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Recitation 5: Review on Electrostatics 

This review is aimed at getting ready for p-n junction. Before the class, have an exercise
on the Boltzman relationship:

1. If the doping of Si is 1016 Boron, what should be the corresponding electrostatic
potential be? (φ = −6 × 60 = −360 mV)

480
2. If φ = 480mV, what is equilibrium electron concentration? ( = 8, no = 1018 cm−3)

60

3. If doping is Nd = 1020 cm−3, φ =? (φ = 600mV� , φ = φmax = 550mV)

The following is the set of equations which relates ρ(x), E(x), φ(x) needed for this class
(everything is 1D):

1. Relating charge density to the field:

dE
=

ρ(x)
dx

or E(x) − E(0) =
1
ε

ε∫ x

ρ(x′) dx′
0

ρ(x) = charge density in coloumb/cm3, ε is permittivity or dielectric constant of the
material in F/cm, εo(vacuum) = 8.85 × 10−14 F/cm.

2. Relating electrostatic potential to the field:

dφ
= −E(x)

dx
x

or φ(x) − φ(0) = −
0

E(x′) dx′

E(x) has units V/cm and φ(x) has units of V or mV.
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3. Boundary conditions:

• Continuation of potential at a boundary (infinite field inside semiconductor not
possible)

+φ(x−
b ) = φ(xb )

• E-field at the boundary can (usually) have a jump, due to:

– Materials change:
∫ Δ

d(εE(x)) = ε2E(x = Δ) − ε1E(x = −Δ)
−Δ ∫ Δ

= ρ(x) dx = 0 no charge at interface
−Δ

E(0+) =
ε1

E(0−)
ε2

– A sheet of charge at the interface:
∫ Δ

d(εE(x)) = ε2E(x = Δ) − ε1E(x = −Δ)
−Δ ∫ Δ

= ρ(x) dx = Q coulomb/cm2

−Δ

E(0+) =
ε1

E(0−) +
Q

ε2 ε2

Examples

Like in Figure 1

Then, let us work out E(x), by splitting calculations into 4 regions:

1. E(x ≤ −2 μm) = E(x ≥ 2 μm) (∵ no charge outside these regions)

2



∫

∫

Recitation 5 Electrostatics Review 6.012 Spring 2009 

2. For −2 μm < x < −1 μm:

1 x 1
E(x) − E(−2 μm) =

εs −2
ρ(x) dx =

εs
(x + 2)ρo ·

ρo = 1.6 × 10−5 C/cm3 = 1.6 × 10−17 C/cm3

1
Particularly,E(−1 μm) = ρo × 1 μm 

εs 

Since εs = 1 × 10−12 F/cm,

E(−1 μm) =
1.6 × 10−5 × 10−4 C/cm3 × cm

= 1.6 × 103 V/cm
1 × 10−12 F/cm

3. For −1 < x < 1 μm:

ρ(x) = 0, same dielectric material = E constant⇒
E(x) = E(−1 μm) = 1.6 × 103 V/cm

4. For 1 < x < 2 μm:

1 x 1
E(x) − E(1 μm) = ρ(x) dx = − ρo(x − 1)

εs 1 εs

1 ∣∣particularly, E(2 μm) = E(1 μm) −
εs

ρo(x − 1)∣
x=2 μm

= 0
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Now for the electrostatic potential: 
As we do the integration, the results will be relative. Then we can use the doping of Si to 
find the actual value. For this thought-example, let us make φ(0) = 0. 
For 0 < x < 1 μm, E(x) = constant = 1.6 × 103 V/cm. 

x

φ(x) − φ(0) = −
0

E(x′) dx′ = −1.6 × 103 · x (V/cm · μm)

particularlyφ(1μm) = −0.16V

For 1 < x < 2 μm,

x

φ(x) − φ(1μm) = −
1

E(x′) dx′

x 1
= − (1.6 × 103V/cm −

εs
ρo(x′ − 1)) dx′

1

1
= −1.6 × 103 V/cm (x − 1) +

2εs
ρo(x − 1)2 quadratic

particularly,φ(2 μm) = φ(1 μm) − 1.6 × 103 V/cm (1 × 10−4) cm +
1 1.6 × 10−5 C/cm3

(1 × 10−8 cm2)·
2 1 × 10−12 F/cm

·
= −0.16V − 0.08V = −0.24V

For x > 2 μm:
∵ E(x) = 0 electrostatic potential will be constant

Similarly, we can work out the other side:
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Parallel Plate Capacitor 

Two sheets of charge at the interface of the capacitor Q+/Q-

In 1D, this can be modeled as δ function

Now let us consider the electric field:
Inside the metal, no charge, no field, = E(x < 0) = E(x > td) = 0:⇒

∫ 0+ ∫ 0+

εSiO2 − 0 = ρ(x′) dx′ = δ(x) dx = Q
0− 0−

∴ E(0+) =
Q

εSi02

εSi02 = 3.45 × 10−13 F/cm

QAs there is no charge inside SiO2 region, E is constant E(x) = εSiO2
for 0 < x < t
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If we use φ(0) = 0 again, 
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