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The Gradual Channel Approximation for the MOSFET: 

We are modeling the terminal characteristics of a
MOSFET and thus want iD(vDS, vGS, vBS), iB(vDS, vGS, vBS),
and iG(vDS, vGS, vBS). We restrict our model to vDS ≥ 0 and 
vBS ≤ 0, so the diodes at the source and drain are always
reverse biased; in this case iB ≈ 0. Because of the insulating
nature of the oxide beneath the gate, we also have iG = 0, 
and our problem reduces to finding iD(vDS, vGS, vBS). 

The model we use is what is called the "gradual
channel approximation", and it is so named because we
assume that the voltages vary gradually along the channel
from the drain to the source. At the same time, they vary
quickly perpendicularly to the channel moving from the 
gate to the bulk semiconductor. In the model we assume 
we can separate the problem into two pieces which can be
worked as simple one-dimensional problems. The first 
piece is the x-direction problem relating the gate voltage
to the channel charge and the depletion region; this is the
problem we solved when we studied the MOS capacitor.
The second piece is the y-direction problem involving the
current in, and voltage drop along, the channel; this is the
problem we will consider now. To begin we assume that 
the voltage on the gate is sufficient to invert the channel
and proceed. 

Notice that iD(vDS, vGS, vBS) is the current in the 
channel; this is a drift current. There is a resistive voltage 
drop, vCS(y), along the channel from vCS = vDS at the drain 
end of the channel, y = L, to vCS = 0 at the source end of 
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the channel, y = 0. At any point, y, along the channel we 
will have: 

iD = -qN
* (y) sy(y) W 

The current is not a function of y, -qN
* (y) is the channel 

sheet charge density at y, 
* (y) *-qN = - Cox [vGB - VT(y)] 

*with Cox ≡ εo/to, and sy(y) is the net velocity of the 
charge carriers in the y-direction at y, which for modest
electric fields is linearly proportional to the field: 

- dvCS(y)
sy(y) = - µe Ey(y) = - µe dy 

The current is then 
dvCS(y)

*iD = W µe Cox [vGB - VT(y)] dy 
To proceed, we must examine the factor [vGB - VT(y)].

We are referencing our voltages to the source so we first
write vGB = vGS - vBS. Next we look at VT(y); why is it a 
function of y? To answer this question we must note that 
the picture is a bit different in the MOSFET than it was
before with the isolated MOS structure because now the 
channel (inversion layer) can have a voltage relative to the
substrate. It is reverse biased by an amount -vCB(y) and so 
now the potential drop across the depletion region is - 2φp
+ vCB(y). Thus in our expression for VT, - 2φp is replaced 
by - 2φp + vCB(y). We have: 

VT(y) = VFB - 2φp + vCB(y) + 
1 2 εSi qNA[-2φp + vCB(y)]*Cox 
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1It is common practice to name the factor Cox 2 εSi qNA* 

the body factor, and call it γ, so we can then write VT(y) as 

VT(y) = VFB - 2φp + vCB(y) + γ [-2φp + vCB(y)] 
Using this in the factor [vGB - VT(y)] in the iD expression, 
we have 

[vGB - VT(y)] = vGB - VFB + 2φp - vCB(y) -
γ [-2φp + vCB(y)] 

which, after using vGB = vGS - vBS and vCB = vCS - vBS, and 
rearranging terms somewhat, is 
[vGB - VT(y)] = vGS - vCS(y) - VFB + 2φp 

- γ [-2φp + vCS(y) - vBS] 
The vCS(y) factor under the square root turns out to

complicate the subsequent mathematics annoyingly and it
has been found that it is better (and possible) to linearize
this term before proceeding. We write the term as 

[-2φp + vCS(y) - vBS] = 1 + 
vCS(y)

[-2φp - vBS] [-2φp - vBS] 
and approximate the factor involving vCS by expanding it 
and retaining only the first (linear term): 

≈ [-2φp - vBS] (1 + 2 [-
v
2φ

CS
p
(
-
y

v
) 

BS]) 

which upon multipying becomes 
vCS(y)

= [-2φp - vBS] + 2 [-2φp - vBS] 
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Finally, giving the factor 1/2 [-2φp - vBS] the symbol δ,
we write our linear approximation to the troublesome
term as: 

[-2φp + vCS(y) - vBS] ≈ [-2φp - vBS] + δ vCS(y)

Making this replacement, we have


[vGB - VT(y)] ≈ vGS - (1 + γδ) vCS(y) - VFB + 2φp - γ [-2φp - vBS] 
Defining VT(vBS) as, 

VT(vBS) ≡ VFB - 2φp + γ [-2φp - vBS] 
and giving the factor (1 + γδ) the symbol α, we can write 

[vGB - VT(y)] ≈ [vGS - VT(vBS) - α vCS(y)]

Putting this back into our expression for iD, we find:


iD = 
εo µe W [ vGS - VT(vBS) - α vCS(y)] 

dvCS(y)
to dy


Multiplying both sides by "dy" yields


*
iDdy = W µe Cox [ vGS - VT(vBS) - α vCS] dvCS 

We can now integrate both sides from y = 0 and vCS = 0 to 
y = L and vCS = vDS. We have 

L L 
⌠ ⌠⌡ iD dy = iD ⌡ dy = iDL

0 0


and

2
vDS α vDS⌠⌡ [ vGS - VT - α vCS] dvCS = [(vGS - VT)vDS - 2 ]

0 

Setting these two integals equal, and dividing both sides
by L yields the expression for iD we are looking for: 
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2W * 
α vDSiD(vDS, vGS, vBS) = L µe Cox [{vGS - VT(vBS)} vDS - 2 ] 

It is worth reminding ourselves that arriving at this result
we assumed that vGS > VT; otherwise iD is zero because 
their is no channel. We also specified vDS ≥ 0 and vBS ≤ 0. 

If we plot this expression for iD verses vDS for fixed

values of vGS and vBS, we find that iD varies linearly with

vDS when vDS is small, but increases sub-linearly as vDS

increases further, i.e., the curve bends over to the right.

Physically, the amount of inversion decreases toward the

drain end of the channel and the resistance of the channel

increases. Still, iD continues to increase until vDS = (vGS -

VT)/α, at which point the equation says iD starts to

decrease. What happens physically is that the channel

disappears near the drain when vDS = (vGS - VT)/α, i.e.,

the region under the gate is no longer inverted near the

drain. For larger values of vDS the current does not

decrease, but stays saturated at the peak value. We find


1 W *iD(vDS, vGS, vBS) = 2α L µe Cox [vGS - VT(vBS)]2 

for vDS ≥ (vGS - VT)/α and vGS > VT. 

This completes the gradual channel approximation
model for the MOSFET. Summarizing the results, we
have a model valid for vDS ≥ 0 and vBS ≤ 0, and it says that
the gate and substrate currents are zero for this entire
range, i.e., 

iG(vDS, vGS, vBS) = 0 
and 

iB(vDS, vGS, vBS) = 0
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The drain current has three regions: 

Cutoff: 
iD(vDS, vGS, vBS) = 0 for (vGS - VT)/α ≤ 0 ≤ vDS 

Saturation: 
KiD(vDS, vGS, vBS) = 2α [vGS - VT(vBS)]2 

for 0 ≤ (vGS - VT)/α ≤ vDS 
Linear (or triode): 

2 
iD(vDS, vGS, vBS) = K [{vGS - VT(vBS)} vDS --

α v
2

DS ] 
for 0 ≤ vDS ≤ (vGS - VT)/α 

where K, α, and VT(vBS) are defined as 

W to 2 εSi qNAK ≡ L µe Cox * , α ≡ 1 + 2 εo [-2φp - vBS] , and 

VT(vBS) ≡ VFB - 2φp + ε
to
o 2 εSi qNA[-2φp - vBS] 

One last point: It is often convenient to write VT(vBS) in 
terms of VT(0), and a function of vBS. We have 

VT(vBS) ≡ VFB - 2φp + γ (-2φp - vBS)
and 

VT(0) ≡ VFB - 2φp + γ -2φp 

so the expression we want is 

VT(vBS) ≡ VT(0) + γ [ (-2φp - vBS) - -2φp ] 
This will be useful when we look at linear small signal
models for the MOSFET. 
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