MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.012 MICROELECTRONIC DEVICES AND CIRCUITS

Problem Set No. 6

<u>Issued</u>: October 14, 2009 <u>Due</u>: October 21, 2009

Reading Assignments:

Lecture 10 (10/15/09) - Chap. 9 (9.3, 9.4)

Lecture 11 (10/20/09) - Chap. 10 (10.1.1a)

Lecture 12 (10/22/09) - Notes

<u>Problem 1</u> - Do Problem 10.2 in the course text using a substrate doping level, N_A , of 1 x 10^{16} cm⁻³ in Parts (a) thru (c) rather than 1 x 10^{17} cm⁻³, and assuming that the value of the parameter α in the model developed in Lecture 11 is one (1). Also add the following parts to this problem:

- d) Consider building the same device with $t_{ox} = 100~A$. What must the doping level of the substrate, N_A , be to have the same threshold voltage you found in Part (a)? For simplicity assume the flat-band voltage, V_{FB} , is still -0.2 V, but after calculating the new N_A , find the actual flat-band voltage with this new doping level.
- e) Repeat Part (b) and compare the answer for this new device with that of the original.

<u>Problem 2</u> - This is a former exam problem (with all the work space and blanks removed), so it won't take you long to do.

An ideal n-channel MOSFET has the i_D vs v_{DS} characteristic shown below when $v_{GS} = 4$ V and $v_{BS} = 0$ V. Note that the drain current saturates at 2 mA for $v_{DS} \ge V_{DS,sat}$.

The threshold voltage, $V_T(v_{BS})$ of this device is 1 V when $v_{BS} = 0$ V, i.e. $V_T(0) = 1$ V. It has the structural parameters listed below. Work this problem approximating α as 1.

$$N_A=10^{17}$$
 cm $^{\!-3},~W=25~\mu m,~L=10~\mu m,~t_{\rm ox}=10^{\text{-}6}$ cm, and $\epsilon_{\rm ox}=3.5~x~10^{\text{-}13}~F/cm$

- a) What is the drain-to-source saturation voltage, $v_{DS,sat}$, when $v_{GS} = 4 \text{ V}$?
- b) Use the information provided to calculate the electron mobility, μ_e , in the channel.
- c) Find the inversion layer sheet charge density in the channel, $q_N^*(y)$, at the source end, i.e. $q_N^*(0)$, and at the drain end, $q_N^*(L)$, for the bias condition $V_{GS} = 4 \text{ V}$, $V_{DS} = 1 \text{ V}$, and $V_{BS} = 0 \text{ V}$.
- d) Find the average net velocity, $\overline{s}_y(\underline{y})$, of the electrons in the channel at the source end, i.e. $\overline{s}_y(0)$, and at the drain end, $\overline{s}_y(L)$, for the bias condition in Part (c) above, for which the corresponding drain current, I_D , is 0.55 mA.
- e) The drain-to-source voltage, v_{DS} , is <u>increased</u> to 5 V, so that the bias condition is now $V_{GS} = 4$ V, $V_{DS} = 5$ V, and $V_{BS} = 0$ V. Find the inversion layer sheet charge density in the channel, $q_N^*(y)$, at the source end, i.e. $q_N^*(0)$, and at the drain end, $q_N^*(L)$ under this new bias condition.
- f) Next consider this MOSFET with a negative substrate-to-source bias, V_{BS} . What is the drain current of this device when it is biased in saturation, i.e., with $V_{DS} \ge (V_{GS} V_T)$, with $V_{GS} = 4$ V and $V_{BS} = -5$ V? Suggestion: Calculate V_T when $V_{BS} = -5$ V using the expression below, and calculate V_T in saturation with this new V_T .

Threshold voltage expressions:

The definition of the threshold voltage of a MOSFET is:

$$V_T(v_{BS}) = V_{FB} - 2\phi_{p-Si} + \frac{1}{C_{ox}^*} \sqrt{2\varepsilon_{Si}qN_A \left[\left| 2\phi_{p-Si} \right| - v_{BS} \right]}$$

It is very common to write this in terms of $V_{\text{T}}(0)$, the threshold when $v_{\text{BS}}=0$, and to introduce the parameter γ as shown below:

$$\begin{split} V_T(v_{BS}) &= V_T(0) + \gamma \left\{ \sqrt{\left| 2\phi_{p-Si} \right| - v_{BS}} - \sqrt{\left| 2\phi_{p-Si} \right|} \right\} \\ \text{with} \quad \gamma &= \frac{\sqrt{2\varepsilon_{Si}qN_A}}{C_{or}^*} \quad \text{and} \quad V_T(0) \equiv V_{FB} - 2\phi_{p-Si} + \gamma \sqrt{\left| 2\phi_{p-Si} \right|} \end{split}$$

- <u>Problem 3</u> This problem deals with the α factor in the gradual channel model for the MOSFET (see for example the Lecture 11 Foils).
 - a) Calculate the α factor for the two device structures in Problem 1 above. Use your results to recalculate the drain current, i_D , in Parts (c) and (e) of that problem.
 - b) Calculate the MOSFET α factor for a device in which N_{Ap} is 5 x 10^{17} cm⁻³, and the oxide thickness is 3 nm (3 x 10^{-7} cm). Take ϵ_{ox} to be 3.5 x 10^{-13} F/cm and ϵ_{Si} to be 10^{-12} F/cm. Do this for back-to-source biases, ν_{BS} , of 0, -1, and -2 V.
- <u>Problem 4</u> Diode-like connections of MOSFETs are quite useful and important to understand. Look at Figures 11.12 (a), (b), and (c) on page 351 in the course text. Calculate and plot i_D for v_{AB} between 0 and 6 Volts using the device parameters given in the figure caption. (These are curves a, b, and c in part e of this figure.)

6.012 Microelectronic Devices and Circuits Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.