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Lecture 10 ­ MOSFET (II) 

MOSFET I­V Characteristics (cont.) 

October 13, 2005 

Contents: 

1. The saturation regime 

2. Backgate characteristics 

Reading assignment: 

Howe and Sodini, Ch. 4, §4.4 

Announcements: Quiz 1: 10/13, 7:30­9:30 PM, 
(lectures #1­9); open book; must have calculator. 
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Key questions 

How does the MOSFET work in saturation? • 
• Does the pinch­off point represent a block to current 

flow? 

How come the MOSFET current still increases a bit • 
with VDS in saturation? 

• How does the application of a back bias affect the 
MOSFET I­V characteristics? 
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1. The saturation regime 

Geometry of problem: 
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Regimes of operation so far (VBS = 0): 

• Cut­off: VGS < VT , VGD < VT : 
no inversion layer anywhere underneath gate 

ID = 0  

• Linear: VGS > VT , VGD > VT (with VDS > 0): 
inversion layer everywhere underneath gate 

W VDS
ID = µnCox(VGS − − VT )VDS
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Output characteristics: 
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� Review of Qn, Ey, Vc, and VGS −Vc(y) in linear regime 
as VDS increases: 
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Ohmic drop along channel debiases inversion layer 
⇒ ID rises more slowly with VDS 
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� Drain current saturation 

As VDS approaches: 

VDSsat = VGS − VT 

increase in compensated by decrease in |Qn||Ey|
ID saturates to:⇒ 

IDsat = IDlin(VDS = VDSsat = VGS − VT ) 

Then: 

W 
IDsat = µnCox(VGS − VT )2 

2L


VDSsat=VGS-VT

ID


VGS

linear saturation 

VGS=VT 

0

0
 cutoff VDS 



6.012 ­ Microelectronic Devices and Circuits ­ Fall 2005 Lecture 10­7


W 
IDsat = µnCox(VGS − VT )2 

2L

Transfer characteristics in saturation: 
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VDS>VDSsat=VGS-VT 

0 
0 VT VGS 
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� What happens when VDS = VGS − VT? 

Charge control relation at drain­end of channel: 

Qn(L) =  −Cox(VGS − VDS − VT ) = 0  

No inversion layer at end of channel??!! ⇒ Pinch­off 

At pinch­off: 

• charge control equation inaccurate around VT


electron concentration small but not zero
• 
• electrons move fast because electric field is very high 

• dominant electrostatic feature: acceptor charge 

• there is no barrier to electron flow (on the contrary!) 
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� Key dependencies of IDsat 

IDsat ∝ (VGS − VT )2 •

Voltage at pinch­off point (Vc = 0 at source): 
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Drain current at pinch­off: 

∝ lateral electric field ∝ VDSsat = VGS − VT 

∝ electron concentration ∝ VGS − VT 

⇒ IDsat ∝ (VGS − VT )2 

• IDsat ∝ 1 
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3µm n­channel MOSFET 

Output characteristics (VGS = 0  − 4 V, ΔVGS = 0.5 V ): 
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Transfer characteristics in saturation (VDS = 3  V ): 
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� What happens if VDS > VGS − VT? 

Depletion region separating pinch­off point and drain widens 
(just like in reverse­biased pn junction) 
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To first order, ID does not increase past pinchoff: 

W 
ID = IDsat = µnCox(VGS − VT )2 

2L

To second order, electrical channel length affected 
(”channel­length modulation”): VDS Lchannel↑⇒ ↓⇒
ID ↑ 
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Experimental finding: 

ΔL ∝ VDS − VDSsat 

Hence: 

ΔL 
= λ(VDS − VDSsat)

L 

Improved model in saturation: 

W 
IDsat = µnCox(VGS − VT )2[1 + λ(VDS − VDSsat)]
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2. Backgate characteristics 

There is a fourth terminal in a MOSFET: the body. 

What does the body do? 
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Body contact allows application of bias to body with re­

spect to inversion layer, VBS .


Only interested in VBS < 0 (pn diode in reverse bias).


Interested in effect on inversion layer

⇒ examine for VGS > VT (keep VGS constant). 
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Application of VBS < 0 increases potential build­up across 
semiconductor: 

−2φp ⇒ −2φp − VBS 

Depletion region must widen to produce required extra 
field: 
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Consequences of application of VBS < 0: 

• −2φp ⇒ −2φp − VBS 

• |QB| ↑⇒ xdmax ↑


• since VGS constant, Vox unchanged 
⇒ Eox unchanged


= QG| unchanged
⇒ |Qs| |


= Qn|+ QB unchanged, but
• |Qs| | | | |QB| ↑ ⇒ |Qn| ↓  
⇒ inversion layer charge is reduced! 

Application of VBS < 0 with constant VGS reduces elec­
tron concentration in inversion layer ⇒ VT ↑ 
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How does VT change with VBS?


In VT formula change −2φp to −2φp − VBS:


VT
GB(VBS) =  VFB  − 2φp − VBS + γ (−2φp − VBS)


In MOSFETs, interested in VT between gate and source:


VGB = VGS − VBS ⇒ VT
GB = VT

GS − VBS


Then: 

VT
GS = VT

GB + VBS 

And: 

VT
GS(VBS) =  VFB  − 2φp + γ (−2φp − VBS) ≡ VT (VBS) 

In the context of the MOSFET, VT is always defined in 
terms of gate­to­source voltage. 
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Define: 

VTo  = VT (VBS = 0)  

Then: 

VT (VBS) =  VTo  + γ( −2φp − VBS − −2φp) 
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Backate characteristics (VBS = 0,−1,−2,−3 V, VDS = 
3 V ): 
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Key conclusions


•	 MOSFET in saturation (VDS VDSsat): pinch­off≥
point at drain­end of channel 

–	electron concentration small, but 

–	electrons move very fast; 

–	pinch­off point does not represent a barrier to elec­
tron flow 

•	 In saturation, ID saturates: 

W 
IDsat = µnCox(VGS − VT )2 

2L


• But..., due to channel­length modulation, IDsat in­
creases slightly with VDS 

•	 Application of back bias shifts VT (back­gate effect) 


