
C H A P T E R 11 

Wiener Filtering 

INTRODUCTION 

In this chapter we will consider the use of LTI systems in order to perform minimum 
mean-square-error (MMSE) estimation of a WSS random process of interest, given 
measurements of another related process. The measurements are applied to the 
input of the LTI system, and the system is designed to produce as its output the 
MMSE estimate of the process of interest. 

We first develop the results in discrete time, and for convenience assume (unless 
otherwise stated) that the processes we deal with are zero-mean. We will then show 
that exactly analogous results apply in continuous time, although their derivation 
is slightly different in certain parts. 

Our problem in the DT case may be stated in terms of Figure 11.1. 

Here x[n] is a WSS random process that we have measurements of. We want 
to determine the unit sample response or frequency response of the above LTI 
system such that the filter output ŷ[n] is the minimum-mean-square-error (MMSE) 
estimate of some “target” process y[n] that is jointly WSS with x[n]. Defining the 
error e[n] as 

Δ 
e[n] = ŷ[n] − y[n] , (11.1) 

we wish to carry out the following minimization: 

min ǫ = E{e 2[n]} .	 (11.2) 
h[ ]· 

The resulting filter h[n] is called the Wiener filter for estimation of y[n] from x[n]. 

In some contexts it is appropriate or convenient to restrict the filter to be an 
FIR (finite-duration impulse response) filter of length N , e.g. h[n] = 0 except in 
the interval 0 ≤ n ≤ N − 1. In other contexts the filter impulse response can 
be of infinite duration and may either be restricted to be causal or allowed to 
be noncausal. In the next section we discuss the FIR and general noncausal IIR 

x[n] � LTI h[n] �	 ŷ[n] = estimate 

y[n] = target process 

FIGURE 11.1 DT LTI filter for linear MMSE estimation. 
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196 Chapter 11 Wiener Filtering 

(infinite-duration impulse response) cases. A later section deals with the more 
involved case where the filter is IIR but restricted to be causal. 

If x[n] = y[n]+v[n] where y[n] is a signal and v[n] is noise (both random processes), 
then the above estimation problem is called a filtering problem. If y[n] = x[n + n0] 
with n0 positive, and if h[n] is restricted to be causal, then we have a prediction 
problem. Both fit within the same general framework, but the solution under the 
restriction that h[n] be causal is more subtle. 

11.1 NONCAUSAL DT WIENER FILTER 

To determine the optimal choice for h[n] in (11.2), we first expand the error criterion 
in (11.2): 

ǫ = E 


 

 

+∞∑ 

k −∞=

h[k]x[n − k] − y[n] 

)2

 

 
. (11.3) 

The impulse response values that minimize ǫ can then be obtained by setting 
∂ǫ 

= 0 for all values of m for which h[m] is not restricted to be zero (or 
∂h[m]

otherwise pre-specified):


∂ǫ 
∂h[m] 

= E 


 

 

2 h[k]x[n − k] − y[n] x[n − m] 
k 

e[n] 


 

 

= 0 . (11.4) 

The above equation implies that 

E{e[n]x[n − m]} = 0, or 

Rex[m] = 0, for all m for which h[m] can be freely chosen. (11.5) 

You may recognize the above equation (or constraint) on the relation between the 
input and the error as the familiar orthogonality principle: for the optimal filter, 
the error is orthogonal to all the data that is used to form the estimate. Under our 
assumption of zero-mean x[n], orthogonality is equivalent to uncorrelatedness. As 
we will show shortly, the orthogonality principle also applies in continuous time. 

Note that 

Rex[m] = E{e[n]x[n − m]} 

= E{(ŷ[n] − y[n])x[n − m]} 

= R [m] − Ryx[m] . 
yx

(11.6) 

Therefore, an alternative way of stating the orthogonality principle (11.5) is that 

R
yx

[m] = Ryx[m] for all appropriate m . (11.7) 
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In other words, for the optimal system, the cross-correlation between the input and 
output of the estimator equals the cross-correlation between the input and target 
output. 

To actually find the impulse response values, observe that since ŷ[n] is obtained 
by filtering x[n] through an LTI system with impulse response h[n], the following 
relationship applies: 

R
yx

[m] = h[m] ∗ Rxx[m] . (11.8) 

Combining this with the alternative statement of the orthogonality condition, we 
can write 

h[m] ∗ Rxx[m] = Ryx[m] , (11.9) 

or equivalently, ∑ 
h[k]Rxx[m − k] = Ryx[m] (11.10) 

k 

Equation (11.10) represents a set of linear equations to be solved for the impulse 
response values. If the filter is FIR of length N , then there are N equations in the 
N unrestricted values of h[n]. For instance, suppose that h[n] is restricted to be 
zero except for n ∈ [0, N − 1]. The condition (11.10) then yields as many equations 
as unknowns, which can be arranged in the following matrix form, which you may 
recognize as the appropriate form of the normal equations for LMMSE estimation, 
which we introduced in Chapter 8: 
 

Rxx[0] Rxx[−1] Rxx[1 − N ] 
 

h[0] 
  

Ryx[0] 
 · · · 

 Rxx[1] Rxx[0] · · · Rxx[2 − N ]  h[1] 
= 

 Ryx[1] 
.


. . . . 


. 

 
. 


. . . . 


. 

 
. 

 . . . .  .   .  

Rxx[N − 1] Rxx[N − 2] Rxx[0] h[N − 1] Ryx[N − 1] · · · 
(11.11) 

These equations can now be solved for the impulse response values. Because of the 
particular structure of these equations, there are efficient methods for solving for 
the unknown parameters, but further discussion of these methods is beyond the 
scope of our course. 

In the case of an IIR filter, equation (11.10) must hold for an infinite number of 
values of m and, therefore, cannot simply be solved by the methods used for a 
finite number of linear equations. However, if h[n] is not restricted to be causal or 
FIR, the equation (11.10) must hold for all values of m from −∞ to +∞, so the 
z-transform can be applied to equation (11.10) to obtain 

H(z)Sxx(z) = Syx(z) (11.12) 

The optimal transfer function, i.e. the transfer function of the resulting (Wiener) 
filter, is then 

H(z) = Syx(z)/Sxx(z) (11.13) 

If either of the correlation functions involved in this calculation does not possess 
a z-transform but if both possess Fourier transforms, then the calculation can be 
carried out in the Fourier transform domain. 
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198 Chapter 11 Wiener Filtering 

Note the similarity between the above expression for the optimal filter and the 
expression we obtained in Chapters 5 and 7 for the gain σY X /σXX that multiplies 
a zero-mean random variable X to produce the LMMSE estimator for a zero-mean 
random variables Y . In effect, by going to the transform domain or frequency 
domain, we have decoupled the design into a problem that — at each frequency — 
is as simple as the one we solved in the earlier chapters. 

As we will see shortly, in continuous time the results are exactly the same: 

R
yx

(τ) = Ryx(τ ), (11.14) 

h(τ) ∗ Rxx(τ) = Ryx(τ ), (11.15) 

H(s)Sxx(s) = Syx(s), and (11.16) 

H(s) = Syx(s)/Sxx(s) (11.17) 

The mean-square-error corresponding to the optimum filter, i.e. the minimum 
MSE, can be determined by straightforward computation. We leave you to show 
that 

Ree[m] = Ryy[m] − R [m] = Ryy [m] − h[m] ∗ Rxy[m] (11.18) 
yy

where h[m] is the impulse response of the optimal filter. The MMSE is then just 
Ree[0]. It is illuminating to rewrite this in the frequency domain, but dropping the 
argument ejΩ on the power spectra S (ejΩ) and frequency response H(ejΩ) below ∗∗
to avoid notational clutter: 

1 
∫ π 

MMSE = Ree[0] = See dΩ 
2π −π 

1 
∫ π 

= (Syy − HSxy) dΩ 
2π −π 

1 
∫ π SyxSxy

= 
2π −π 

Syy 

(
1 − 

SyySxx 

) 
dΩ 

1 
∫ π 

= Syy 

(
1 − ρyxρyx 

∗ 
) 

dΩ . (11.19) 
2π −π 

The function ρyx(ejΩ) defined by 

ρyx(ejΩ) = 
Syx(ejΩ) 

(11.20) 
(ejΩ)

√
Syy (ejΩ)Sxx

evidently plays the role of a frequency-domain correlation coefficient (compare with 
our earlier definition of the correlation coefficient between two random variables). 
This function is sometimes referred to as the coherence function of the two processes. 
Again, note the similarity of this expression to the expression σY Y (1−ρ2 ) that we Y X 
obtained in a previous lecture for the (minimum) mean-square-error after LMMSE 
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Section 11.1 Noncausal DT Wiener Filter 199 

estimation of a random variable Y using measurements of a random variable X. 

EXAMPLE 11.1 Signal Estimation in Noise (Filtering) 

Consider a situation in which x[n], the sum of a target process y[n] and noise v[n], 
is observed: 

x[n] = y[n] + v[n] . (11.21) 

We would like to estimate y[n] from our observations of x[n]. Assume that the 
signal and noise are uncorrelated, i.e. Rvy[m] = 0. Then 

Rxx[m] = Ryy[m] + Rvv[m], (11.22) 

Ryx[m] = Ryy[m], (11.23) 

H(ejΩ) = 
Syy(ejΩ) 

. (11.24) 
Syy(ejΩ) + Svv (ejΩ) 

At values of Ω for which the signal power is much greater than the noise power, 
H(ejΩ) ≈ 1. Where the noise power is much greater than the signal power, 
H(ejΩ) ≈ 0. For example, when 

Syy (e
jΩ) = (1 + e−jΩ)(1 + ejΩ) = 2(1 + cos Ω) (11.25) 

and the noise is white, the optimal filter will be a low-pass filter with a frequency 
response that is appropriately shaped, shown in Figure 11.2. Note that the filter in 

4 

3.5


3


2.5


2


1.5


1


0.5


0


Ω 
−π −π/2 0 π/2 π 

S (ejΩ)
yy

H(ejΩ) 
S (ejΩ)

vv

FIGURE 11.2 Optimal filter frequency response, H(ejΩ), input signal PSD signal, 
Syy(ejΩ), and PSD of white noise, Svv(ejΩ). 

this case must have an impulse response that is an even function of time, since its 
frequency response is a real – and hence even – function of frequency. 

Figure 11.3 shows a simulation example of such a filter in action (though for a 
different Syy(ejΩ). The top plot is the PSD of the signal of interest; the middle 
plot shows both the signal s[n] and the measured signal x[n]; and the bottom plot 
compares the estimate of s[n] with s[n] itself. 
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200 Chapter 11 Wiener Filtering 

FIGURE 11.3 Wiener filtering example. (From S.M. Kay, Fundamentals of Statistical

Signal Processing: Estimation Theory, Prentice Hall, 1993. Figures 11.9 and 11.10.)
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EXAMPLE 11.2 Prediction 

Suppose we wish to predict the measured process n0 steps ahead, so 

y[n] = x[n + n0] . (11.26) 

Then 
Ryx[m] = Rxx[m + n0] (11.27) 

so the optimum filter has system function 

H(z) = z n0 . (11.28) 

This is of course not surprising: since we’re allowing the filter to be noncausal, 
prediction is not a difficult problem! Causal prediction is much more challenging 
and interesting, and we will examine it later in this chapter. 

EXAMPLE 11.3 Deblurring (or Deconvolution) 

v[n] 

x[n] � G(z) �⊕� � H(z) � x̂[n] 
r[n] ξ[n]


Known, stable system Wiener filter


FIGURE 11.4 Wiener filtering of a blurred and noisy signal. 

In the Figure 11.4, r[n] is a filtered or “blurred” version of the signal of interest, 
x[n], while v[n] is additive noise that is uncorrelated with x[n]. We wish to design a 
filter that will deblur the noisy measured signal ξ[n] and produce an estimate of the 
input signal x[n]. Note that in the absence of the additive noise, the inverse filter 
1/G(z) will recover the input exactly. However, this is not a good solution when 
noise is present, because the inverse filter accentuates precisely those frequencies 
where the measurement power is small relative to that of the noise. We shall 
therefore design a Wiener filter to produce an estimate of the signal x[n]. 

We have shown that the cross-correlation between the measured signal, which is 
the input to the Wiener filter, and the estimate produced at its output is equal to 
the cross-correlation between the measurement process and the target process. In 
the transform domain, the statement of this condition is 

S
xξ

(z) = Sxξ(z) (11.29) 

or 
Sξξ(z)H(z) = S (z) = Sxξ(z) . (11.30) 

x̂ξ 
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202 Chapter 11 Wiener Filtering 

We also know that 

Sξξ(z) = Svv(z) + Sxx(z)G(z)G(1/z) (11.31) 

Sxξ(z) = Sxr(z) (11.32) 

= Sxx(z)G(1/z), (11.33) 

where we have (in the first equality above) used the fact that Svr(z) = G(1/z)Svx(z) = 
0. We can now write 

Sxx(z)G(1/z)
H(z) = . (11.34) 

Svv(z) + Sxx(z)G(z)G(1/z) 

We leave you to check that this system function assumes reasonable values in the 
limiting cases where the noise power is very small, or very large. It is also interesting 
to verify that the same overall filter is obtained if we first find an MMSE estimate 
r̂[n] from ξ[n] (as in Example 11.1), and then pass r̂[n] through the inverse filter 
1/G(z). 

EXAMPLE 11.4 “De-Multiplication” 

A message s[n] is transmitted over a multiplicative channel (e.g. a fading channel) 
so that the received signal r[n] is 

r[n] = s[n]f [n] . (11.35) 

Suppose s[n] and f [n] are zero mean and independent. We wish to estimate s[n] 
from r[n] using a Wiener filter. 

Again, we have 

Rsr[m] = R
sr

[m] 

= h[m] ∗ Rrr[m] . (11.36) 

Rss[m]Rff [m] 

But we also know that Rsr[m] = 0. Therefore h[m] = 0. This example emphasizes 
that the optimality of a filter satisfying certain constraints and minimizing some 
criterion does not necessarily make the filter a good one. The constraints on the 
filter and the criterion have to be relevant and appropriate for the intended task. 
For instance, if f [n] was known to be i.i.d. and +1 or −1 at each time, then simply 
squaring the received signal r[n] at any time would have at least given us the value 
of s2[n], which would seem to be more valuable information than what the Wiener 
filter produces in this case. 
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11.2 NONCAUSAL CT WIENER FILTER 

In the previous discussion we derived and illustrated the discrete-time Wiener filter 
for the FIR and noncausal IIR cases. In this section we derive the continuous-time 
counterpart of the result for the noncausal IIR Wiener filter. The DT derivation 
involved taking derivatives with respect to a (countable) set of parameters h[m], 
but in the CT case the impulse response that we seek to compute is a CT function 
h(t), so the DT derivation cannot be directly copied. However, you will see that 
the results take the same form as in the DT case; furthermore, the derivation below 
has a natural DT counterpart, which provides an alternate route to the results in 
the preceding section. 

Our problem is again stated in terms of Figure 11.5. 

Estimator 

x(t) � h(t), H(jω) �	 ŷ(t) = estimate 

y(t) = target process 

FIGURE 11.5 CT LTI filter for linear MMSE estimation. 

Let x(t) be a (zero-mean) WSS random process that we have measurements of. 
We want to determine the impulse response or frequency response of the above LTI 
system such that the filter output ŷ(t) is the LMMSE estimate of some (zero-mean) 
“target” process y(t) that is jointly WSS with x(t). We can again write 

Δ 
e(t) = y(t) − ŷ(t) 

min ǫ = E{e 2(t)} . (11.37) 
h(	 )· 

Assuming the filter is stable (or at least has a well-defined frequency response), the 
process ŷ(t) is jointly WSS with x(t). Furthermore, 

E[ŷ(t + τ)y(t)] = h(τ) ∗ Rxy(τ ) = R
ŷy

(τ) , (11.38) 

The quantity we want to minimize can again be written as 

ǫ = E{e 2(t)} = Ree(0) ,	 (11.39) 

where the error autocorrelation function Ree(τ) is — using the definition in (11.37) 
— evidently given by 

Ree(τ) = Ryy(τ) + R
y
(τ) − R 

y
(τ ) − R

yy
(τ) . (11.40) 

ŷ̂ ŷ ̂
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Thus 

ǫ = E{e 2(t)} = Ree(0) = 
1 

∫ ∞ 

See(jω) dω 
2π −∞ 

= 
1 

∫ ∞ (
Syy(jω) + S

y
(jω) − S 

y (jω) − S
yy

(jω)
) 

dω 
2π ŷ̂ ŷ ̂

−∞ 

1 
∫ ∞ 

= (Syy + HH∗Sxx − H∗Syx − HSxy) dω , (11.41) 
2π −∞ 

where we have dropped the argument jω from the PSDs in the last line above for 
notational simplicity, and have used H∗ to denote the complex conjugate of H(jω), 
namely H(−jω). The expression in this last line is obtained by using the fact that 
x(t) and ŷ(t) are the WSS input and output, respectively, of a filter whose frequency 
response is H(jω). Note also that because Ryx(τ ) = Rxy(−τ ) we have 

Syx = Syx(jω) = Sxy(−jω) = S∗ . (11.42) xy 

Our task is now to choose H(jω) to minimize the integral in (11.41). We can do 
this by minimizing the integrand for each ω. The first term in the integrand does 
not involve or depend on H, so in effect we need to minimize 

HH∗Sxx − H∗Syx − HSxy = HH∗Sxx − H∗Syx − HS∗ . (11.43) yx 

If all the quantities in this equation were real, this minimization would be straight­
forward. Even with a complex H and Syx, however, the minimization is not hard. 

The key to the minimization is an elementary technique referred to as completing 
the square. For this, we write the quantity in (11.43) in terms of the squared 
magnitude of a term that is linear in H. This leads to the following rewriting of 
(11.43): 

Syx Syx 
∗ ) S∗Syx yx 

(
H

√
Sxx − √

Sxx 

)(
H∗√Sxx − √

Sxx 
− 

Sxx 
. (11.44) 

In writing 
√

Sxx, we have made use of the fact that Sxx(jω) is real and nonnegative. 
We have also felt free to divide by 

√
Sxx(jω) because for any ω where this quantity 

is 0 it can be shown that Syx(jω) = 0 also. The optimal choice of H(jω) is therefore 
arbitrary at such ω, as evident from (11.43). We thus only need to compute the 
optimal H at frequencies where 

√
Sxx(jω) > 0. 

Notice that the second term in parentheses in (11.44) is the complex conjugate 
of the first term, so the product of these two terms in parentheses is real and 
nonnegative. Also, the last term does not involve H at all. To cause the terms 
in parentheses to vanish and their product to thereby become 0, which is the best 
we can do, we evidently must choose as follows (assuming there are no additional 
constraints such as causality on the estimator): 

Syx(jω)
H(jω) = (11.45) 

Sxx(jω) 

This expression has the same form as in the DT case. The formula for H(jω) causes 
it to inherit the symmetry properties of Syx(jω), so H(jω) has a real part that is 
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even in ω, and an imaginary part that is odd in ω. Its inverse transform is thus a 
real impulse response h(t), and the expression in (11.45) is the frequency response 
of the optimum (Wiener) filter. 

With the choice of optimum filter frequency response in (11.45), the mean-square­
error expression in (11.41) reduces (just as in the DT case) to: 

1 
∫ ∞ 

MMSE = Ree(0) = See dω 
2π −∞ 

1 
∫ ∞ 

= (Syy − HSxy) dω 
2π −∞ 

= 
1 

∫ ∞ 

Syy 

(
1 − 

SyxSxy 
) 

dω 
2π SyySxx−∞ 

1 
∫ ∞ 

= Syy(1 − ρρ∗) dω (11.46) 
2π −∞ 

where the function ρ(jω) is defined by 

Syx(jω)
ρ(jω) = (11.47) √

Syy(jω)Sxx(jω) 

and evidently plays the role of a (complex) frequency-by-frequency correlation co­
efficient, analogous to that played by the correlation coefficient of random variables 
Y and X. 

11.2.1 Orthogonality Property 

Rearranging the equation for the optimal Wiener filter, we find 

H Sxx = Syx (11.48) 

or 
S

yx = Syx , (11.49) 

or equivalently 
R

yx
(τ) = Ryx(τ) for all τ . (11.50) 

Again, for the optimal system, the cross-correlation between the input and output 
of the estimator equals the cross-correlation between the input and target output. 

Yet another way to state the above result is via the following orthogonality property: 

Rex(τ) = R (τ ) − Ryx(τ ) = 0 for all τ . (11.51) 
yx

In other words, for the optimal system, the error is orthogonal to the data. 

11.3 CAUSAL WIENER FILTERING 

In the preceding discussion we developed the Wiener filter with no restrictions on 
the filter frequency response H(jω). This allowed us to minimize a frequency-
domain integral by choosing H(jω) at each ω to minimize the integrand. However, 

c©Alan V. Oppenheim and George C. Verghese, 2010 



206 Chapter 11 Wiener Filtering 

if we constrain the filter to be causal, then the frequency response cannot be chosen 
arbitrarily at each frequency, so the previous approach needs to be modified. It can 
be shown that for a causal system the real part of H(jω) can be determined from 
the imaginary part, and vice versa, using what is known as a Hilbert transform. 
This shows that H(jω) is constrained in the causal case. (We shall not need to deal 
explicitly with the particular constraint relating the real and imaginary parts of 
H(jω), so we will not pursue the Hilbert transform connection here.) The develop­
ment of the Wiener filter in the causal case is therefore subtler than the unrestricted 
case, but you know enough now to be able to follow the argument. 

Recall our problem, described in terms of Figure 11.6. 

Estimator 

x(t) � h(t), H(jω) � ŷ(t) = estimate 

y(t) = target process 

FIGURE 11.6 Representation of LMMSE estimation using an LTI system. 

The input x(t) is a (zero-mean) WSS random process that we have measurements 
of, and we want to determine the impulse response or frequency response of the 
above LTI system such that the filter output ŷ(t) is the LMMSE estimate of some 
(zero-mean) “target” process y(t) that is jointly WSS with x(t): 

Δ 
e(t) = y(t) − ŷ(t) 

min ǫ = E{e 2(t)} . (11.52) 
h( )· 

We shall now require, however, that the filter be causal. This is essential in, for 
example, the problem of prediction, where y(t) = x(t + t0) with t0 > 0. 

We have already seen that the quantity we want to minimize can be written as 

1 
∫ ∞ 

ǫ = E{e 2(t)} = Ree(0) = See(jω) dω 
2π −∞ 

= 
1 

∫ ∞ (
Syy(jω) + S (jω) − S (jω) − S (jω)

) 
dω 

y y yy2π ŷ̂ ŷ ̂
−∞ 

1 
∫ ∞ 

= (Syy + HH∗Sxx − H∗Syx − HSxy) dω (11.53) 
2π −∞ 

Syx 2 
yx 

= 
1 

∫ ∞ ∣∣∣H
√

Sxx − 
∣∣∣ dω +

1 
∫ ∞ (

Syy − 
SyxS∗ ) 

dω . 
2π 

√
Sxx 2π Sxx−∞ −∞ 

(11.54) 

The last equality was the result of “completing the square” on the integrand in the 
preceding integral. In the case where H is unrestricted, we can set the first integral 
of the last equation to 0 by choosing 

Syx(jω)
H(jω) = (11.55) 

Sxx(jω) 
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at each frequency. The second integral of the last equation is unaffected by our 
choice of H, and determines the MMSE. 

If the Wiener filter is required to be causal, then we have to deal with the integral 

Syx 2 

2

1 
π 

∫ ∞ ∣∣∣H
√

Sxx − √
Sxx 

∣∣∣ dω (11.56) 
−∞ 

as a whole when we minimize it, because causality imposes constraints on H(jω) 
that prevent it being chosen freely at each ω. (Because of the Hilbert transform 
relationship mentioned earlier, we could for instance choose the real part of H(jω) 
freely, but then the imaginary part would be totally determined.) We therefore 
have to proceed more carefully. 

Note first that the expression we obtained for the integrand in (11.56) by completing 
the square is actually not quite as general as we might have made it. Since we may 
need to use all the flexibility available to us when we tackle the constrained problem, 
we should explore how generally we can complete the square. Specifically, instead 
of using the real square root 

√
Sxx of the PSD Sxx, we could choose a complex 

square root Mxx, defined by the requirement that 

M∗ or (jω) = Mxx(jω)Mxx(−jω) , (11.57) Sxx = Mxx xx Sxx

and correspondingly rewrite the criterion in (11.56) as 

21 
∫ ∞ ∣∣∣HMxx − 

Syx 
∣∣∣ dω , (11.58) 

2π M ∗−∞ xx 

which is easily verified to be the same criterion, although written differently. The 
quantity Mxx(jω) is termed a spectral factor of Sxx(jω) or a modeling filter for the 
process x. The reason for the latter name is that passing (zero-mean) unit-variance 
white noise through a filter with frequency response Mxx(jω) will produce a process 
with the PSD Sxx(jω), so we can model the process x as being the result of such 
a filtering operation. Note that the real square root 

√
Sxx(jω) we used earlier is a 

special case of a spectral factor, but others exist. In fact, multiplying 
√

Sxx(jω) by 
an all-pass frequency response A(jω) will yield a modeling filter: 

A(jω) 
√

Sxx(jω) = Mxx(jω) , A(jω)A(−jω) = 1 . (11.59) 

Conversely, it is easy to show that the frequency response of any modeling filter 
can be written as the product of an all-pass frequency response and 

√
Sxx(jω). 

It turns out that under fairly mild conditions (which we shall not go into here) a 
PSD is guaranteed to have a spectral factor that is the frequency response of a stable 
and causal system, and whose inverse is also the frequency response of a stable and 
causal system. (To simplify how we talk about such factors, we shall adopt an abuse 
of terminology that is common when talking about Fourier transforms, referring to 
the factor itself — rather than the system whose frequency response is this factor 
— as being stable and causal, with a stable and causal inverse.) For instance, if 

ω2 + 9 
Sxx(jω) = , (11.60) 

ω2 + 4 
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then the required factor is 
jω + 3 

Mxx(jω) = . (11.61) 
jω + 2 

We shall limit ourselves entirely to Sxx that have such a spectral factor, and assume 
for the rest of the derivation that the Mxx introduced in the criterion (11.58) is 
such a factor. (Keep in mind that wherever we ask for a stable system here, we 
can actually make do with a system with a well-defined frequency response, even if 
it’s not BIBO stable, except that our results may then need to be interpreted more 
carefully.) 

With these understandings, it is evident that the term HMxx in the integrand in 
(11.58) is causal, as it is the cascade of two causal terms. The other term, Syx/M∗ ,xx

is generally not causal, but we may separate its causal part out, denoting the 
transform of its causal part by [Syx/M∗ ]+, and the transform of its anti-causal part xx

by [Syx/M∗ ] (In the DT case, the latter would actually denote the transform of xx −. 
the strictly anti-causal part, i.e., at times −1 and earlier; the value at time 0 would 
be retained with the causal part.) 

Now consider rewriting (11.58) in the time domain, using Parseval’s theorem. If 
we denote the inverse transform operation by I{ · }, then the result is the following 
rewriting of our criterion: 

2
∫ ∞ ∣∣∣I{HMxx} − I{[Syx/M∗ ]+ − I{[Syx/M ∗ ]−} 

∣∣∣ dt (11.62) xx xx
−∞ 

Since the term I{HMxx} is causal (i.e., zero for negative time), the best we can 
do with it, as far as minimizing this integral is concerned, is to cancel out all of 

/M∗ In other words, our best choice is I{[Syx xx]+}. 

= [Syx/M∗ ]+ , (11.63) HMxx xx

or 
1 [ Syx(jω) ]

H(jω) = . (11.64) 
Mxx(jω) Mxx(−jω) + 

Note that the stability and causality of the inverse of Mxx guarantee that this last 
step preserves stability and causality, respectively, of the solution. 

The expression in (11.64) is the solution of the Wiener filtering problem under the 
causality constraint. It is also evident now that the MMSE is larger than in the 
unconstrained (noncausal) case by the amount 

2 
ΔMMSE = 

1 
∫ ∞ ∣∣∣

[ Syx 
] ∣∣∣ dω . (11.65) 

2π M ∗xx−∞ − 

EXAMPLE 11.5 DT Prediction 

Although the preceding results were developed for the CT case, exactly analogous 
expressions with obvious modifications (namely, using the DTFT instead of the 
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CTFT, with integrals from −π to π rather than −∞ to ∞, etc.) apply to the DT 
case. 

Consider a process x[n] that is the result of passing (zero-mean) white noise of unit 
variance through a (modeling) filter with frequency response 

Mxx(ejΩ) = α0 + α1e
−jΩ , (11.66) 

where both α0 and α1 are assumed nonzero. This filter is stable and causal, and 
if α1 < α0 then the inverse is stable and causal too. We assume this condition | | | |
holds. (If it doesn’t, we can always find another modeling filter for which it does, 
by multiplying the present filter by an appropriate allpass filter.) 

Suppose we want to do causal one-step prediction for this process, so y[n] = x[n+1]. 
Then Ryx[m] = Rxx[m + 1], so 

Syx = ejΩSxx = ejΩMxxM∗ . (11.67) xx 

Thus [ Syx 
] 

= [ejΩMxx]+ = α1 , (11.68) 
M∗ +xx 

and so the optimum filter, according to (11.64), has frequency response 

H(ejΩ) = 
α1 

. (11.69) 
α0 + α1e−jΩ 

The associated MMSE is evaluated by the expression in (11.65), and turns out to 
be simply α2

0 (which can be compared with the value of α2
0 + α1

2 that would have 
been obtained if we estimated x[n + 1] by just its mean value, namely zero). 

11.3.1 Dealing with Nonzero Means 

We have so far considered the case where both x and y have zero means (and the 
practical consequence has been that we haven’t had to worry about their PSDs 
having impulses at the origin). If their means are nonzero, then we can do a better 
job of estimating y(t) if we allow ourselves to adjust the estimates produced by the 
LTI system, by adding appropriate constants (to make an affine estimator). For 
this, we can first consider the problem of estimating y − µy from x − µx, illustrated 
in Figure 11.7 

Estimator 

� ŷ(t) − µy = estimate x(t) − µx 
� h(t), H(jω) 

y(t) − µy = target process 

FIGURE 11.7 Wiener filtering with non-zero means. 

Denoting the transforms of the covariances Cxx(τ) and Cyx(τ) by Dxx(jω) and 
Dyx(jω) respectively (these transforms are sometimes referred to as covariance 
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210 Chapter 11 Wiener Filtering 

PSDs), the optimal unconstrained Wiener filter for our task will evidently have a 
frequency response given by 

Dyx(jω)
H(jω) = . (11.70) 

Dxx(jω) 

We can then add µy to the output of this filter to get our LMMSE estimate of y(t). 
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