
C H A P T E R 14 

Signal Detection 

14.1 SIGNAL DETECTION AS HYPOTHESIS TESTING 

In Chapter 13 we considered hypothesis testing in the context of random variables. 
The detector resulting in the minimum probability of error corresponds to the MAP 
test as developed in section 13.2.1 or equivalently the likelihood ratio test in section 
13.2.3. 

In this chapter we extend those results to a class of detection problems that are 
central in radar, sonar and communications, involving measurements of signals over 
time. The generic signal detection problem that we consider corresponds to receiv­
ing a signal r(t) over a noisy channel. r(t) either contains a known deterministic 
pulse s(t) or it does not contain the pulse. Thus our two hypotheses are 

H1 : r(t) = s(t) + w(t)


H0 : r(t) = w(t), (14.1)


where w(t) is a wide-sense stationary random process. One example of a scenario 
in which this problem arises is in binary communication using pulse amplitude 
modulation. In that context the presence or absence of the pulse s(t) represents 
the transmission of a “one” or a “zero”. As another example, radar and sonar 
systems are based on transmitting a pulse and detecting the presence or absence of 
an echo. 

In our treatment in this chapter we first consider the case in which the noise is 
white and carry out the formulation and analysis in discrete-time which avoids 
some of the subtler issues associated with continuous-time white noise. We also 
initially treat the case in which the noise is Gaussian. In Section 14.3.4 we extend 
the discussion to discrete-time Gaussian colored noise. In Section 14.3.2 we discuss 
the implications when the noise is not Gaussian and in Section 14.3.3 we discuss 
how the results generalize to the continuous-time case. 

14.2 OPTIMAL DETECTION IN WHITE GAUSSIAN NOISE 

In the signal detection task outlined above, our hypothesis test is no longer based 
on the measurement of a single (scalar) random variable R, but instead involves a 
collection of L (scalar) random variables R1, R2, . . . , RL. 

Specifically, we receive the (finite-length) DT signal r[n], n = 1, 2, , L, regarded · · · 
as the realization of a random process. More simply, the signal r[n] is modeled as 
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248 Chapter 14 Signal Detection 

the values taken by a set of random variables R[n]. Let H0 denote the hypothesis 
that the random waveform is only white Gaussian noise, i.e. 

H0 : R[n] = W [n] (14.2) 

where the W [n] for n = 1, 2, , L are independent, zero-mean, Gaussian random · · · 
variables, with variance σ2 . Similarly, let H1 denote the hypothesis that the wave­
form R[n] is the sum of white Gaussian noise W [n] and a known, deterministic 
signal s[n], i.e. 

H1 : R[n] = s[n] + W [n] (14.3) 

where the W [n] are again distributed as above. Our task is to decide in favor of 
H0 or H1 on the basis of the measurements r[n]. 

The nature and derivation of the solutions to such decision problems are similar 
to those in Chapter 13, except that we now use posterior probabilities conditioned 
on the entire collection of measurements, i.e. P (Hi r[1], r[2], , r[L]) rather than | · · · 
P (Hi r). Similarly, we use compound (or joint) PDF’s, such as f(r[1], r[2], , r[L] Hi)| · · · |
instead of f(r Hi). The associated decision regions Di are now regions in an L­|
dimensional space, rather than segments of the real line. 

For detection with minimum probability of error, we again use the MAP rule or 
equivalently compare the values of 

f(r[1], r[2], . . . , r[L] Hi) P (Hi) (14.4) | 

for i = 0, 1, and decide in favor of whichever hypothesis yields the maximum value 
of this expression, i.e. the form of equation (13.7) for the case of multiple measure­
ments is 

‘H1 ’ 
> 

f(r[1], r[2], . . . , r[L] H1) P (H1) f(r[1], r[2], . . . , r[L] H0) P (H0) (14.5) | 
< 

| 
‘H0 ’ 

which also can easily be put into the form of equation (13.18) corresponding to the 
likelihood ratio test. 

With W [n] white and Gaussian, the conditional densities in (14.5) are easy to 
evaluate, and take the form 

L
1 

{ 
(r[n])2 } 

f(r[1], r[2], . . . , r[L] | H0) = 
(2πσ2)(L/2) 

∏ 
exp − 

2σ2 
n=1 

L

= 
1 

exp − 

{
∑ (r[n])2 

} 

(14.6) 
(2πσ2)(L/2) 2σ2 

n=1 
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and 

{ 
(r[n] − s[n])2 

2σ2 

L

L

(2πσ2)(L/2) 

∏ 

=1 n

1 
f(r[1], r[2], . . . , r[L] H1) = | exp − 

(r[n] − s[n])2 

2σ2 

1 
(14.7) = 

(2πσ2)(L/2) 
exp − 

n=1 

The inequality in equation (14.5) (or any inequality in general) will, of course still 
hold if a nonlinear, strictly increasing function is applied to both sides. Because 
of the form of equations (14.6) and (14.7) it is particularly convenient to replace 
equation (14.5) by applying the natural logarithm to both sides of the inequality. 
The resulting inequality, in the case of (14.6) and (14.7), is: 

“H1 ” 
> 

( 
P (H0) 1 

g = 
L∑ 

=1 n

r[n]s[n] 
L

n=1 

s 2[n] (14.8) σ2 ln + 
< P (H1) 2 

“H ” 0 

∑ 

The sum on the left-hand side of Eq. (14.8) is referred to as the deterministic 
correlation between r[n] and s[n], which we denote as g. The second sum on the 
right-hand side is the energy in the deterministic signal s[n] which we denote by E . 
For convenience we denote the threshold represented by the entire right hand side 
of (14.8) as γ, i.e., equation (14.8) becomes 

“H1 ” 
> 

g γ (14.9a) 
< 

“H0 ” 

where γ = σ2 ln( 
P (H0)

) + 
E 

(14.9b) 
P (H1) 2 

If the Neyman-Pearson formulation is used, then the optimal decision rule is still 
of the form of equation (14.8), except that the right hand side of the inequality is 
determined by the specified bound on PFA. 

If hypothesis H0 is true, i.e. if the signal s[n] is absent, then r[n] on the left hand 
side of equation (14.8) will be Gaussian white noise only, i.e. g will be the random 
variable 

L

G = W [n]s[n] (14.10) 
n=1 

Since W [n] at each value of n is Gaussian, with zero mean and variance σ2, and 
since a weighted, linear combination of Gaussian random variables is also Gaussian, 

L
2[n] = σ2the random variable G is Gaussian with mean zero and variance σ2 s E . 

n=1 
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250 Chapter 14 Signal Detection 

When the signal is actually present, i.e., when H1 holds, the random variable is 
the realisation of a Gaussian random variable with mean E and still with variance 
Eσ2 or standard deviation σ

√
E . The optimal test in (14.8) is therefore described 

by Figure 14.1 which is of course similar to that in Figure 13.5 : 

FIGURE 14.1 Optimal test for two hypotheses with equal variances and different 
means. 

Using the facts summarized in this figure, and given a detection threshold γ on the 
correlation (e.g. with γ picked equal to the right side of (14.8), or in some other 
way), we can compute PFA, PD, Pe, and other probabilities of interest. 

Figure 14.1 makes evident that the performance of the detection strategy is deter­
mined entirely by the ratio E/(σ

√
E), or equivalently by the signal-to-noise ratio 

E/σ2, i.e. the ratio of the signal energy E to the noise variance σ2 . 

14.2.1 Matched Filtering 

Since the correlation sum in (14.8) constitutes a linear operation on the measured 
signal, we can consider computing the sum through the use of an LTI filter and the 
output sampled at an appropriate time to form the correlation sum g. Specifically, 
with h[n] as the impulse response and r[n] as the input, the output will be the 
convolution sum 

∞∑ 
r[k]h[n − k] (14.11) 

k=−∞ 

For r[n] = 0 except for 1 ≤ n ≤ L and with h[n] chosen as s[−n], the filter output at 
n = 0 is 

∑L
k=1 r[k]s[k] = g as required. In other words, we choose the filter impulse 

response to be a time-reversed version of the target signal for n = 1, 2, . . . , L, with 
h[n] = 0 elsewhere. This filter is said to be the matched filter for the target signal. 
The structure of the optimum detector for a finite-length signal in white Gaussian 
noise is therefore as shown below: 
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Matched Filter 

x[k] h[k] r =Σ x[k]s[k] > γ ’H1 ’ = s[-k] < 
Sample at ’H0 ’ 
time zero 

FIGURE 14.2 Optimum detector 

14.2.2 Signal Classification 

We can easily extend the previous two-hypothesis problem to the multiple hypoth­
esis case, where Hi, i = 0, 1, ,M − 1 denotes the hypothesis that the signal R[n], · · · 
n = 1, 2, , L, is a noise-corrupted version of the ith deterministic signal si[n], · · · 
selected from a possible set of M deterministic signals: 

Hi : R[n] = si[n] + W [n] (14.12) 

with the W [n] denoting independent, zero-mean, Gaussian random variables with 
variance σ2 . This scenario arises, for example, in radar signature analysis. Different 
aircraft reflect a radar pulse differently, typically with a distinct signature that can 
be used to identify not only its presence, but the type of aircraft. In this case, each 
of the signals si[n] and correspondingly each hypothesis Hi would correspond to 
the presence of a particular type of aircraft. Thus, our task is to decide in favor 
of one of the hypotheses, given a set of measurements r[n] of R[n]. For minimum 
error probability, the required test involves comparison of the quantities 

L∑ 
r[n]si[n] − Ei 

+ σ2 ln P (Hi) (14.13) 
2 

n=1 

where Ei denotes the energy of the ith signal. The largest of the expressions in 
(14.13), for i = 0, 1, ,M − 1, determines which hypothesis is selected. If the · · · 
signals have equal energies and equal prior probabilities, then the above comparison 
reduces to deciding in favor of the signal with the highest deterministic correlation 

L∑ 
r[n]si[n] . (14.14) 

n=1 

14.3 A GENERAL DETECTOR STRUCTURE 

The matched filter developed in Section 14.2 extends to the case where we have an 
infinite number of measurements rather than just L measurements. As we will see in 
Section 14.3.4, it also extends to the case of colored noise. We shall, for simplicity, 
treat these extensions by assuming the general detector structure, shown in Figure 
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252 Chapter 14 Signal Detection 

‘H1 ’ 
r[n] g[n] � n = 0 >� <� Processor � Threshold 

‘H0 ’ ↑ ↑ ↑ ↑ 

random random random decision 
process process variable 

FIGURE 14.3 A general detector structure. 

11.7, and determine an optimum choice of processor and of detection threshold for 
each scenario. 

We are assuming that the transmitter and receiver are synchronized, so that we 
test g[n] at a known (fixed) time, which we choose here as n = 0. The choice 
of 0 as the sampling instant is for convenience; any other instant may be picked, 
with a corresponding time-shift in the operation of the processor. Although the 
processor could in general be nonlinear, we shall assume the processing will be 
done with an LTI filter. Thus the system to be considered is shown in Figure 14.4; 
a corresponding system can be considered for continuous time. 

‘H1 ’ 
r[n] g[n] � n = 0 >� <� LTI, h[n] � Threshold 

‘H0 ’G 

FIGURE 14.4 Detector structure of Figure 14.3 with the processor as an LTI system. 

It can be shown formally, but is also intuitively reasonable, that scaling h[n] by a 
constant gain will not affect the overall performance of the detector if the threshold 
is correspondingly adjusted since a constant overall gain scales the signal and noise 
identically. 

For convenience, we normalize the gain of the LTI system so as to have 

+∞∑ 
h2[n] = 1 . (14.15) 

n=−∞ 

If r[n] is a Gaussian random process, then so is g[n], because it is obtained by linear 
processing of r[n], and therefore G is a Gaussian random variable in this case. 

14.3.1 Pulse Detection in White Noise 

To suggest the approach we consider a very simple choice of LTI processor, namely 
with h[n] = δ[n], so 

H1 : G = g[0] = s[0] + w[0] 

H0 : G = g[0] = w[0] . (14.16) 
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Also for convenience we assume that s[0] is positive. 

Thus, under each hypothesis, g[0] is Gaussian: 

2 

H1 : fG|H (g|H1) = N (s[0], σ2) = √
2

1 

πσ 
exp 

[ 

− 
(g − s[0])

] 

2σ2 

21 
[ 

g
] 

H0 : fG|H (g|H0) = √
2πσ 

exp − . (14.17) 
2σ2 

fG|H (g|H0) 

� 

fG|H (g|H1) 

� 

0 s[0] g 

FIGURE 14.5 PDF’s for the two hypotheses in Eq. (14.16). 

This is just the binary hypothesis testing problem on the random variable G treated 
in Section 13.2 and correspondingly the MAP rule for detection with minimum 
probability of error is given by 

‘H1 ’ 
>P (H1 G = g) < P (H0 G = g) , | 

‘H0 ’ 
| 

or, equivalently, the likelihood ratio test: 

‘H1 ’ 
>fG|H (g | H1) 
<

P (H0)
= η . (14.18) 

fG|H (g | H0) ‘H0 ’ 
P (H1) 

Evaluating equation (14.18) using equation (14.17) leads to the relationship 

2
{[ 

(g − s[0])2 ] [ 
g

]} ‘H1 ’ P (H0)> exp +− 
2σ2 2σ2 < P (H1) 

(14.19) 
‘H0 ’ 

and equivalently 
[ 
gs[0] s2[0] 

] ‘H1 ’ P (H0) 
exp − 

‘H

> 

0 ’ 
P (H1) 

(14.20) 
σ2 2σ2 < 

or, taking the natural logarithm of both sides of the likelihood ratio test as we did 
in Section 14.2, equation (14.20) is replaced by 

‘H
> 

1 ’ s[0] σ2 P (H0) 
g < + ln (14.21) 

2 s[0] P (H1)‘H0 ’ 
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254 Chapter 14 Signal Detection 

We may not know the a priori probabilities P(H0) and P(H1) or, for other reasons, 
may want to modify the threshold, but still using a threshold test on the likelihood 
ratio, or a threshold test of the form 

‘H1 ’ 
> g < λ . (14.22) 

‘H0 ’ 

Sweeping the threshholds over all possible values leads to the receiver operating 
characteristics as discussed in Section 13.2.5. 

We next consider the more general case in which h[n] is not the identity system. 
Then, under the two hypothesis we have: 

H1 : g[n] = s[n] ∗ h[n] + w[n] ∗ h[n] 
(14.23) 

H0 : g[n] = w[n] ∗ h[n] , 

The term w[n] ∗ h[n] still represents noise but is no longer white, i.e. its spectral 
shape is changed by the filter h[n]. Denoting w[n] ∗ h[n] as v[n], the autocorrelation 
function of v[n] is 

Rvv[m] = Rww[m] ∗ Rhh[m] (14.24) 

and in particular the mean v[n] is zero and its variance is 

∞
var{v[n]} = σ2 

∑ 
h2[n]. (14.25) 

n=−∞ 

Because of the normalization in equation (14.15) the variance of v[n] is the same 
as that of the white noise, i.e. var{v[n]} = σ2 . Furthermore, since w[n] is Gaussian 
so is v[n]. Consequently the value g[0] is again a Gaussian random variable with 
variance σ2 . The mean of g[0] under the two hypotheses is now: 

∞
H1 : E{g[n]} = 

∑ 
h[n]s[−n] , µ 

(14.26) 
n=−∞

H0 : E{g[n]} = 0, 

Therefore equation (14.17) is replaced by 

H1 : fG|H (g|H1) = N(µ, σ2)


H0 : fG|H (g|H0) = N(0, σ2). (14.27)


The probability density functions representing the two hypothesis are shown in 
Figure 14.6 below. On this figure we have also indicated the threshold γ of equation 
(14.27) above which we would declare H1 to be true and below which we would 
declare H0 to be true. Also indicated by the shaded areas are the areas under the 
PDF’s that would correspond to PFA and PD. 

c©Alan V. Oppenheim and George C. Verghese, 2010 



Section 14.3 A General Detector Structure 255 

PF A PD 

� � 

| |
�� 

fG|H (g[0] H0) fG|H (g[0] H1) 

0 λ M g[0] 

FIGURE 14.6 Indication of the areas representing PFA and PD. 

The value of PFA is fixed by the shape of fG|H (g[0]|H0) and the value of the 
threshold γ. Since fG|H (g[0]|H0) is not dependent on h[n], the choice of h[n] will 
not affect PFA. The variance of fG(g[0] H1) is also not influenced by the choice of |
h[n] but its mean µ is. In particular, as we see from Figure 14.6, the value of PD 

is given by ∫ ∞ 

PD = fG(g[0] H1)dg (14.28) 
γ 

|

which increases as µ increases. Consequently, to minimize P (error), or alternatively 
to maximize PD for a given PFA, we want to maximize the value of µ. To determine 
the choice of h[n] to maximize µ we use the Schwarz inequality: 

2∣∣∣
∑ 

h[n]s[−n]
∣∣∣ ≤ 

∑ 
h2[n] 

∑ 
s 2[−n] (14.29) 

with equality if and only if h[n] = cs[−n] for some constant c. Since we normalized 
the energy in h[n], the optimum filter is h[n] = ( √1E 

)s[−n], which is again the 
matched filter. (This is as expected, since the optimum detector for a known finite-
length pulse in white Gaussian noise has already been shown in Section 14.2.1 to 
have the form we assumed here, with the impulse response of the LTI filter being 
matched to the signal.) The filter output g[n] due to the pulse is then √1E 

Rss[n] and 

the output due to the noise is the colored noise v[n] with variance σ2 . Since g[0] 
is a random variable with mean √1E 

∑∞
n=−∞ s

2[n] and variance σ2, only the energy 
in the pulse and not its specific shape, affects the performance of the detector. 

14.3.2 Maximizing SNR 

If w[n] is white but not Gaussian, then g[0] is not Gaussian. However, g[0] is still 
distributed the same under each hypothesis, except that its mean under H0 is 0 
while the mean under H1 is µ as given in equation (14.26). The matched filter 
in this case still maximizes the output signal-to-noise ratio (SNR) in the specified 
structure (namely, LTI filtering followed by sampling), where the SNR is defined as 
E{g[0]|H1}2/σ2 . The square root of the SNR is the relative separation between the 
means of the two distributions, measured in standard deviations. In some intuitive 
sense, therefore, maximizing the SNR tries to separate the two distributions as well 
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256 Chapter 14 Signal Detection 

as possible. However, this does not in general necessarily correspond to minimizing 
the probability of error. 

14.3.3 Continuous-Time Matched Filters 

All of the matched filter results developed in this section carry over in a direct way 
to continuous-time. In Figure 14.7 we show the continuous-time counterpart to 
Figure 14.4 As before, we normalize the gain of h(t) so that 

‘H1 ’ 
r(t) g(t) � t = 0 >� <� LTI h(t) � Threshold λ 

G ‘H0 ’ 

FIGURE 14.7 Continuous-time matched filtering. 

∫ ∞ 

h2(t)dt = 1 (14.30) 
−∞ 

with r(t) a Gaussian random process, g(t) is also Gaussian and G is a Gaussian 
random variable. Under the two hypotheses the PDF of G is then given by 

H1 : fG|H (g H1) = N(µ, σ2| G) 

H0 : fG|H (g H0) = N(0, σ2 (14.31) | G) , 

where ∫ ∞ 

σ2 = N0 h2(t)dt = N0 (14.32) G 
−∞ 

and ∫ ∞ 

µ = h(t)s(−t)dt (14.33) 
−∞ 

Consequently, as in the discrete-time case, the probability of error is minimized 
by choosing h(t) to separate the two PDF’s in equation (14.31) as much as possi­
ble. With the continuous-time version of the Cauchy-Schwarz inequality applied to 
equation (14.33) we then conclude that the optimum choice for h(t) is proportional 
to s(−t), i.e. again the matched filter 

EXAMPLE 14.1 PAM with Matched Filter 

Figure 14.8(a) shows an example of a typical noise-free binary PAM signal as rep­
resented by Eq. (13.1). The pulse p(t) is a rectangular pulse of length 50 sec. The 
binary sequence a[n] over the time interval shown is indicated above the waveform. 
In the absence of noise, the optimal threshold detector of the form of Figure 14.4 
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FIGURE 14.8 Binary detection with on/off signaling 

would simply test at integer multiples of T whether the received signal is positive 
or zero. Clearly the probability of error in this noise-free case would be zero. 

In Figure 14.8(b) we show the same PAM signal but with wideband Gaussian noise 
added. If h(t) is the identity system and the threshold of the detector is chosen 
according to Eq. (14.18) with P (H0) = P (H1) i.e. using the likelihood ratio 
test but without the matched filter, the decoded binary sequence is 0100111111011 
which has 6 bit errors. Figure 14.8(c) shows the output of the matched filter, i.e. 
with h(t) = s(−t). The detector threshold is again chosen based on the likelihood 
ratio test. The resulting decoded binary sequence is 1010011111000 which has 2 
bit errors 

In Figure 14.9 we show the corresponding results when antipodal rather than on-
off signaling is used. Figure 14.9(a) depicts the transmitted waveform with the 
same binary sequence as was used in Figure 14.8, and Figure 14.9(b) the received 
signal including additive noise. If h(t) = δ(t) and P (H0) = P (H1), then the choice 
of threshold for the likelihood ratio test is zero. The decoded binary sequence is 
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FIGURE 14.9 Binary Detection with antipodal signaling 

0001001011001, resulting in 4 bit errors. With h(t) chosen as the matched filter the 
signal before the threshold detector is that shown in Figure 14.9(c). The resulting 
decoded binary sequence is 1010011011001 with no bit errors. In Table 14.1 we 
summarize the results for this specific example based on a simulation with a binary 
sequence of length 104 . 

No matched filter W/ matched Filter

On/Off Signaling
 0.4808 0.3752


Antipodal Signaling
 0.4620 0.2457 

TABLE 14.1 Bit error rate for a PAM signal illustrating effect of matched filter for 
two different signaling schemes. 
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14.3.4 Pulse Detection in Colored Noise 

In Sections 14.2 and 14.3 the optimal detector was developed under the assumption 
that the noise is white. When the noise is colored , i.e. when its spectral density is 
not flat, the results are easily modified. We again assume a detector of the form of 
Figure 14.4. The two hypotheses are now: 

H1 : r[n] = s[n] + v[n],


H0 : r[n] = v[n] , (14.34)


where v[n] is again a zero-mean Gaussian process but in general, not white. The 
autocorrelation function of v[n] is denoted by Rvv[m] and the power spectral density 
by Svv(ejΩ). The basic approach is to transform the problem to that dealt with in 
the previous section by first processing r[n] with a whitening filter as was discussed 
in Section 10.2.3 , which is always possible as long as Svv(ejΩ) is strictly positive, 
i.e. it is not zero at any value of Ω. This first stage of filtering is depicted in Figure 
14.10. 

Whitening Filter 

r[n] rw[n]�� hw[n] 

FIGURE 14.10 First stage of filtering 

The impulse response hw[n] is chosen so that its output due to the input noise 
v[n] is white, with variance σ2 and, of course, will also be Gaussian. With this 
pre-processing the signal rw[n] now has the form assumed in Section 14.3.4 with 
the white noise w[n] corresponding to v[n] ∗ hw[n] and the pulse s[n] replaced by 
p[n] = s[n] ∗ hw[n]. The detector structure now takes the form shown in Figure 
14.11 where h[n] is again the matched filter, but in this case matched to the pulse 
p[n], i.e. hm[n] is proportional to p[−n]. 

‘H1 ’ 
� n = 0 � >� <Threshold λ 

‘H0 ’ g[0] 
�r[n] 

LTI hw[n] �rw[n] 
LTI h[n] 

g[n] 

FIGURE 14.11 Detector structure with colored noise. 

Assuming that hw[n] is invertible (i.e. its Z-transform has no zeros on the unit 
circle) there is no loss of generality in having first applied a whitening filter. To see 
this concretely denote the combined LTI filter from r[n] to g[n] as hc[n] and assume 
that if whitening had not first been applied, the optimum choice for the filter from 
r[n] to g[n] is hopt[n]. Since 

hc[n] = hw[n] ∗ hm[n] (14.35) 
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where hm[n] denotes the matched filter after whitening. If the performance with 
hopt[n] is better than with hc[n], this would imply that choosing hm[n] as hopt[n] ∗ 
hinv [n] would lead to better performance on the whitened signal. However, as seen w 
in Section 14.3, hm[n] = p[−n] is the optimum choice after the whitening and 
consequently we conclude that 

hm[n] = p[−n] = hopt[n] ∗ hinv 
w [n] (14.36) 

or equivalently 
hopt[n] = hw[n] ∗ p[−n] (14.37) 

In the following example we illustrate the determination of the optimum detector 
in the case of colored noise. 

EXAMPLE 14.2 Pulse Detection in Colored Noise 

Consider a pulse s[n] in colored noise v[n], with 

s[n] = δ[n] . (14.38) 

and 

1 
Rvv[m] = ( )|m|, so σ2 = 1 

2 v 

3/4 
then Svv(z) = 

(1 − 1 1 . (14.39) 
z−1)(1 − z)2 2 

The noise component w[n] of desired output of the whitening filter has autocorre­
lation function Rww[m] = σ2δ[m] and consequently we require that 

Svv(z)Hw(z)Hw(1/z) = σ2 

σ2 4 1 1 
Thus Hw(z)Hw(1/z) = = σ2 z−1)(1 − z) . (14.40) 

Svv (z) 3
(1 − 

2 2 

We can of course choose σ arbitrarily (since it will only impact the overall gain). 
Choosing σ2 = 1, either 

1 
Hw(z) = (1 − z−1), or 

2 
1 

Hw(z) = (1 − z) (14.41) 
2 

Note that the second of these choices is non-causal. There are also other possi­
bile choices since we can cascade either choice with an all-pass Hap(z) such that 
Hap(z)Hap(1/z) = 1. 
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Section 14.3 A General Detector Structure 261      

With the first choice for Hw(z) from above, we have 

1 
z−1),Hw(z) = (1 − 

2 
1 

hw[n] = δ[n] − δ[n − 1],
2


σ2 = 3/4,


1

p[n] = s[n] − s[n − 1], and 

2 
h[n] = Ap[−n] for any convenient choice of A. (14.42) 

In our discussion in Section 14.3 of the detection of a pulse in white noise, we 
observed that the energy in the pulse affects performance of the detector but not 
the specific pulse shape. This was a consequence of the fact that the filter is chosen 
to maximize the quantity √1E 

Rss[0] where s[n] is the pulse to be detected. For the 
case of a pulse in colored noise, we correspondingly want to maximize the energy 
Ep in p[n] where 

p[n] = hw[n] ∗ s[n] (14.43) 

Expressed in the frequency domain, 

P (ejΩ) = Hw(ejΩ)S(ejΩ) (14.44) 

and from Parseval’s relation 

Ep = 
2

1 
π 

∫ π 

|Hw(ejΩ)|2|S(ejΩ)|2dΩ (14.45a) 

2 

= 
1 

∫−
π

π 

|S(ejΩ)|
dΩ (14.45b) 

2π −π Svv(ejΩ) 

Based only on Eq. (14.45b), Ep can be maximized by placing all of the energy of the 
transmitted signal s[n] at the frequency at which Svv(ejΩ) is minimum. However, 
in many situations the transmitted signal is constrained in other ways, such as 
peak amplitude and/or time duration. The task then is to choose s[n] to maximize 
the integral in Eq. (14.45b) under these constraints. There is generally no closed-
form solution to this optimization problem, but roughly speaking a good solution 
will distribute the signal energy so that it is more concentrated where the power 
Svv(ejΩ) of the colored noise is less. 
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