
     
 

  

   
   

    

       
       

       

  
     

    

 
 

6.012 - Electronic Devices and Circuits 
Lecture 3 - Solving The Five Equations - Outline
 

• Announcements 
Handouts - 1. Lecture; 2. Photoconductivity; 3. Solving the 5 eqs. 

See website for Items 2 and 3.• Review 
5 unknowns: n(x,t), p(x,t), Je(x,t), Jh(x,t), E(x,t) 
5 equations: Gauss's law (1), Currents (2), Continuity (2) 
What isn't covered: Thermoelectric effects; Peltier cooling 

• Special cases we can solve (approximately) by hand
 
Carrier concentrations in uniformly doped material (Lect. 1) 
Uniform electric field in uniform material (drift) (Lect. 1) 
Low level uniform optical injection (LLI, τmin) (Lect. 2) 

Photoconductivity (Lect. 2) 
Doping profile problems (depletion approximation) (Lects. 3,4) 
Non-uniform injection (QNR diffusion/flow) (Lect. 5) 

• Doping profile problems 
Electrostatic potential 
Poisson's equation 
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Non-uniform doping/excitation: Summary 
What we have so far: 

Five things we care about (i.e. want to know): 
Hole and electron concentrations: 

Hole and electron currents: 

Electric field: 

! 

p(x, t)    and    n(x, t)

Jhx (x, t)    and    Jex (x,t)

Ex (x, t)

And, amazingly, we already have five equations relating them:
 

Hole continuity:
 

Electron continuity:
 

Hole current density:
 

Electron current density:
 

Charge conservation:
 

! 

"p(x, t)

"t
+

1

q

"Jh (x,t)

"x
= G # R $ Gext (x, t) # n(x,t)p(x, t) # ni

2[ ]r(t)

"n(x, t)

"t
#

1

q

"Je (x,t)

"x
= G # R $ Gext (x, t) # n(x,t)p(x, t) # ni

2[ ]r(t)

Jh (x, t) = qµh p(x, t)E(x,t) # qDh

"p(x,t)

"x

Je (x, t) = qµen(x, t)E(x,t) + qDe

"n(x,t)

"x

%(x, t) =
" &(x)Ex (x, t)[ ]

"x
$ q p(x,t) # n(x,t) + Nd (x) # Na (x)[ ]

So...we're all set, right? No, and yes..... 
Clif Fonstad, 9/17/09 Lecture 3 - Slide 2We'll see today that it isn't easy to get a general solution, but we can prevail. 



         
     

            

   
     

    
      

 
  

       
         

    

        

Thermoelectric effects* - the Seebeck and Peltier effects 
(current fluxes caused by temperature gradients, and visa versa) 

Hole current density, isothermal conditions: 
Drift Diffusion 

! 

Jh = µh p "
d q#[ ]
dx    

$ 

% 
& 

' 

( 
) + qDh "

dp

dx

$ 

% 
& 

' 

( 
) 

Hole potential Concentration
energy gradient gradient 

Hole current density, non-isothermal conditions: 

Drift  Diffusion Seebeck Effect 

! 

Jh = µh p "
d q#[ ]
dx    

$ 

% 
& 

' 

( 
) + qDh "

dp

dx

$ 

% 
& 

' 

( 
) + qSh p "

dT

dx

$ 

% 
& 

' 

( 
) 

Temperature
gradient 

Seebeck Effect: temperature gradient  → current Generator 
Peltier Effect: current  →  temperature gradient Cooler/heater 

* A cultural item; we will only consider isothermalClif Fonstad, 9/17/09 Lecture 3 - Slide 3situations on 6.012 exams and problem sets. 



 
   

    

   
     

       

Thermoelectric effects - the Seebeck and Peltier effects 

Two examples: 
Right - The hot point probe, an
 
apparatus for determining the
 
carrier type of semiconductor
 
samples.
 

Below - A thermoelectric array
 
like those in thermoelectric
 
generators and solid-state
 
refrigerators.
 

(current fluxes caused by temperature gradients, and visa versa) 

Clif Fonstad, 9/17/09 Ref.: Appendix B in the course text. Lecture 3 - Slide 4 
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Thermoelectric Generators and Coolers -

Cooling/heating for the 
necessities of life 

Image of thermoelectric wine cooler 
removed due to copyright restrictions. 

"…electrical power for the New Horizons spacecraft

Thermoelectric Wine Cooler 
28 bottles 
12˚C - 18˚C 
Quiet, gas free, vibration free,

environmentally friendly, LED
display, interior light.

Zhongshan Candor Electric Appl. Co. 

http://www.alibaba.com/ 

Lecture 3 - Slide 5
http://pluto.jhuapl.edu/ 

Source: NASA/Johns Hopkins University Applied Physics 
Laboratory/Southwest Research Institute. 

Electrical power for a trip to Pluto 

Source: NASA.

Clif Fonstad, 9/17/09 

Launched 
1/19/2006 

and science instruments [is] provided by a single
radioisotope thermoelectric generator, or RTG." 



       

       

     

    
            

      

  

 

  

  

 

         

Non-uniform doping/excitation: Back to work 
(laying the groundwork to model diodes and transistors) 

What we have: 
Five things we care about (i.e. want to know): 

Hole and electron concentrations: 

Hole and electron currents: 

Electric field: 

! 

p(x, t)    and    n(x, t)

Jhx (x, t)    and    Jex (x,t)

Ex (x, t)

And, five equations relating them:
 

Hole continuity:
 

Electron continuity:
 

Hole current density:
 

Electron current density:
 

Charge conservation:
 

! 

"p(x, t)

"t
+

1

q

"Jh (x,t)

"x
= G # R $ Gext (x, t) # n(x,t)p(x, t) # ni

2[ ]r(t)

"n(x, t)

"t
#

1

q

"Je (x,t)

"x
= G # R $ Gext (x, t) # n(x,t)p(x, t) # ni

2[ ]r(t)

Jh (x, t) = qµh p(x, t)E(x,t) # qDh

"p(x,t)

"x

Je (x, t) = qµen(x, t)E(x,t) + qDe

"n(x,t)

"x

%(x, t) =
" &(x)Ex (x, t)[ ]

"x
$ q p(x,t) # n(x,t) + Nd (x) # Na (x)[ ]

We can get approximate analytical solutions in 5 important cases! 
Clif Fonstad, 9/17/09 Lecture 3 - Slide 6 



     
  

 

                                                    

 

 

 

 

 

Solving the five equations: special cases we can handle 
1. Uniform doping, thermal equilibrium (n p product, n , po): 

Lecture 1 
o o o

! 

"

"x
= 0,

"

"t
= 0, gL (x,t) = 0, Je = Jh = 0

2. Uniform doping and E-field (drift conduction, Ohms law):
 
Lecture 1 

! 

"

"x
= 0,

"

"t
= 0, gL (x,t) = 0, Ex constant

3.  Uniform doping and uniform low level optical injection (

! 

"

"x
= 0, gL (t), n' << po

τmin): 

Lecture 2 

3'. Uniform doping, optical injection, and E-field (photoconductivity):
 

! 

"

"x
= 0, Ex constant, gL (t) Lecture 2 

4. Non-uniform doping in thermal equilibrium (junctions, interfaces) 

! 

"

"t
= 0, gL (x,t) = 0, Je = Jh = 0 Lectures 3,4 

5. Uniform doping, non-uniform LL injection (QNR diffusion)
 

Lecture 5 

! 

"Nd

"x
=
"Na

"x
= 0, n'# p', n'<< po, Je # qDe

"n'

"x
,

"

"t
# 0

Clif Fonstad, 9/17/09 Lecture 3 - Slide 7 



            

      

   

   

   
   

   

   

Non-uniform material with non-uniform excitations
 
(laying the groundwork to model diodes and transistors) 

Where cases 2, 4, and 5 appear in important semiconductor devices 

Junction diodes, LEDs: 

Bipolar transistors: 

MOS transistors: 

p-type n-type

Flow problem
Junctiion problem

Flow problem

n-type p n-typeE

B

C

Flow problems

Junction problem

n+n+

S
G

D

p-type

Diodes
Depletion approximation

Drift
Case 4 - Interface Case 4 - Junctions 

Case 4 - Junction 

Case 4 - Junctions 

Case 5 - Flow 
Case 5 - Flow 

Case 5 - Flow 

Case 2 - Drift 
(In subthrehsold:  Case 5 - Flow)Clif Fonstad, 9/17/09 Lecture 3 - Slide 8 



           

  

   

 

Case 4: Non-uniform doping in thermal equilibrium
 

Doping Profiles and p-n Junctions in TE: Na (x), Nd (x) 
Any time the doping varies with position, we can no longer assume that 

there is charge neutrality everywhere and that ρ(x) = 0. The dopants 
are fixed, but the carriers are mobile and diffuse: 
no(x), 

Nd-NNd-Na a Can't say: 

! 

no(x) = ND (x)

ρ(x) < 0 
no(x) 

ρ(x) > 0 
E(x) 

x 

In T.E., the
 
net fluxes
 

must be zero
 

Electron diffusion 
Electron drift 

Hole drift 
Hole diffusion 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 9 



         
      

         

        
     

Non-uniform doping in thermal equilibrium, cont. 

To treat non-uniformly doped materials we begin by looking at
them in thermal equilibrium, as we've said. 

This is useful because in thermal equilibrium we must have: 

! 

gL (x, t) = 0

n(x, t) = no(x)

p(x, t) = po(x)

Je (x, t) = 0

Jh (x, t) = 0

Consequently, the 2 continuity equations in our 5 equations
reduce to 0 = 0, e.g.: 

! 

"n(x, t)

"t
#

1

q

"Je (x,t)

"x
= gL (x,t) # n(x, t) $ p(x, t) # no(x) $ po(x)[ ]r(T)

0 0 00 
Clif Fonstad, 9/17/09 Lecture 3 - Slide 10 



       

   

          
          

Non-uniform doping in thermal equilibrium, cont.
 

The third and fourth equations, the current equations,
give: 

! 

0 = qµeno(x)E(x) + qDe

dno(x)

dx
"

d#

dx
=

De

µe

1

no(x)

dno(x)

dx

! 

0 = qµh po(x)E(x) " qDh

dpo(x)

dx
#

d$

dx
= "

Dh

µh

1

po(x)

dpo(x)

dx

And Poisson’s equation becomes:
 

! 

dE(x)

dx
= "

d
2#(x)

dx
2

=
q

$
po(x) " no(x) + Nd (x) " Na (x)[ ]

In the end, we have three equations in our three remaining 
unknowns, no(x), po(x), and φ(x), so all is right with the 
world. 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 11 



          
         

   

        

         
 

   

Non-uniform doping in thermal equilibrium, cont.
 

Looking initially at the first of our new set of equations,
we note that both sides can be easily integrated with
respect to position : 

! 

    
d"

dx
dx

xo

x

# =
De

µe

1

no(x)

dno(x)

dx
dx

xo

x

#

"(x) $"(xo) =
De

µe

lnno(x) $ lnno(xo)[ ] =
De

µe

ln
no(x)

no(xo)

Next, raising both sides to the e power yields: 

! 

no(x) = no(xo)e

µe

De

" (x )#" (xo )[ ]

We chose intrinsic material as our zero reference for the 
electrostatic potential: 

and arrive at :
 

! 

"(x) = 0   where   no(x) = ni

! 

no(x) = nie

µe

De

" (x )

Clif Fonstad, 9/17/09 Lecture 3 - Slide 12 



         

    

             
            

     

       
         

Non-uniform doping in thermal equilibrium, cont. 

From the corresponding equation for holes we also find : 

! 

po(x) = nie
"

µh

Dh

# (x )

Incredibly 
Next use the Einstein relation: 

! 

µh

Dh

=
µe

De

=
q

kT
Multilingually 

rhyming 

Note: this relationship rhymes as written, as well as when inverted, and also
either way in Spanish. It is a very fundamental, and important, relationship! 

! 

Note :   @ R.T.   q kT " 40 V
#1

  and  kT q " 25 mV

Using the Einstein relation we have: 

! 

no(x) = nie
q" (x ) kT

and po(x) = nie
#q" (x ) kT

Finally, putting these in Poisson’s equation, a single 
equation for φ(x) in a doped semiconductor in TE 
materializes: 

! 

d
2"(x)

dx
2

= #
q

$
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]

Clif Fonstad, 9/17/09 Lecture 3 - Slide 13 



      

 

   

 

          

Non-uniform doping in thermal equilibrium, cont.
 
(an aside) 

What do these equations say? 

! 

no(x) = nie
q" (x ) kT

and po(x) = nie
#q" (x ) kT

To see, consider what they tell us about the ratio of the hole 
concentration at x2, where the electrostatic potential is φ2, and 
that at x1, φ1: 

! 

po(x2) = po(x1)e
"q # (x2 )"# (x1 )[ ] / kT

The thermal energy is kT, and the change in potential energy of a 
hole moved from x1 to x2 is q(φ2 - φ1), so have: 

! 

po(x2) = po(x1)e
"#PEx1$x2

/ kT

If the potential energy is higher at x2, than at x1, then the population 
is lower at x2 by a factor e-ΔPE/kT. 

That is, the population is lower at the top of a potential hill. 

If the potential energy is lower, then the population is higher. 
That is, the population is, conversely, higher at the bottom of a potential hill. 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 14 



       
  

           
        

    

Non-uniform doping in thermal equilibrium, cont. 
(continuing the aside) 

The factor e-ΔPE/kT is called a Boltzman factor.  It is a factor 
relating the population densities of particles in many 
situations, such as gas molecules in an ideal gas under the 
influence of gravity (i.e, the air above the surface of the earth) 
and conduction electrons and holes in a semiconductor.* 

The potential energy difference for holes is qΔφ, while that for 
electrons is -qΔφ.  Thus when we look at the electron and hole 
populations at a point where the electrostatic potential is φ, 
relative to those where the potential is zero (and both 
populations are ni) we have: 

! 

no(x) = nie
q" (x ) kT

and po(x) = nie
#q" (x ) kT

We will return to this picture of populations on either side of a 
potential hill when we examine at the minority carrier 
populations on either side of a biased p-n junction. 

* Until the doping levels are very high, in which case the 
Boltzman factor must be replaced by a Fermi factor.** 

Clif Fonstad, 9/17/09 ** Don’t worry about it. Lecture 3 - Slide 15 



        
       

 
     

        
       

  

       

       

 

  Doing the numbers: 
I. D to µ conversions, and visa versa 
To convert between D and µ it is convenient to say 25 mV,kT/q ≈ 

in which case q/kT ≈ 40 V-1: 
17˚C/62˚F 

Example 1: µe = 1600 cm2/V-s, µh = 600 cm2/V-s 

! 

De = µe q kT( ) =1600 /40 = 40 cm
2
/s

Dh = µh q kT( ) = 600 /40 =15 cm
2
/s

II. Relating φ to n and p, and visa versa 
To calculate φ knowing n or p it is better to say that kT/q 26 mV,≈ 

because then (kT/q)ln10 ≈ 60 mV: 28˚C/83˚F 

Example 1: n-type,  ND = Nd - Na = 1016 cm-3 

! 

"n =
kT

q
ln

10
16

10
10

=
kT

q
ln10

6
=

kT

q
ln10 # log10

6 $ 0.06 ln10
6

= 0.36 eV

Example 2: p-type,  NA = Na - Nd = 1017 cm-3 

! 

"p = #
kT

q
ln

10
17

10
10

= #
kT

q
ln10 $ log10

7 % #0.06 $ 7 = #0.42 eV

Example 3:  60 mV rule: 
For every order of magnitude the doping is above (below) ni, 

the potential increases (decreases) by 60 meV. 
Clif Fonstad, 9/17/09 Lecture 3 - Slide 16 



         

1019 − 101 − 0.54 − 

1018 − 102 − 0.48 − 

1017 − 103  − 0.42 − 

1016 − 104 −  0.36 − 

1015 − 105 − 0.30 − 

1014 − 106 − 0.24 − 

1013 − 107 − 0.18 − 

1012 − 108 − 0.12 − 

1011 − 109 − 0.06 − 

1010 − 1010 − 0.00 − 

109 − 1011 − -0.06 − 

108 − 1012 − -0.12 − 

107 − 1013 − -0.18 − 

106 − 1014 − -0.24 − 

105 − 1015 − -0.30 − 

104 − 1016 − -0.36 − 

103 − 1017 − -0.42 − 

102 − 1018 − -0.48 − 

101 − 1019 − -0.54 − 

 

 

 

 

 

More numbers no[cm-3] po[cm-3] φ [V] 

Typical range 
n-type 

Intrinsic 

p-type 
Typical range 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 17 



         
     

           

        
        

          
     

        
                          

                
    

Non-uniform doping in thermal equilibrium,cont: 
We have reduced our problem to solving one equation for

one unknown, in this case φ(x): 

! 

d
2"(x)

dx
2

= #
q

$
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]

Once we find φ(x) we can find no and po from: 

! 

no(x) = nie
q" (x ) kT

and po(x) = nie
#q" (x ) kT

Solving Poisson’s equation for φ(x) is in general non-trivial,
and for precise answers a "Poisson Solver" program must
be employed. However, in two special cases we can find
very useful, insightful approximate analytical solutions: 

Case I: Abrupt changes from p- to n-type (i.e., junctions) 
also:	 surfaces (Si to air or other insulator) 

interfaces (Si to metal, Si to insulator, or Si to insulator to metal) 
Case II: Slowly varying doping profiles. 

Clif Fonstad, 9/17/09	 Lecture 3 - Slide 18 



     
         

 
NDn 

 - NAp 

Non-uniform doping in thermal equilibrium, cont.:
 
Case I: Abrupt p-n junctions 

Consider the profile below: 
Nd-Na 

x 

p-type n-type 

! 

no = NDn, po = ni

2
NDn

" =
kT

q
ln NDn /ni( ) # "n

! 

po = NAp, no = ni

2
NAp

" = #
kT

q
ln NAp /ni( ) $ "p

! 

?

Clif Fonstad, 9/17/09 
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no(x) = ?

po(x) = ?

"(x) = ? Lecture 3 - Slide 19 



   
              

     
 

    

Abrupt p-n junctions, cont: 
First look why there is a dipole layer in the vicinity of the 

junction, and a "built-in" electric field. 

NDn 

NAp 

ni 
2/NAp 

NDn 

NAp 
ni 

2/NDn 

no, po 

x
 
Hole diffusion Electron diffusion
 

qNDn 

0 0+Q 

-Q 
-qNAp 

ρ(x)
 Drift balances 
diffusion in the 
steady state. 

x
 

Hole drift Electron drift 
Clif Fonstad, 9/17/09 Lecture 3 - Slide 20 



   
            

      

 

        

      

Abrupt p-n junctions, cont: 
If the charge density is no longer zero there must be an 

electric field: εEx(x) = ∫ρ(x)dx 
Ex0 

Epk 

0 
x 

and an electrostatic potential step: φ(x) = -∫Ex(x)dx 
φ(x) 

φn 

φp 

x 

Ok, but how do we find φ(x)? Clif Fonstad, 9/17/09 Lecture 3 - Slide 21 



      
         

  

            
           

          
   

   
         

          
       

            
     

Abrupt p-n Junctions: the general strategy 
We have to solve an non-linear, second order differential 

equation for φ: 

! 

d
2"(x)

dx
2

= #
$(x)

%
= #

q

%
ni e

#q" (x ) / kT # e
q" (x ) / kT( ) + Nd (x) # Na (x)[ ]

Or, alternatively         "(x) = #
$(x)

%
&& dx + Ax

2
+ Bx

In the case of an abrupt p-n junction we have a pretty good
idea of what ρ(x) must look like, and we know the details 
will be lost anyway after integrating twice, so we can try 
the following iteration strategy: 
Guess a starting ρ(x). 
Integrated once to get E(x), and again to get φ(x). 
Use φ(x) to find po(x), no(x), and, ultimately, a new ρ(x). 
Compare the new ρ(x) to the starting ρ(x). 
- If it is not close enough, use the new ρ(x) to iterate again. 
- If it is close enough, quit. 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 22 



             
           

The change in ρ  must 
be much more abrupt! 

A 60 mV change in  φ 
decreases no  and po 
10x and ρ  increases to 
90% of its final value. 

         
        

  

To figure out a good first guess for ρ(x), look at how quickly 
no and po must change by looking first at how φ changes: 

φ(x) 60 mV 

x 

φn 

φp 

φp 

φn 

700 to 900 mV 

ρ(x) 

60 mV 

The observation that ρ changes a lot, when φ changes
a little, is the key to the depletion approximation. 

qNDn 

0 0+Q 

-Q 
-qNAp 

…and what it 
means for ρ(x): 

90% 

90% x 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 23 



      
    

    
           

          
    

   

     
   

   

       
   

     
 

6.012 - Electronic Devices and Circuits 
Lecture 3 - Solving The Five Equations - Summary
 

• Non-uniform excitation in non-uniform samples
The 5 unkowns: n(x,t), p(x,t), Je(x,t), Jh(x,t), E(x,t) 
The 5 equations: coupled, non-linear differential equations 

• Special cases we can solve (approximately)
Carrier concentrations: (Lect. 1) 
Drift: Jdrift = Je,drift + Jh,drift  = q (µe no + µh po) E = σo E (Lect. 2) 
Low level optical injection: dn'/dt – n'/tmin ≈ gL(t) (Lect. 2) 
Doping profile problems: junctions and interfaces 
Non-uniform injection: QNR flow problems 

• Using the hand solutions to model devices 
pn Diodes: two flow problems and a depl. approx. 
BJTs: three flow problems and two depl. approx.’s 
MOSFETs: three depl. approx.’s and one drift 

• Non-uniform doping in T.E.
Relating no, po, and electrostatic potential, φ 
Poisson's equation: two situations important in devices 

Clif Fonstad, 9/17/09 Lecture 3 - Slide 24 
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