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Power Spectral Density 

INTRODUCTION 

Understanding how the strength of a signal is distributed in the frequency domain, 
relative to the strengths of other ambient signals, is central to the design of any 
LTI filter intended to extract or suppress the signal. We know this well in the case 
of deterministic signals, and it turns out to be just as true in the case of random 
signals. For instance, if a measured waveform is an audio signal (modeled as a 
random process since the specific audio signal isn’t known) with additive distur­
bance signals, you might want to build a lowpass LTI filter to extract the audio 
and suppress the disturbance signals. We would need to decide where to place the 
cutoff frequency of the filter. 

There are two immediate challenges we confront in trying to find an appropriate 
frequency-domain description for a WSS random process. First, individual sample 
functions typically don’t have transforms that are ordinary, well-behaved functions 
of frequency; rather, their transforms are only defined in the sense of generalized 
functions. Second, since the particular sample function is determined as the out­
come of a probabilistic experiment, its features will actually be random, so we have 
to search for features of the transforms that are representative of the whole class 
of sample functions, i.e., of the random process as a whole. 

It turns out that the key is to focus on the expected power in the signal. This is a 
measure of signal strength that meshes nicely with the second-moment characteri­
zations we have for WSS processes, as we show in this chapter. For a process that 
is second-order ergodic, this will also correspond to the time average power in any 
realization. We introduce the discussion using the case of CT WSS processes, but 
the DT case follows very similarly. 

10.1	 EXPECTED INSTANTANEOUS POWER AND POWER SPECTRAL 
DENSITY 

Motivated by situations in which x(t) is the voltage across (or current through) a 
unit resistor, we refer to x2(t) as the instantaneous power in the signal x(t). When 
x(t) is WSS, the expected instantaneous power is given by 

1 
∫ ∞ 

E[x 2(t)] = Rxx(0) = Sxx(jω) dω , (10.1) 
2π −∞ 
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184 Chapter 10 Power Spectral Density 

where Sxx(jω) is the CTFT of the autocorrelation function Rxx(τ). Furthermore, 
when x(t) is ergodic in correlation, so that time averages and ensemble averages 
are equal in correlation computations, then (10.1) also represents the time-average 
power in any ensemble member. Note that since Rxx(τ) = Rxx(−τ), we know 
Sxx(jω) is always real and even in ω; a simpler notation such as Pxx(ω) might 
therefore have been more appropriate for it, but we shall stick to Sxx(jω) to avoid 
a proliferation of notational conventions, and to keep apparent the fact that this 
quantity is the Fourier transform of Rxx(τ). 

The integral above suggests that we might be able to consider the expected (in­
stantaneous) power (or, assuming the process is ergodic, the time-average power) 
in a frequency band of width dω to be given by (1/2π)Sxx(jω) dω. To examine 
this thought further, consider extracting a band of frequency components of x(t) 
by passing x(t) through an ideal bandpass filter, shown in Figure 10.1. 

x(t) � H(jω) � y(t) 

� 

� 

H(jω) 
1 

�Δ ��Δ� 

ω0 ω−ω0 

FIGURE 10.1 Ideal bandpass filter to extract a band of frequencies from input, x(t). 

Because of the way we are obtaining y(t) from x(t), the expected power in the 
output y(t) can be interpreted as the expected power that x(t) has in the selected 
passband. Using the fact that 

Syy(jω) = |H(jω)|2Sxx(jω) , (10.2) 

we see that this expected power can be computed as 

1 
∫ +∞ 1 

∫ 
E{y 2(t)} = Ryy(0) = Syy(jω) dω = Sxx(jω) dω . (10.3) 

2π 2π−∞ passband 

Thus 
1 

∫ 
Sxx(jω) dω (10.4) 

2π passband 

is indeed the expected power of x(t) in the passband. It is therefore reasonable to 
call Sxx(jω) the power spectral density (PSD) of x(t). Note that the instanta­
neous power of y(t), and hence the expected instantaneous power E[y2(t)], is always 
nonnegative, no matter how narrow the passband, It follows that, in addition to 
being real and even in ω, the PSD is always nonnegative, Sxx(jω) ≥ 0 for all ω. 
While the PSD Sxx(jω) is the Fourier transform of the autocorrelation function, it 
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Section 10.2 Einstein-Wiener-Khinchin Theorem on Expected Time-Averaged Power 185 

is useful to have a name for the Laplace transform of the autocorrelation function; 
we shall refer to Sxx(s) as the complex PSD. 

Exactly parallel results apply for the DT case, leading to the conclusion that 
Sxx(ejΩ) is the power spectral density of x[n]. 

10.2	 EINSTEIN-WIENER-KHINCHIN THEOREM ON EXPECTED TIME­
AVERAGED POWER 

The previous section defined the PSD as the transform of the autocorrelation func­
tion, and provided an interpretation of this transform. We now develop an alter­
native route to the PSD. Consider a random realization x(t) of a WSS process. 
We have already mentioned the difficulties with trying to take the CTFT of x(t) 
directly, so we proceed indirectly. Let xT (t) be the signal obtained by windowing 
x(t), so it equals x(t) in the interval (−T , T ) but is 0 outside this interval. Thus 

xT (t) = wT (t) x(t) ,	 (10.5) 

where we define the window function wT (t) to be 1 for t < T and 0 otherwise. Let | |
XT (jω) denote the Fourier transform of xT (t); note that because the signal xT (t) is 
nonzero only over the finite interval (−T, T ), its Fourier transform is typically well 
defined. We know that the energy spectral density (ESD) Sxx(jω) of xT (t) is 
given by 

Sxx(jω) = |XT (jω)|2	 (10.6) 

and that this ESD is actually the Fourier transform of xT (τ)∗x←
T (τ), where x←

T (t) = 
xT (−t). We thus have the CTFT pair 

∫ ∞ 

xT (τ) ∗ x←
T (τ) = wT (α)wT (α − τ)x(α)x(α − τ) dα ⇔ |XT (jω)|2 , (10.7) 

−∞ 

or, dividing both sides by 2T (which is valid, since scaling a signal by a constant 
scales its Fourier transform by the same amount), 

1 
∫ ∞	 1 2 

2T
wT (α)wT (α − τ )x(α)x(α − τ ) dα ⇔ 

2T 
|XT (jω)| . (10.8) 

−∞ 

The quantity on the right is what we defined (for the DT case) as the periodogram 
of the finite-length signal xT (t). 

Because the Fourier transform operation is linear, the Fourier transform of the 
expected value of a signal is the expected value of the Fourier transform. We 
may therefore take expectations of both sides in the preceding equation. Since 
E[x(α)x(α − τ)] = Rxx(τ), we conclude that 

1 
Rxx(τ)Λ(τ) ⇔ 

2T
E[|XT (jω)| 2] ,	 (10.9) 

where Λ(τ) is a triangular pulse of height 1 at the origin and decaying to 0 at 
|τ | = 2T , the result of carrying out the convolution wT ∗ wT

←(τ ) and dividing by 

c©Alan V. Oppenheim and George C. Verghese, 2010 



6

186 Chapter 10 Power Spectral Density 

2T . Now taking the limit as T goes to ∞, we arrive at the result


1

Rxx ⇔ Sxx

T →∞ 2T
E[|XT (jω)| 2] . (10.10) (τ) (jω) = lim 

This is the Einstein-Wiener-Khinchin theorem (proved by Wiener, and inde­
pendently by Khinchin, in the early 1930’s, but — as only recently recognized — 
stated by Einstein in 1914). 

The result is important to us because it underlies a basic method for estimating 
Sxx(jω): with a given T , compute the periodogram for several realizations of the 
random process (i.e., in several independent experiments), and average the results. 
Increasing the number of realizations over which the averaging is done will reduce 
the noise in the estimate, while repeating the entire procedure for larger T will 
improve the frequency resolution of the estimate. 

10.2.1 System Identification Using Random Processes as Input 

Consider the problem of determining or “identifying” the impulse response h[n] 
of a stable LTI system from measurements of the input x[n] and output y[n], as 
indicated in Figure 10.2. 

x[n] � h[n] � y[n] 

FIGURE 10.2 System with impulse response h[n] to be determined. 

The most straightforward approach is to choose the input to be a unit impulse 
x[n] = δ[n], and to measure the corresponding output y[n], which by definition is 
the impulse response. It is often the case in practice, however, that we do not wish 
to — or are unable to — pick this simple input. 

For instance, to obtain a reliable estimate of the impulse response in the presence of 
measurement errors, we may wish to use a more “energetic” input, one that excites 
the system more strongly. There are generally limits to the amplitude we can use 
on the input signal, so to get more energy we have to cause the input to act over 
a longer time. We could then compute h[n] by evaluating the inverse transform 
of H(ejΩ), which in turn could be determined as the ratio Y (ejΩ)/X(ejΩ). Care 
has to be taken, however, to ensure that X(ejΩ) = 0 for any Ω; in other words, 
the input has to be sufficiently “rich”. In particular, the input cannot be just a 
finite linear combination of sinusoids (unless the LTI system is such that knowledge 
of its frequency response at a finite number of frequencies serves to determine the 
frequency response at all frequencies — which would be the case with a lumped 
system, i.e., a finite-order system, except that one would need to know an upper 
bound on the order of the system so as to have a sufficient number of sinusoids 
combined in the input). 
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The above constraints might suggest using a randomly generated input signal. For 
instance, suppose we let the input be a Bernoulli process, with x[n] for each n taking 
the value +1 or −1 with equal probability, independently of the values taken at 
other times. This process is (strict- and) wide-sense stationary, with mean value 
0 and autocorrelation function Rxx[m] = δ[m]. The corresponding power spectral 
density Sxx(ejΩ) is flat at the value 1 over the entire frequency range Ω ∈ [−π, π]; 
evidently the expected power of x[n] is distributed evenly over all frequencies. A 
process with flat power spectrum is referred to as a white process (a term that 
is motivated by the rough notion that white light contains all visible frequencies in 
equal amounts); a process that is not white is termed colored. 

Now consider what the DTFT X(ejΩ) might look like for a typical sample function 
of a Bernoulli process. A typical sample function is not absolutely summable or 
square summable, and so does not fall into either of the categories for which we 
know that there are nicely behaved DTFTs. We might expect that the DTFT 
exists in some generalized-function sense (since the sample functions are bounded, 
and therefore do not grow faster than polynomially with n for large n ), and this | |
is indeed the case, but it is not a simple generalized function; not even as “nice” as 
the impulses or impulse trains or doublets that we are familiar with. 

When the input x[n] is a Bernoulli process, the output y[n] will also be a WSS 
random process, and Y (ejΩ) will again not be a pleasant transform to deal with. 
However, recall that 

Ryx[m] = h[m] ∗ Rxx[m] , (10.11) 

so if we can estimate the cross-correlation of the input and output, we can determine 
the impulse response (for this case where Rxx[m] = δ[m]) as h[m] = Ryx[m]. For 
a more general random process at the input, with a more general Rxx[m], we can 
solve for H(ejΩ) by taking the Fourier transform of (10.11), obtaining 

H(ejΩ) = 
Syx(ejΩ) 

. (10.12) 
Sxx(ejΩ) 

If the input is not accessible, and only its autocorrelation (or equivalently its PSD) 
is known, then we can still determine the magnitude of the frequency response, as 
long as we can estimate the autocorrelation (or PSD) of the output. In this case, 
we have 

2 Syy(ejΩ) |H(ejΩ)| = 
Sxx(ejΩ) 

. (10.13) 

Given additional constraints or knowledge about the system, one can often deter­
mine a lot more (or even everything) about H(ejω) from knowledge of its magnitude. 

10.2.2 Invoking Ergodicity 

How does one estimate Ryx[m] and/or Rxx[m] in an example such as the one above? 
The usual procedure is to assume (or prove) that the signals x and y are ergodic. 
What ergodicity permits — as we have noted earlier — is the replacement of an 
expectation or ensemble average by a time average, when computing the expected 
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value of various functions of random variables associated with a stationary random 
process. Thus a WSS process x[n] would be called mean-ergodic if 

N

lim 
1 ∑ 

x[k] . (10.14) 
2N + 1 

E{x[n]} = 
N→∞ 

k=−N 

(The convergence on the right hand side involves a sequence of random variables, 
so there are subtleties involved in defining it precisely, but we bypass these issues in 
6.011.) Similarly, for a pair of jointly-correlation-ergodic processes, we could replace 
the cross-correlation E{y[n + m]x[n]} by the time average of y[n + m]x[n]. 

What ergodicity generally requires is that values taken by a typical sample function 
over time be representative of the values taken across the ensemble. Intuitively, 
what this requires is that the correlation between samples taken at different times 
falls off fast enough. For instance, a sufficient condition for a WSS process x[n] 
with finite variance to be mean-ergodic turns out to be that its autocovariance 
function Cxx[m] tends to 0 as |m| tends to ∞, which is the case with most of the 
examples we deal with in these notes. A more precise (necessary and sufficient) 
condition for mean-ergodicity is that the time-averaged autocovariance function 
Cxx[m], weighted by a triangular window, be 0: 

L

lim 
1 ∑ ( 

1 − |m| ) 

Cxx[m] = 0 . (10.15) 
L→∞ 2L + 1 

m=−L 
L + 1 

A similar statement holds in the CT case. More stringent conditions (involving 
fourth moments rather than just second moments) are needed to ensure that a 
process is second-order ergodic; however, these conditions are typically satisfied for 
the processes we consider, where the correlations decay exponentially with lag. 

10.2.3 Modeling Filters and Whitening Filters 

There are various detection and estimation problems that are relatively easy to 
formulate, solve, and analyze when some random process that is involved in the 
problem — for instance, the set of measurements — is white, i.e., has a flat spectral 
density. When the process is colored rather than white, the easier results from the 
white case can still often be invoked in some appropriate way if: 

(a)	 the colored process is the result of passing a white process through some LTI 
modeling or shaping filter, which shapes the white process at the input into 
one that has the spectral characteristics of the given colored process at the 
output; or 

(b)	 the colored process is transformable into a white process by passing it through 
an LTI whitening filter, which flattens out the spectral characteristics of the 
colored process presented at the input into those of the white noise obtained 
at the output. 
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Thus, a modeling or shaping filter is one that converts a white process to some col­
ored process, while a whitening filter converts a colored process to a white process. 

An important result that follows from thinking in terms of modeling filters is the 
following (stated and justified rather informally here — a more careful treatment 
is beyond our scope): 

Key Fact: A real function Rxx[m] is the autocorrelation function of a real-valued 
WSS random process if and only if its transform Sxx(ejΩ) is real, even and non­
negative. The transform in this case is the PSD of the process. 

The necessity of these conditions on the transform of the candidate autocorrelation 
function follows from properties we have already established for autocorrelation 
functions and PSDs. 

To argue that these conditions are also sufficient, suppose Sxx(ejΩ) has these prop­
erties, and assume for simplicity that it has no impulsive part. Then it has a 
real and even square root, which we may denote by 

√
Sxx(ejΩ). Now construct a 

(possibly noncausal) modeling filter whose frequency response H(ejΩ) equals this 
square root; the unit-sample reponse of this filter is found by inverse-transforming 
H(ejΩ) = 

√
Sxx(ejΩ). If we then apply to the input of this filter a (zero-mean) 

unit-variance white noise process, e.g., a Bernoulli process that has equal probabil­
ities of taking +1 and −1 at each DT instant independently of every other instant, 
then the output will be a WSS process with PSD given by |H(ejΩ)|2 = Sxx(ejΩ), 
and hence with the specified autocorrelation function. 

If the transform Sxx(ejΩ) had an impulse at the origin, we could capture this by 
adding an appropriate constant (determined by the impulse strength) to the output 
of a modeling filter, constructed as above by using only the non-impulsive part of 
the transform. For a pair of impulses at frequencies Ω = ±Ωo = 0 in the transform, 
we could similarly add a term of the form A cos(Ωon + Θ), where A is deterministic 
(and determined by the impulse strength) and Θ is independent of all other other 
variables, and uniform in [0, 2π]. 

Similar statements can be made in the CT case. 

We illustrate below the logic involved in designing a whitening filter for a particular 
example; the logic for a modeling filter is similar (actually, inverse) to this. 

Consider the following discrete-time system shown in Figure 10.3. 

x[n] � h[n] � w[n] 

FIGURE 10.3 A discrete-time whitening filter. 

Suppose that x[n] is a process with autocorrelation function Rxx[m] and PSD 
Sxx(ejΩ), i.e., Sxx(ejΩ) = F {Rxx[m]}. We would like w[n] to be a white noise 
output with variance σ2 .w
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190 Chapter 10 Power Spectral Density 

We know that 
Sww(ejΩ) = |H(ejΩ)|2 Sxx(ejΩ) (10.16) 

or, 
σ2 

|H(ejΩ)|2 = 
Sxx(

w 

ejΩ) 
. (10.17) 

This then tells us what the squared magnitude of the frequency response of the 
LTI system must be to obtain a white noise output with variance σ2 . If we have w

Sxx(ejΩ) available as a rational function of ejΩ (or can model it that way), then we 
can obtain H(ejΩ) by appropriate factorization of |H(ejΩ)|2 . 

EXAMPLE 10.1 Whitening filter 

Suppose that 

Sxx(ejΩ) = 
5

4 
− cos(Ω). (10.18) 

Then, to whiten x(t), we require a stable LTI filter for which 

|H(ejΩ)|2 = 
(1 − 

1 
, (10.19) 1 1 e−jΩ)ejΩ)(1 −2 2 

or equivalently, 
1 

H(z)H(1/z) = 
(1 − 1 1 z−1) 

. (10.20) 
z)(1 −2 2 

The filter is constrained to be stable in order to produce a WSS output. One choice 
of H(z) that results in a causal filter is 

1 
H(z) = 1 , (10.21) 

1 − 2 z
−1 

with region of convergence (ROC) given by |z| > 1 . This system function could be 2 
multiplied by the system function A(z) of any allpass system, i.e., a system function 
satisfying A(z)A(z−1) = 1, and still produce the same whitening action, because 
|A(ejΩ)|2 = 1. 

10.3 SAMPLING OF BANDLIMITED RANDOM PROCESSES 

A WSS random process is termed bandlimited if its PSD is bandlimited, i.e., is 
zero for frequencies outside some finite band. For deterministic signals that are 
bandlimited, we can sample at or above the Nyquist rate and recover the signal 
exactly. We examine here whether we can do the same with bandlimited random 
processes. 

In the discussion of sampling and DT processing of CT signals in your prior courses, 
the derivations and discussion rely heavily on picturing the effect in the frequency 
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Section 10.3 Sampling of Bandlimited Random Processes 191 

domain, i.e., tracking the Fourier transform of the continuous-time signal through 
the C/D (sampling) and D/C (reconstruction) process. While the arguments can 
alternatively be carried out directly in the time domain, for deterministic finite-
energy signals the frequency domain development seems more conceptually clear. 

As you might expect, results similar to the deterministic case hold for the re­
construction of bandlimited random processes from samples. However, since these 
stochastic signals do not possess Fourier transforms except in the generalized sense, 
we carry out the development for random processes directly in the time domain. 
An essentially parallel argument could have been used in the time domain for de­
terministic signals (by examining the total energy in the reconstruction error rather 
than the expected instantaneous power in the reconstruction error, which is what 
we focus on below). 

The basic sampling and bandlimited reconstruction process should be familiar from 
your prior studies in signals and systems, and is depicted in Figure 10.4 below. 
In this figure we have explicitly used bold upper-case symbols for the signals to 
underscore that they are random processes. 

� �C/D Xc(t) X[n] = Xc(nT ) 

� 
T 

X[n] � D/C � Yc(t) = 
∑+∞ 

X[n] sinc( t−T
nT )n=−∞ 

� 
where sinc x = sinπx 

T πx 

FIGURE 10.4 C/D and D/C for random processes. 

For the deterministic case, we know that if xc(t) is bandlimited to less than T
π , then 

with the D/C reconstruction defined as 

yc(t) = 
∑ 

x[n] sinc( 
t − nT 

) (10.22) 
T 

n 

it follows that yc(t) = xc(t). In the case of random processes, what we show below 
is that, under the condition that Sxcxc (jω), the power spectral density of Xc(t), is 
bandlimited to less that π , the mean square value of the error between Xc(t) and T 
Yc(t) is zero; i.e., if 

π 
Sxcxc (jω) = 0 |w| ≥ 

T
, (10.23) 
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192 Chapter 10 Power Spectral Density 

then 
= E{[Xc(t) − Yc(t)]

2} = 0 . (10.24) E 
△

This, in effect, says that there is “zero power” in the error. (An alternative proof 
to the one below is outlined in Problem 13 at the end of this chapter.) 

To develop the above result, we expand the error and use the definitions of the C/D 
(or sampling) and D/C (or ideal bandlimited interpolation) operations in Figure 
10.4 to obtain 

(t)Xc (10.25) E = E{X2 
c (t)} + E{Yc 

2(t)} − 2E{Yc (t)} . 

We first consider the last term, E{Yc(t)Xc(t)}: 

+∞
t − nT 

E{Yc(t)Xc(t)} = E{ 
∑ 

Xc(nT ) sinc( ) Xc(t)}
T 

n=−∞ 

+∞
nT − t 

= 
∑ 

Rxcxc (nT − t) sinc( ) (10.26) 
T 

n=−∞ 

(10.27) 

where, in the last expression, we have invoked the symmetry of sinc(.) to change 
the sign of its argument from the expression that precedes it. 

Equation (10.26) can be evaluated using Parseval’s relation in discrete time, which 
states that 

+∞
1 

∫ π∑ 
v[n]w[n] = V (ejΩ)W ∗(ejΩ)dΩ (10.28) 

n=∞ 
2π −π 

To apply Parseval’s relation, note that Rxcxc (nT − t) can be viewed as the result 
of the C/D or sampling process depicted in Figure 10.5, in which the input is 
considered to be a function of the variable τ : 

Rxcxc (τ − t) � C/D � Rxcxc (nT − t) 

� 
T 

FIGURE 10.5 C/D applied to Rxcxc (τ − t). 

The CTFT (in the variable τ) of Rxcxc (τ − t) is e−jωtSxcxc (jω), and since this is 
bandlimited to ω < π , the DTFT of its sampled version Rxc xc (nT − t) is T| | 

−jΩt1 Ω 
e T Sxcxc (j ) (10.29) 

T T 
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in the interval |Ω| < π. Similarly, the DTFT of sinc( nT −t ) is 
π 
e 

−j
T 
Ωt 

. Consequently, T 
under the condition that Sxcxc (jω) is bandlimited to ω < T ,| | 

1 
∫ π jΩ 

E{Yc(t)Xc(t)} = Sxcxc ( )dΩ 
2πT T−π 

1 
∫ (π/T ) 

= Sxcxc (jω)dω 
2π −(π/T ) 

= Rxcxc (0) = E{Xc 
2(t)} (10.30) 

Next, we expand the middle term in equation (10.25): 

E{Yc 
2(t)} = E{

∑ ∑ 
Xc(nT )Xc(mT ) sinc( 

t − nT 
) sinc( 

t − mT 
)}

T T 
n m 

= 
∑ ∑ 

Rxcxc (nT − mT ) sinc( 
t − mT 

) sinc( 
t − mT 

) . (10.31) 
T T 

n m 

With the substitution n − m = r, we can express 10.31 as 

E{Yc 
2(t)} = 

∑ 
Rxcxc (rT ) 

∑ 
sinc( 

t − mT 
) sinc( 

t − mT − rT 
) . (10.32) 

T T 
r m 

Using the identity 
∑ 

sinc(n − θ1)sinc(n − θ2) = sinc(θ2 − θ1) , (10.33) 
n 

which again comes from Parseval’s theorem (see Problem 12 at the end of this 
chapter), we have 

(rT ) sinc(r)E{Yc 
2(t)} = 

∑ 
Rxcxc 

r 

= Rxcxc (0) = E{X2 
c } (10.34) 

since sinc(r) = 1 if r = 0 and zero otherwise. Substituting 10.31 and 10.34 into 
10.25, we obtain the result that E = 0, as desired. 
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