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Recitation 4: Electrostatic Potential & Carrier 

Concentration 

Yesterday in lecture, we learned that under T.E. (thermal equilibrium), there is a funda-
mental relationship between the electrostatic potential φ(x), at one location (x) within the
semiconductor and the carrier concentration at that location.

φ(x) =
kT

ln
no(x)

= −kT
ln

po(x)
q ni q ni

By the Boltzman relationship (or the 60 mV rule),

φ(x) = (60 mV) ln
no(x)

= −(60 mV) ln
po(x)

ni ni

How did this relation come about?

Revisit Thermal Equilibrium

1. Under T.E. can we have electrostatic field (or voltage) within the semiconductor?
Yes. (we do not have “external” energy source). There can be static electrostatic field
inside the semiconductor generated by “space” charges.

2. Under T.E. can we have an overall current? 
No. That will give rise to charge piling up. 

Some Fundamentals about Electrostatics

Relationship between electrostatic potential φ(x), electric field E(x), and (space) charge
density ρ(x):

1. First, the charge density we are talking about here is the “Net” charge density, we
call space charge density.

in n-type material: ρ(x) = q(Nd(x) − n(x))

p-type material: ρ(x) = q(p(x) − Na(x))

(Nd, Na are space charges. ρ(x) is the extra which can not be compensated by e− or
hole free charges) space charge density.→
dE ρ

2. = (ε = electric permitivity Farad/cm). In other words,
dx ε

x1
E(x) − E(0) =

ε 0
e(x′) dx′
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dφ
Also, = −E(x). In other words:

dx
x

φ(x) − φ(0) = − E(x′) dx′
0

The two equations above can be combined to give the following relation:

d2φ(x) dE(x) ρ(x)
dx2

= −
dx

= −
ε

Boltzman Relation

Basically the Boltzman relationship exists due to thermal equilibrium. Under T.E., for
n-type:

Jn = 0
dnoButJn = q · no · E + q · Dn ·
dx

= 0μn ·
dφ dno=−q · no · μn ·
dx

−q · Dn ·
dx

μn dφ
=

1 dno

Dn dx no dx

q dφ
=

d(ln(no))
k T dx dx· ( )

Integrate:
q

(φ − φref) = ln(no) − ln(no,ref) = ln
no

k T no,ref·
Similarly, for p-type:

Jp = 0
dpoButJp = q · po · μp · E − q · Dp ·
dx

= 0

dφ dpo−q · po · μp ·
dx

= q · Dp ·
dx

μp dφ
=

1 dpo−
Dp dx po dx

q dφ d(ln(po))−
k T dx

=
dx ( )·

Integrate: − q
(φ − φref) = ln(po) − ln(po,ref) = ln

po

k · T po,ref

Set φref = 0 at no, ref = po, ref = ni. Then:

−
k

q

T
φ = ln

po

· ni ( )
k T po

φ = −
q

·
ln

ni

qφ

or po = nie
−

k T·
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Example

Now let us look at a particular example. We have a doping profile Nd(x) = Ndo +ΔNd(1−
e−fracxLc). Ndo = 1016 cm−3, ΔNd = 9 × 1016 cm−3, Lc = 10μm. We would like to know:

1. What is the electrostatic profile φ(x)?

2. How about electric field E(x)?

3. Space charge density ρ(x)?

First, we have φ(x) vs. no(x), po(x) from the Boltzman relationships. If we know no(x), or po, 
we can find φ(x). 
But does no(x) = Nd(x)? In reality, it should not, if no(x) = Nd(x), we will have a net 
current due to diffusion Not T.E. anymore. 
To obtain an accurate solution, we have: 

Jn = q no · μn · E + q Dn · dno = 0 (Nd doping, electron majority carrier, only consider Jn here.)· ·
dx

dE q
= (Nd − no)

dx εSi

With these two, we get:

Dn 1 dno k T d2(lnno) 1
E = −

μn no dx
=⇒

q

·
dx2

=
εSi

(no(x) − Nd)

But very hard to solve no(x). In most cases, an analytical solution is impossible. Can we
do something simpler?
We make approximations! The first type of scenario is no(x) � Nd (“quasi-neutrality”). If

−x

we assume no(x) � Nd = Ndo + ΔNd(1 − e Lc ):

−x 

Define a � Ndo + ΔNd(1 − e Lc ) 

φ(x) =
k

q

· T
ln

no

n

(
i

x) � k

q

· T
ln

n

a

i 
x

E(x) = −dφ

dx

(x) � −k

q

· T
a

1
ΔNd

L

1
c
e
−

Lc

⎛ ⎞ 
x−2x

1 1
ρ(x) = εSi

dE(x) 
dx 

� εSi
1 1 −k T ⎜⎝ 

⎟⎠ ΔNd
2 Lc Lc

· 
ΔNd+ e e 

2 L2
c L2

cq a a 

1 ΔNd(Ndo + ΔNd)k T x

e−
· 

εSi Lc

q a2 Lc
2
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To satisfy quasi-neutrality, we need: 

no(x) − Nd(x)
Nd(x)

ρ(x) 
q

x

� 1, we know (no(x) − Nd(x)) = −

= 
q · 

ρ(x)
Nd(x)

� εSi
no(x) − Nd(x)

Nd(x)
k T ΔNd(Ndo + ΔNd) 1· −

Lce 
q 2 a3 L2

c
x

ΔNd(Ndo + ΔNd) ΔNd(Ndo + ΔNd)e
−

Lc � 1 (for x > 0), and
a

<
(Ndo)33

no(x) − Nd(x)
Nd(x)

< εSi
k T ΔNd(Ndo + ΔNd) 1·
q2 (Ndo)3 L2

c

= 1.46 × 10−4 � 1 

Therefore, our quasi-neutrality is valid. This quasi-neutrality satisfies when doping profile

is gradual. If we have time, we can verify Jn
diff = q Dn

dno(x)
= Jn

drift = qμnno(x)E(x)·
dx

using the above equations.
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