = E(x > 2pum) (. no charge outside these regions)
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2. For —2pm <x < —1pum:

1 [® 1
B@) - B(-2pm) = = [ pa)de=Zp,-(@+2)
€s J—2 €s
po = 1.6x107°C/cm?® =1.6 x 10717 C/em?®
1
Particularly, E(—1 uym) = —p, x 1 pm
€s
Sincee; = 1x10712F/cm,
1.6 x 1075 x 107*C/cm?
B(—1pm) = 2~ jem’ X em 6103V fem

1 x 1072 F/cm
3. For -1 <z <1pum:

p(x) = 0, same dielectric material — FE constant
E(z) = E(-1pm)=1.6x10°V/cm

4. For 1 < z < 2 pm:

1 (" 1
Pa) = BLm) = = [ p@)de=—Zpola=1)
1
particularly, E(2um) = FE(lpum)— —po(x—1) = 0
€s X=2 pum
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Now for the electrostatic potential:

As we do the integration, the results will be relative. Then we can use the doping of Si to
find the actual value. For this thought-example, let us make ¢(0) = 0.

For 0 < z < 1 ym, E(x) = constant = 1.6 x 103V /cm.

o(z) —p(0) = — /x E(z')dz' = —1.6 x 103 -z (V/cm - um)
0
particularly ¢(1 ym) = —0.16V

For 1 <z < 2pum,
b(z) — (Lym) = — / E(z/) da’
1

1
= —/ (1.6 x 103V /em — —po(x’ — 1)) dx’/
1 €s

1
= —1.6x10*V/cm (x — 1) + Q—po(x —1)? quadratic

€s
11.6 x 107° C/em?
2 1x10712F/cm

particularly, p(2 um) = ¢(1pm) — 1.6 x 103V /cm - (1 x 107%) cm + (1 x 1078 cm?)

= —0.16V —=0.08V = —0.24V

For z > 2 pm:
" E(z) = 0 electrostatic potential will be constant

Similarly, we can work out the other side:
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Parallel Plate Capacitor

2
e

10z

Two sheets of charge at the interface of the capacitor Q*/Q
In 1D, this can be modeled as & function

Now let us consider the electric field:
Inside the metal, no charge, no field, = E(z <0) = E(x > t4) =0:

0t 0t

€si0, —0 = / p(z')dx’ = d(z)dr =Q
- 0—

- E(0T) ¢

€Si0,
€si0, = 3.45 x 1078 F/cm
As there is no charge inside SiO2 region, E is constant E(z) = GS% forO0 <z <t
i0g
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If we use ¢(0) = 0 again,

/\¢OO

n X (}lm)
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