Lecture 14 - Digital Circuits (III) CMOS

October 27, 2005

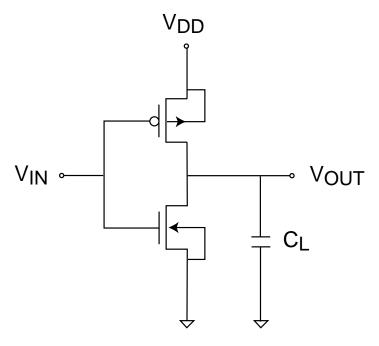
Contents:

- 1. Complementary MOS (CMOS) inverter: introduction
- 2. CMOS inverter: noise margins
- 3. CMOS inverter: propagation delay
- 4. CMOS inverter: dynamic power

Reading assignment:

Howe and Sodini, Ch. 5, §5.4

Announcements:


• Cadence tutorial by Kerwin Johnson in place of regular recitations on Friday 10/28

Key questions

- How does CMOS work?
- What is special about CMOS as a logic technology?
- What are the key design parameters of a CMOS inverter?
- How can one estimate the propagation delay of a CMOS inverter?
- Does CMOS burn any power?

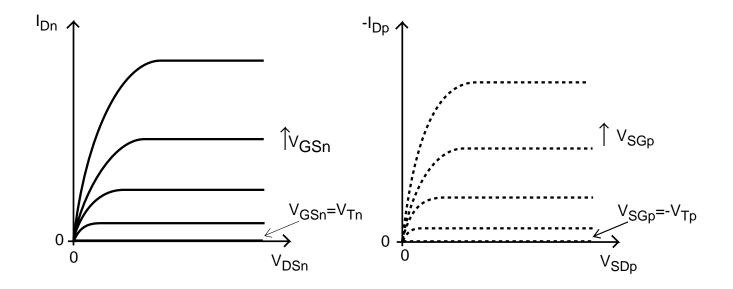
1. Complementary MOS (CMOS) Inverter

Circuit schematic:

Basic operation:

$$\bullet V_{IN} = 0 \Rightarrow V_{OUT} = V_{DD}$$

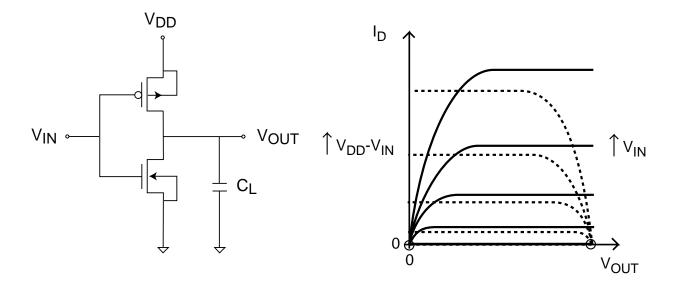
$$V_{GSn} = 0 < V_{Tn} \Rightarrow \text{NMOS OFF}$$


$$V_{SGp} = V_{DD} > -V_{Tp} \Rightarrow \text{PMOS ON}$$

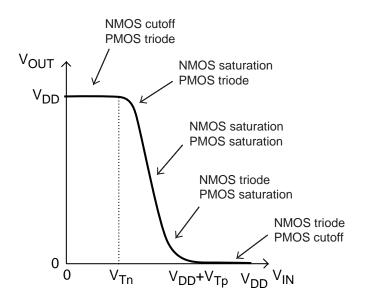
$$\bullet V_{IN} = V_{DD} \Rightarrow V_{OUT} = 0$$

$$V_{GSn} = V_{DD} > V_{Tn} \Rightarrow \text{NMOS ON}$$

$$V_{SGp} = 0 < -V_{Tp} \Rightarrow \text{PMOS OFF}$$

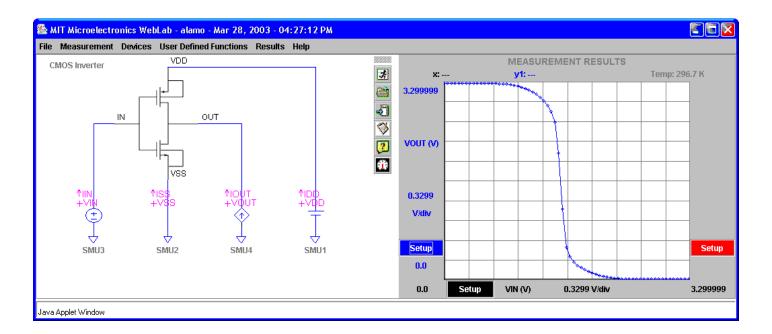

Output characteristics of both transistors:

Note:

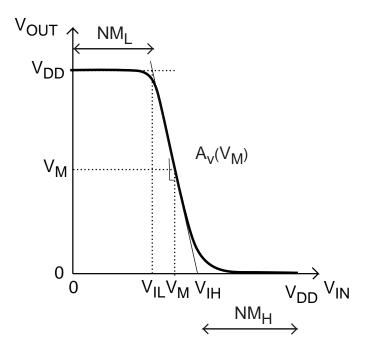

$$V_{IN} = V_{GSn} = V_{DD} - V_{SGp} \Rightarrow V_{SGp} = V_{DD} - V_{IN}$$

 $V_{OUT} = V_{DSn} = V_{DD} - V_{SDp} \Rightarrow V_{SDp} = V_{DD} - V_{OUT}$
 $I_{Dn} = -I_{Dp}$

Combine into single diagram of I_D vs. V_{OUT} with V_{IN} as parameter.


* no current while idling in any logic state.

Transfer function:



- \star "rail-to-rail" logic: logic levels are 0 and V_{DD}
- $\star high |A_v| \ around \ logic \ threshold \Rightarrow \text{good noise margins}$

Transfer characteristics of CMOS inverter in WebLab:

2. CMOS inverter: noise margins

- Calculate V_M
- Calculate $A_v(V_M)$
- Calculate NM_L and NM_H

$$\Box$$
 Calculate V_M ($V_M = V_{IN} = V_{OUT}$)

At V_M both transistors saturated:

$$I_{Dn} = \frac{1}{2} \frac{W_n}{L_n} \mu_n C_{ox} (V_M - V_{Tn})^2$$

$$-I_{Dp} = \frac{1}{2} \frac{W_p}{L_p} \mu_p C_{ox} (V_{DD} - V_M + V_{Tp})^2$$

Define:

$$k_n = \frac{W_n}{L_n} \mu_n C_{ox}, \quad k_p = \frac{W_p}{L_p} \mu_p C_{ox}$$

Since:

$$I_{Dn} = -I_{Dp}$$

Then:

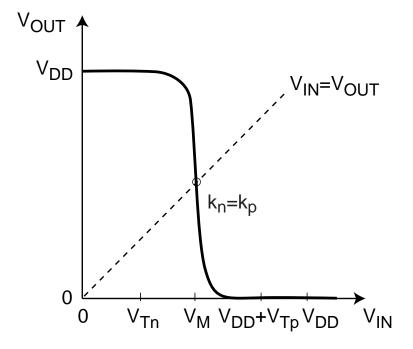
$$\frac{1}{2}k_n(V_M - V_{Tn})^2 = \frac{1}{2}k_p(V_{DD} - V_M + V_{Tp})^2$$

Solve for V_M :

$$V_M = \frac{V_{Tn} + \sqrt{\frac{k_p}{k_n}}(V_{DD} + V_{Tp})}{1 + \sqrt{\frac{k_p}{k_n}}}$$

Usually, V_{Tn} and V_{Tp} fixed and $V_{Tn} = -V_{Tp}$

 $\Rightarrow V_M$ engineered through k_p/k_n ratio


• Symmetric case: $k_n = k_p$

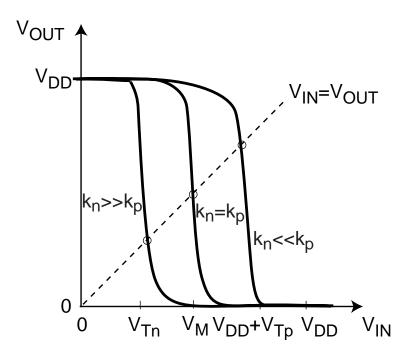
$$V_M = \frac{V_{DD}}{2}$$

This implies:

$$\frac{k_p}{k_n} = 1 = \frac{\frac{W_p}{L_p} \mu_p C_{ox}}{\frac{W_n}{L_n} \mu_n C_{ox}} \simeq \frac{\frac{W_p}{L_p} \mu_p}{\frac{W_n}{L_n} 2\mu_p} \Rightarrow \frac{W_p}{L_p} \simeq 2\frac{W_n}{L_n}$$

Since usually $L_p \simeq L_n \implies W_p \simeq 2W_n$.

• Asymmetric case: $k_n \gg k_p$, or $\frac{W_n}{L_n} \gg \frac{W_p}{L_p}$

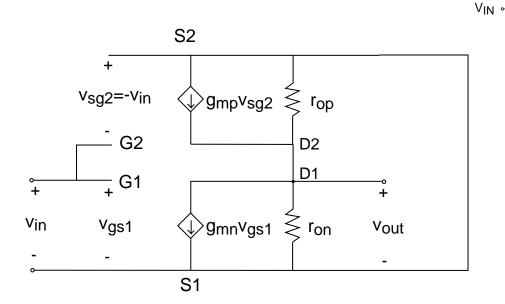

$$V_M \simeq V_{Tn}$$

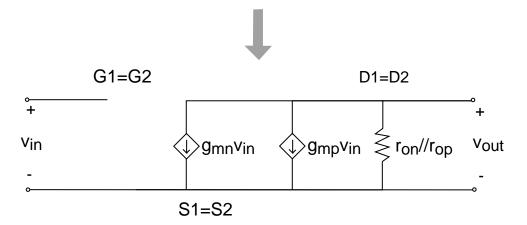
NMOS turns on as soon as V_{IN} goes above V_{Tn} .

• Asymmetric case: $k_n \ll k_p$, or $\frac{W_n}{L_n} \ll \frac{W_p}{L_p}$

$$V_M \simeq V_{DD} + V_{Tp}$$

PMOS turns on as soon as V_{IN} goes below $V_{DD} + V_{Tp}$. Can engineer V_M anywhere between V_{Tn} and $V_{DD} + V_{Tp}$.

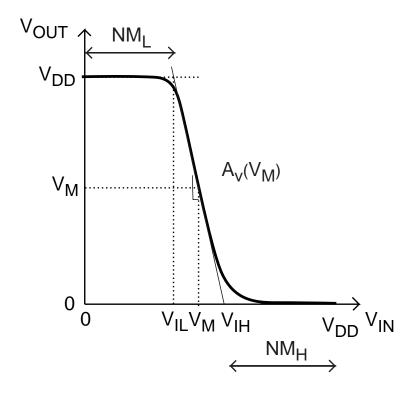



Vout

 V_{DD}

\Box Calculate $A_v(V_M)$

Small-signal model:



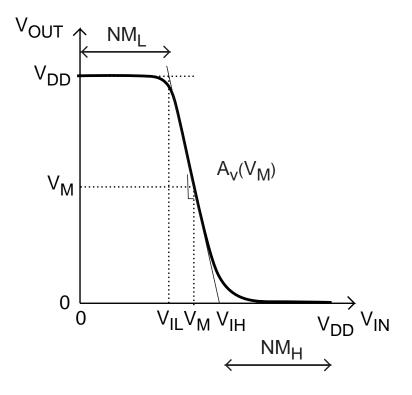
$$A_v = -(g_{mn} + g_{mp})(r_{on}//r_{op})$$

This can be rather large.

\square Noise margins

• Noise-margin-low:

$$V_{IL} = V_M - \frac{V_{DD} - V_M}{|A_v|}$$


Therefore:

$$NM_L = V_{IL} - V_{OL} = V_{IL} = V_M - \frac{V_{DD} - V_M}{|A_v|}$$

In the limit of $|A_v| \to \infty$:

$$NM_L \to V_M$$

• Noise-margin-high:

$$V_{IH} = V_M (1 + \frac{1}{|A_v|})$$

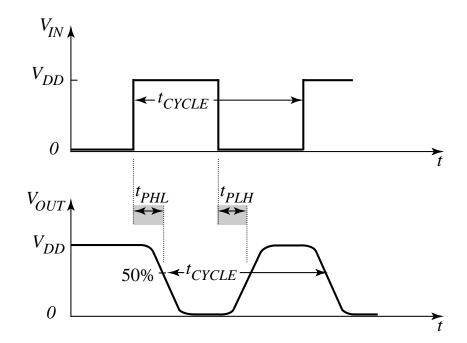
and

$$NM_H = V_{OH} - V_{IH} = V_{DD} - V_M(1 + \frac{1}{|A_v|})$$

In the limit of $|A_v| \to \infty$:

$$NM_H \rightarrow V_{DD} - V_M$$

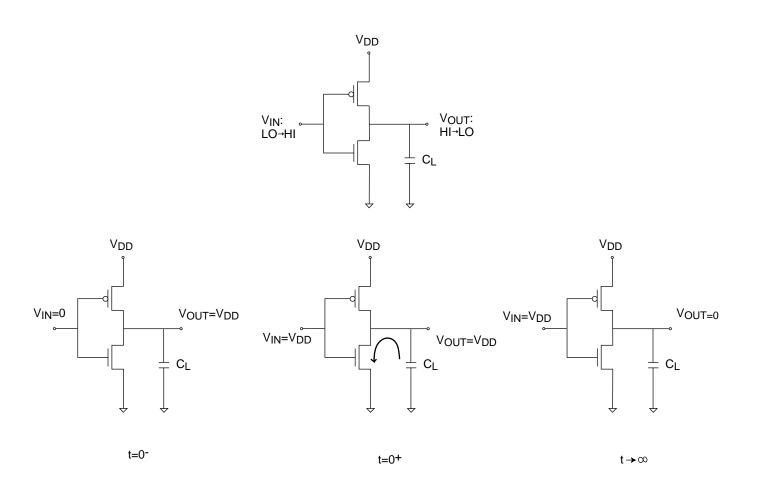
When
$$V_M = \frac{V_{DD}}{2} \implies NM_L = NM_H = \frac{V_{DD}}{2}$$


3. CMOS inverter: propagation delay

Inverter propagation delay: time delay between input and output signals; key figure of merit of logic speed.

Typical propagation delays: < 1 ns.

Complex logic system has 20-50 propagation delays per clock cycle.


Estimation of t_p : use square-wave at input

Average propagation delay:

$$t_p = \frac{1}{2}(t_{PHL} + t_{PLH})$$

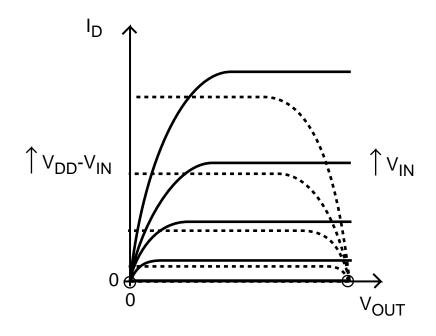
□ Propagation delay high-to-low:

During early phases of discharge, NMOS is saturated and PMOS is cut-off.

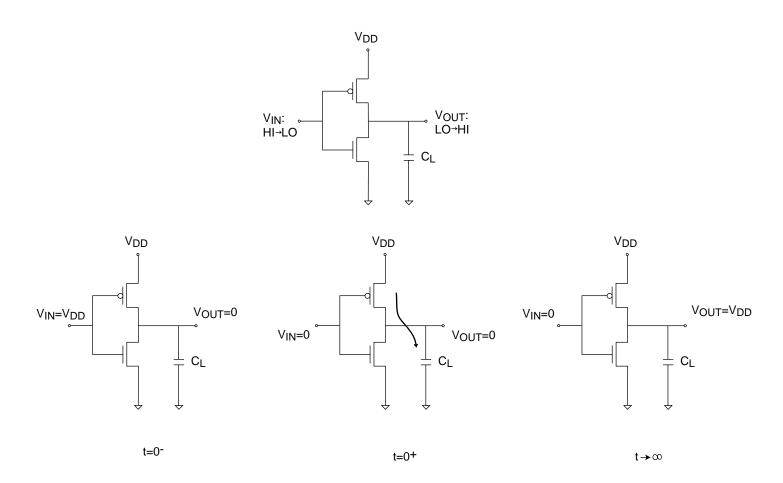
Time to discharge half of C_L :

$$t_{PHL} \simeq \frac{\frac{1}{2} \text{charge of } C_L@t = 0^-}{\text{discharge current}}$$

Charge in C_L at $t = 0^-$:


$$Q_L(t=0^-) = C_L V_{DD}$$

Discharge current (NMOS in saturation):


$$I_{Dn} = \frac{W_n}{2L_n} \mu_n C_{ox} (V_{DD} - V_{Tn})^2$$

Then:

$$t_{PHL} \simeq \frac{C_L V_{DD}}{\frac{W_n}{L_n} \mu_n C_{ox} (V_{DD} - V_{Tn})^2}$$

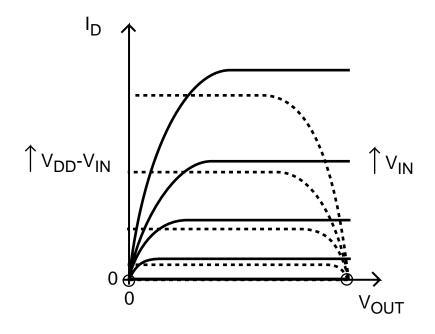
□ Propagation delay low-to-high:

During early phases of charge, PMOS is saturated and NMOS is cut-off.

Time to charge half of C_L :

$$t_{PLH} \simeq \frac{\frac{1}{2} \text{charge of } C_L@t = \infty}{\text{charge current}}$$

Charge in C_L at $t = \infty$:


$$Q_L(t=\infty) = C_L V_{DD}$$

Charge current (PMOS in saturation):

$$-I_{Dp} = \frac{W_p}{2L_p} \mu_p C_{ox} (V_{DD} + V_{Tp})^2$$

Then:

$$t_{PLH} \simeq \frac{C_L V_{DD}}{\frac{W_p}{L_p} \mu_p C_{ox} (V_{DD} + V_{Tp})^2}$$

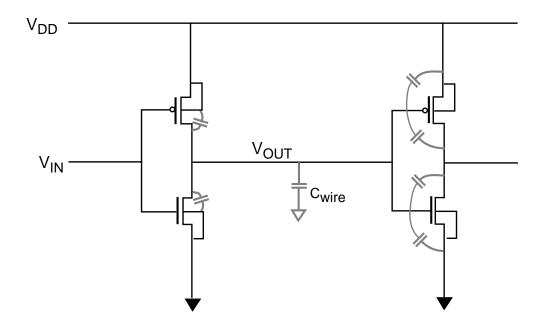
Key dependencies of propagation delays:

 $\bullet \ V_{DD} \uparrow \Rightarrow \ t_p \downarrow$

Reason: $V_{DD} \uparrow \Rightarrow Q(C_L) \uparrow$, but also $I_D \uparrow$

Trade-off: $V_{DD} \uparrow$, more power usage.

 $\bullet L \downarrow \Rightarrow t_p \downarrow$


Reason: $L \downarrow \Rightarrow I_D \uparrow$

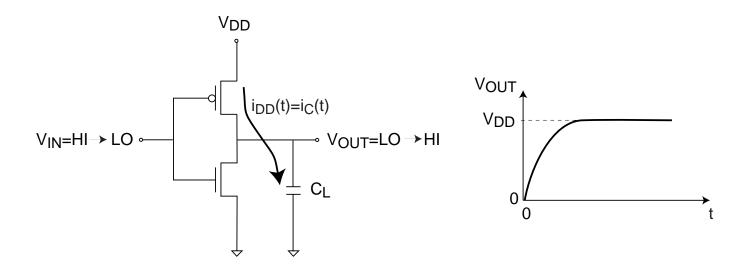
Trade-off: manufacturing costs!

Components of load capacitance C_L :

- following logic gates: must add capacitance presented by each gate of every transistor the output is connected to
- interconnect wire that connects output to input of following logic gates
- own drain-to-body capacitances

$$C_L = C_G + C_{wire} + C_{DBn} + C_{DBp}$$

[See details in Howe & Sodini §5.4.3]


4. CMOS inverter: dynamic power

- In any of the two logic states: one transistor always $OFF \Rightarrow zero static power dissipation.$
- Dynamic power?

Every complete transient, C_L is charged up to V_{DD} and then discharged to 0

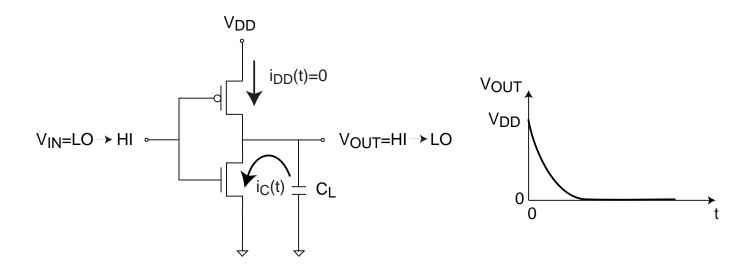
- \Rightarrow energy dissipated
- \Rightarrow clock frequency $\uparrow \Rightarrow$ dissipated power \uparrow

□ Dynamic power dissipated while charging load

1. Energy provided by battery during transient:

$$E_S = \int_0^\infty V_{DD} i_C(t) dt = V_{DD} \int_0^\infty C_L \frac{dv_{OUT}}{dt} dt =$$

$$= C_L V_{DD} \int_0^{V_{DD}} dv_{OUT} = C_L V_{DD}^2$$


2. Energy stored in capacitor during transient:

$$\Delta E_C = E_C(t = \infty) - E_C(t = 0) = \frac{1}{2}C_L V_{DD}^2$$

3. Energy dissipated in PMOS during transient:

$$E_P = E_S - \Delta E_C = \frac{1}{2}C_L V_{DD}^2$$

□ Dynamic power dissipated while discharging load

1. Energy provided by battery during transient:

$$E_S = \int_0^\infty V_{DD} i_{DD}(t) dt = 0$$

2. Energy removed from capacitor during transient:

$$\Delta E_C = E_C(t=0) - E_C(t=\infty) = \frac{1}{2}C_L V_{DD}^2$$

3. Energy dissipated in NMOS during transient:

$$E_N = \Delta E_C = \frac{1}{2} C_L V_{DD}^2$$

□ Energy dissipated in complete cycle

$$E_D = E_P + E_N = \Sigma E_S = C_L V_{DD}^2$$

□ Power dissipation

If complete switching cycle takes place f times per second:

$$P_D = fE_D = fC_L V_{DD}^2$$

Fundamental trade-off between switching speed ant power dissipation!

Key dependencies in dynamic power:

- $f \uparrow \Rightarrow P_D \uparrow$, charge and discharge C_L more frequently
- $C_L \uparrow \Rightarrow P_D \uparrow$, more charge being shuttled around
- $V_{DD} \uparrow \Rightarrow P_D \uparrow$, more charge being shuttled around

Key conclusions

- Key features of CMOS inverter:
 - no current while idling in any logic state
 - "rail-to-rail" logic: logic levels are 0 and V_{DD}
 - high $|A_v|$ around logic threshold \Rightarrow good noise margins
- CMOS inverter logic threshold and noise margins engineered through W_n/L_n and W_p/L_p .
- Key dependences of propagation delay:

$$-V_{DD}\uparrow \Rightarrow t_p\downarrow$$
$$-L\downarrow \Rightarrow t_p\downarrow$$

• Dynamic power dissipated in CMOS:

$$P_D = fE_D = fC_L V_{DD}^2$$

Fundamental trade-off between switching speed and power dissipation.