
C H A P T E R 9 

Random Processes 

INTRODUCTION 

Much of your background in signals and systems is assumed to have focused on the 
effect of LTI systems on deterministic signals, developing tools for analyzing this 
class of signals and systems, and using what you learned in order to understand 
applications in communication (e.g., AM and FM modulation), control (e.g., sta­
bility of feedback systems), and signal processing (e.g., filtering). It is important to 
develop a comparable understanding and associated tools for treating the effect of 
LTI systems on signals modeled as the outcome of probabilistic experiments, i.e., 
a class of signals referred to as random signals (alternatively referred to as random 
processes or stochastic processes). Such signals play a central role in signal and 
system design and analysis, and throughout the remainder of this text. In this 
chapter we define random processes via the associated ensemble of signals, and be­
gin to explore their properties. In successive chapters we use random processes as 
models for random or uncertain signals that arise in communication, control and 
signal processing applications. 

9.1 DEFINITION AND EXAMPLES OF A RANDOM PROCESS 

In Section 7.3 we defined a random variable X as a function that maps each outcome 
of a probabilistic experiment to a real number. In a similar manner, a real-valued 
CT or DT random process, X(t) or X[n] respectively, is a function that maps 
each outcome of a probabilistic experiment to a real CT or DT signal respectively, 
termed the realization of the random process in that experiment. For any fixed 
time instant t = t0 or n = n0, the quantities X(t0) and X[n0] are just random 
variables. The collection of signals that can be produced by the random process is 
referred to as the ensemble of signals in the random process. 

EXAMPLE 9.1 Random Oscillators 

As an example of a random process, imagine a warehouse containing N harmonic 
oscillators, each producing a sinusoidal waveform of some specific amplitude, fre­
quency, and phase, all of which may be different for the different oscillators. The 
probabilistic experiment that results in the ensemble of signals consists of selecting 
an oscillator according to some probability mass function (PMF) that assigns a 
probability to each of the numbers from 1 to N , so that the ith oscillator is picked 
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FIGURE 9.1 A random process. 

with probability pi. Associated with each outcome of this experiment is a specific 
sinusoidal waveform. 

In Example 9.1, before an oscillator is chosen, there is uncertainty about what 
the amplitude, frequency and phase of the outcome of the experiment will be. 
Consequently, for this example, we might express the random process as 

X(t) = A sin(ωt + φ) 

where the amplitude A, frequency ω and phase φ are all random variables. The 
value X(t1) at some specific time t1 is also a random variable. In the context of 
this experiment, knowing the PMF associated with each of the numbers 1 to N 
involved in choosing an oscillator, as well as the specific amplitude, frequency and 
phase of each oscillator, we could determine the probability distributions of any of 
the underlying random variables A, ω, φ or X(t1) mentioned above. 

Throughout this and later chapters, we will be considering many other examples of 
random processes. What is important at this point, however, is to develop a good 
mental picture of what a random process is. A random process is not just one signal 
but rather an ensemble of signals, as illustrated schematically in Figure 9.2 below, 
for which the outcome of the probabilistic experiment could be any of the four wave­
forms indicated. Each waveform is deterministic, but the process is probabilistic 
or random because it is not known a priori which waveform will be generated by 
the probabilistic experiment. Consequently, prior to obtaining the outcome of the 
probabilistic experiment, many aspects of the signal are unpredictable, since there 
is uncertainty associated with which signal will be produced. After the experiment, 
or a posteriori, the outcome is totally determined. 

If we focus on the values that a random process X(t) can take at a particular 
instant of time, say t1 — i.e., if we look down the entire ensemble at a fixed time — 
what we have is a random variable, namely X(t1). If we focus on the ensemble of 
values taken at an arbitrary collection of ℓ fixed time instants t1 < t2 < < tℓ for · · · 
some arbitrary integer ℓ, we are dealing with a set of ℓ jointly distributed random 
variables X(t1), X(t2), , X(tℓ), all determined together by the outcome of the · · · 
underlying probabilistic experiment. From this point of view, a random process 
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X(t) = x (t) 

t t1 2 

FIGURE 9.2 Realizations of the random process X(t) 

can be thought of as a family of jointly distributed random variables indexed by 
t (or n in the DT case). A full probabilistic characterization of this collection of 
random variables would require the joint PDFs of multiple samples of the signal, 
taken at arbitrary times: 

a 

X(t) = x (t)b 

X(t) = x (t)c 

X(t) = x (t)d 

t 

t 

t 

t 

fX(t1),X(t2), ,X(tℓ )(x1, x2, , xℓ)··· · · · 

for all ℓ and all t1, t2, , tℓ.· · · 
An important set of questions that arises as we work with random processes in later 
chapters of this book is whether, by observing just part of the outcome of a random 
process, we can determine the complete outcome. The answer will depend on the 
details of the random process, but in general the answer is no. For some random 
processes, having observed the outcome in a given time interval might provide 
sufficient information to know exactly which ensemble member was determined. In 
other cases it would not be sufficient. We will be exploring some of these aspects in 
more detail later, but we conclude this section with two additional examples that 
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further emphasize these points. 

EXAMPLE 9.2 Ensemble of batteries 

Consider a collection of N batteries, each providing one voltage out of a given finite 
set of voltage values. The histogram of voltages (i.e., the number of batteries with 
a given voltage) is given in Figure 9.3. The probabilistic experiment is to choose 

Number of 

Batteries 

Voltage 

FIGURE 9.3 Histogram of battery distribution for Example 9.2. 

one of the batteries, with the probability of picking any specific one being N 
1 , i.e., 

they are all equally likely to be picked. A little reflection should convince you that 
if we multiply the histogram in Figure 9.3 by N 

1 , this normalized histogram will 
represent (or approximate) the PMF for the battery voltage at the outcome of the 
experiment. Since the battery voltage is a constant signal, this corresponds to a 
random process, and in fact is similar to the oscillator example discussed earlier, 
but with ω = 0 and φ = 0, so that only the amplitude is random. 

For this example observation of X(t) at any one time is sufficient information to 
determine the outcome for all time. 

EXAMPLE 9.3 Ensemble of coin tossers 

Consider N people, each independently having written down a long random string 
of ones and zeros, with each entry chosen independently of any other entry in their 
string (similar to a sequence of independent coin tosses). The random process now 
comprises this ensemble of strings. A realization of the process is obtained by 
randomly selecting a person (and therefore one of the N strings of ones and zeros), 
following which the specific ensemble member of the random process is totally 
determined. The random process described in this example is often referred to as 

©Alan V. Oppenheim and George C. Verghese, 2010 c



Section 9.1 Definition and examples of a random process 165 

the Bernoulli process because of the way in which the string of ones and zeros is 
generated (by independent coin flips). 

Now suppose that person shows you only the tenth entry in the string. Can you 
determine (or predict) the eleventh entry from just that information? Because of 
the manner in which the string was generated, the answer clearly is no. Similarly 
if the entire past history up to the tenth entry was revealed to you, could you 
determine the remaining sequence beyond the tenth? For this example, the answer 
is again clearly no. 

While the entire sequence has been determined by the nature of the experiment, 
partial observation of a given ensemble member is in general not sufficient to fully 
specify that member. 

Rather than looking at the nth entry of a single ensemble member, we can consider 
the random variable corresponding to the values from the entire ensemble at the 
nth entry. Looking down the ensemble at n = 10, for example, we would would see 
ones and zeros with equal probability. 

In the above discussion we indicated and emphasized that a random process can 
be thought of as a family of jointly distributed random variables indexed by t or 
n. Obviously it would in general be extremely difficult or impossible to represent a 
random process this way. Fortunately, the most widely used random process models 
have special structure that permits computation of such a statistical specification. 
Also, particularly when we are processing our signals with linear systems, we often 
design the processing or analyze the results by considering only the first and second 
moments of the process, namely the following functions: 

Mean: µX (ti) = E[X(ti)], (9.1) 

Auto-correlation: RXX (ti, tj ) = E[X(ti)X(tj )], and (9.2) 

Auto-covariance: CXX (ti, tj ) = E[(X(ti) − µX (ti))(X(tj ) − µX (tj ))] 

= RXX (ti, tj ) − µX (ti)µX (tj ). (9.3) 

The word “auto” (which is sometime written without the hyphen, and sometimes 
dropped altogether to simplify the terminology) here refers to the fact that both 
samples in the correlation function or the covariance function come from the same 
process; we shall shortly encounter an extension of this idea, where the samples are 
taken from two different processes. 

One case in which the first and second moments actually suffice to completely 
specify the process is in the case of what is called a Gaussian process, defined 
as a process whose samples are always jointly Gaussian (the generalization of the 
bivariate Gaussian to many variables). 

We can also consider multiple random processes, e.g., two processes, X(t) and Y (t). 
For a full stochastic characterization of this, we need the PDFs of all possible com­
binations of samples from X(t), Y (t). We say that X(t) and Y (t) are independent 
if every set of samples from X(t) is independent of every set of samples from Y (t), 
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so that the joint PDF factors as follows: 

fX(t1), ,X(tk ),Y (t ′ ), ,Y (t ′ )(x1, , xk, y1, , yℓ)··· 1 ··· 
ℓ 

· · · · · · 
= fX(t1), ,X(tk )(x1, , xk).fY (t ′ ), ,Y (t ′ )(y1, , yℓ) . (9.4) 

1 ℓ
··· · · · ··· · · · 

If only first and second moments are of interest, then in addition to the individual 
first and second moments of X(t) and Y (t) respectively, we need to consider the 
cross-moment functions: 

Cross-correlation: RXY (ti, tj ) = E[X(ti)Y (tj )], and (9.5) 

Cross-covariance: CXY (ti, tj ) = E[(X(ti) − µX (ti))(Y (tj ) − µY (tj ))] 

= RXY (ti, tj ) − µX (ti)µY (tj ). (9.6) 

If CXY (t1, t2) = 0 for all t1, t2, we say that the processes X(t) and Y (t) are uncor­
related. Note again that the term “uncorrelated” in its common usage means that 
the processes have zero covariance rather than zero correlation. 

Note that everything we have said above can be carried over to the case of DT 
random processes, except that now the sampling instants are restricted to be dis­
crete time instants. In accordance with our convention of using square brackets 
[ ] around the time argument for DT signals, we will write µX [n] for the mean · 
of a random process X[ ] at time n; similarly, we will write RXX [ni, nj ] for the · 
correlation function involving samples at times ni and nj ; and so on. 

9.2 STRICT-SENSE STATIONARITY 

In general, we would expect that the joint PDFs associated with the random vari­
ables obtained by sampling a random process at an arbitrary number k of arbitrary 
times will be time-dependent, i.e., the joint PDF 

fX(t1), ,X(tk )(x1, , xk)··· · · · 

will depend on the specific values of t1, , tk. If all the joint PDFs stay the same · · · 
under arbitrary time shifts, i.e., if 

fX(t1 ), ,X(tk )(x1, , xk) = fX(t1+τ ), ,X(tk +τ )(x1, , xk) (9.7) ··· · · · ··· · · · 

for arbitrary τ , then the random process is said to be strict-sense stationary (SSS). 
Said another way, for a strict-sense stationary process, the statistics depend only 
on the relative times at which the samples are taken, not on the absolute times. 

EXAMPLE 9.4 Representing an i.i.d. process 

Consider a DT random process whose values X[n] may be regarded as independently 
chosen at each time n from a fixed PDF fX (x), so the values are independent and 
identically distributed, thereby yielding what is called an i.i.d. process. Such pro­
cesses are widely used in modeling and simulation. For instance, if a particular 
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DT communication channel corrupts a transmitted signal with added noise that 
takes independent values at each time instant, but with characteristics that seem 
unchanging over the time window of interest, then the noise may be well modeled 
as an i.i.d. process. It is also easy to generate an i.i.d. process in a simulation envi­
ronment, provided one can arrange a random-number generator to produce samples 
from a specified PDF (and there are several good ways to do this). Processes with 
more complicated dependence across time samples can then be obtained by filtering 
or other operations on the i.i.d. process, as we shall see in the next chapter. 

For such an i.i.d. process, we can write the joint PDF quite simply: 

fX[n1 ],X[n2], ,X[nℓ](x1, x2, , xℓ) = fX (x1)fX (x2) fX (xℓ) (9.8) ··· · · · · · · 

for any choice of ℓ and n1, , nℓ. The process is clearly SSS. · · · 

9.3 WIDE-SENSE STATIONARITY 

Of particular use to us is a less restricted type of stationarity. Specifically, if the 
mean value µX (ti) is independent of time and the autocorrelation RXX (ti, tj ) or 
equivalently the autocovariance CXX (ti, tj ) is dependent only on the time difference 
(ti − tj ), then the process is said to be wide-sense stationary (WSS). Clearly a 
process that is SSS is also WSS. For a WSS random process X(t), therefore, we 
have 

µX (t) = µX (9.9) 

RXX (t1, t2) = RXX (t1 + α, t2 + α) for every α 

= RXX (t1 − t2, 0) . (9.10) 

(Note that for a Gaussian process (i.e., a process whose samples are always jointly 
Gaussian) WSS implies SSS, because jointly Gaussian variables are entirely deter­
mined by the their joint first and second moments.) 

Two random processes X(t) and Y (t) are jointly WSS if their first and second 
moments (including the cross-covariance) are stationary. In this case we use the 
notation RXY (τ) to denote E[X(t + τ)Y (t)]. 

EXAMPLE 9.5 Random Oscillators Revisited 

Consider again the harmonic oscillators as introduced in Example 9.1, i.e. 

X(t; A, Θ) = A cos(ω0t + Θ) 

where A and Θ are independent random variables, and now ω0 is fixed at some 
known value. 

If Θ is actually fixed at the constant value θ0, then every outcome is of the form 
x(t) = A cos(ω0t + θ0), and it is straightforward to see that this process is not WSS 
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(and hence not SSS). For instance, if A has a nonzero mean value, µA = 0, then the 
expected value of the process, namely µA cos(ω0t + θ0), is time varying. To argue 
that the process is not WSS even when µA = 0, we can examine the autocorrelation 
function. Note that x(t) is fixed at the value 0 for all values of t such that ω0t + θ0 

is an odd multiple of π/2, and takes the values ±A half-way between such points; 
the correlation between such samples taken π/ω0 apart in time can correspondingly 
be 0 (in the former case) or −E[A2] (in the latter). The process is thus not WSS. 

On the other hand, if Θ is distributed uniformly in [−π, π], then 

∫ π 1 
µX (t) = µA cos(ω0t + θ)dθ = 0 , (9.11) 

−π 2π 

CXX (t1, t2) = RXX (t1, t2) 

= E[A2]E[cos(ω0t1 + Θ) cos(ω0t2 + Θ)] 

E[A2] 
= cos(ω0(t2 − t1)) , (9.12) 

2 

so the process is WSS. It can also be shown to be SSS, though this is not totally 
straightforward to show formally. 

To simplify notation for a WSS process, we write the correlation function as 
RXX (t1 − t2); the argument t1 − t2 is referred to as the lag at which the corre­
lation is computed. For the most part, the random processes that we treat will 
be WSS processes. When considering just first and second moments and not en­
tire PDFs or CDFs, it will be less important to distinguish between the random 
process X(t) and a specific realization x(t) of it — so we shall go one step further 
in simplifying notation, by using lower case letters to denote the random process 
itself. We shall thus talk of the random process x(t), and — in the case of a WSS 
process — denote its mean by µx and its correlation function E{x(t + τ )x(t)} by 
Rxx(τ). Correspondingly, for DT we’ll refer to the random process x[n] and (in the 
WSS case) denote its mean by µx and its correlation function E{x[n + m]x[n]} by 
Rxx[m]. 

9.3.1 Some Properties of WSS Correlation and Covariance Functions 

It is easily shown that for real-valued WSS processes x(t) and y(t) the correlation 
and covariance functions have the following symmetry properties: 

Rxx(τ ) = Rxx(−τ ) , Cxx(τ) = Cxx(−τ ) (9.13) 

Rxy(τ ) = Ryx(−τ) , Cxy (τ) = Cyx(−τ ) . (9.14) 

We see from (9.13) that the autocorrelation and autocovariance have even symme­
try. Similar properties hold for DT WSS processes. 

Another important property of correlation and covariance functions follows from 
noting that the correlation coefficient of two random variables has magnitude not 
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exceeding 1. Applying this fact to the samples x(t) and x(t + τ ) of the random 
process x( ) directly leads to the conclusion that · 

− Cxx(0) ≤ Cxx(τ ) ≤ Cxx(0) . (9.15) 

In other words, the autocovariance function never exceeds in magnitude its value 
at the origin. Adding µx 

2 to each term above, we find the following inequality holds 
for correlation functions: 

− Rxx(0) + 2µx 
2 ≤ Rxx(τ) ≤ Rxx(0) . (9.16) 

In Chapter 10 we will demonstrate that correlation and covariance functions are 
characterized by the property that their Fourier transforms are real and non­
negative at all frequencies, because these transforms describe the frequency dis­
tribution of the expected power in the random process. The above symmetry con­
straints and bounds will then follow as natural consequences, but they are worth 
highlighting here already. 

9.4 SUMMARY OF DEFINITIONS AND NOTATION 

In this section we summarize some of the definitions and notation we have previously 
introduced. As in Section 9.3, we shall use lower case letters to denote random 
processes, since we will only be dealing with expectations and not densities. Thus, 
with x(t) and y(t) denoting (real) random processes, we summarize the following 
definitions: 

mean : (t) 
△

(9.17) µx = E{x(t)} 

autocorrelation : (t1, t2) 
△

(9.18) Rxx = E{x(t1)x(t2)} 

cross − correlation : (t1, t2) 
△

(9.19) Rxy = E{x(t1)y(t2)} 

autocovariance : (t1, t2) 
△

(t1)][x(t2) − µx(t2)]}Cxx = E{[x(t1) − µx


= Rxx(t1, t2) − µx(t1)µx(t2) (9.20)


cross − covariance : (t1, t2) 
△

(t1)][y(t2) − µy(t2)]}Cxy = E{[x(t1) − µx


= Rxy (t1, t2) − µx(t1)µy (t2) (9.21)
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strict-sense stationary (SSS): all joint statistics for x(t1), x(t2), . . . , x(tℓ) for all ℓ > 0 
and all choices of sampling instants t1, · · · , tℓ 

depend only on the relative locations of sampling instants. 
wide-sense stationary (WSS): µx(t) is constant at some value µx, and Rxx(t1, t2) is a function 

jointly wide-sense stationary: 

of (t1 − t2) only, denoted in this case simply by Rxx(t1 − t2); 
hence Cxx(t1, t2) is a function of (t1 − t2) only, and 
written as Cxx(t1 − t2). 
x(t) and y(t) are individually WSS and Rxy(t1, t2) is 
a function of (t1 − t2) only, denoted simply by 
Rxy(t1 − t2); hence Cxy(t1, t2) is a function of (t1 − t2) only, 
and written as Cxy(t1 − t2). 

For WSS processes we have, in continuous-time and with simpler notation, 

Rxx(τ ) = E{x(t + τ)x(t)} = E{x(t)x(t − τ)} (9.22) 

Rxy (τ ) = E{x(t + τ)y(t)} = E{x(t)y(t − τ)}, (9.23) 

and in discrete-time, 

Rxx[m] = E{x[n + m]x[n]} = E{x[n]x[n − m]} (9.24) 

Rxy[m] = E{x[n + m]y[n]} = E{x[n]y[n − m]}. (9.25) 

We use corresponding (centered) definitions and notation for covariances: 

Cxx(τ), Cxy(τ), Cxx[m], and Cxy[m] . 

It is worth noting that an alternative convention used elsewhere is to define Rxy(τ) 

as Rxy = E{x(t)y(t+τ)}.(τ) 
△

In our notation, this expectation would be denoted by 
Rxy(−τ). It’s important to be careful to take account of what notational convention 
is being followed when you read this material elsewhere, and you should also be 
clear about what notational convention we are using in this text. 

9.5 FURTHER EXAMPLES 

EXAMPLE 9.6 Bernoulli process 

The Bernoulli process, a specific example of which was discussed previously in 
Example 9.3, is an example of an i.i.d. DT process with 

P(x[n] = 1) = p (9.26) 

P(x[n] = −1) = (1 − p) (9.27) 

and with the value at each time instant n independent of the values at all other 
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time instants. A simple calculation results in 

E {x[n]} = 2p − 1 = µx (9.28) 
{

1 m = 0 
E {x[n + m]x[n]} = 

(2p − 1)2 m = 0 6	 (9.29) 

Cxx[m] = E{(x[n + m] − µx)(x[n] − µx)} (9.30) 

= {1 − (2p − 1)2}δ[m] = 4p(1 − p)δ[m] . (9.31) 

EXAMPLE 9.7 Random telegraph wave 

A useful example of a CT random process that we’ll make occasional reference 
to is the random telegraph wave. A representative sample function of a random 
telegraph wave process is shown in Figure 9.4. The random telegraph wave can be 
defined through the following two properties: 

� t 

x(t) 

+1 

−1 

FIGURE 9.4 One realization of a random telegraph wave. 

1.	 X(0) = ±1 with probability 0.5. 

2.	 X(t) changes polarity at Poisson times, i.e., the probability of k sign changes

in a time interval of length T is


(λT )ke−λT 

P(k sign changes in an interval of length T ) = . (9.32) 
k! 

Property 2 implies that the probability of a non-negative, even number of sign 
changes in an interval of length T is 

∞
(λT )k ∞

1 + (−1)k (λT )k 

P(a non-negative even # of sign changes) = 
∑ e−λT 

= e−λT 
∑ 

k!	 2 k! 
k=0 k=0 

k even 
(9.33) 

Using the identity 
∞

(λT )k 
λT 

∑
e = 

k! 
k=0 
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equation (9.33) becomes 

P(a non-negative even # of sign changes) = e−λT (e
λT + e−λT ) 

2 
1 

= (1 + e−2λT ) . (9.34) 
2 

Similarly, the probability of an odd number of sign changes in an interval of length 
T is 1 (1 − e−2λT ). It follows that 2 

P(X(t) = 1) = P(X(t) = 1 X(0) = 1)P(X(0) = 1) |
+ P(X(t) = 1|X(0) = −1)P(X(0) = −1) 

1 
= P(even # of sign changes in [0, t]) 

2 
1 

+ P(odd # of sign changes in [0, t]) 
2 
1 

{ 
1 

} 
1 

{ 
1 

} 
1 

(1 − e−2λt)= (1 + e−2λt) + = . (9.35) 
2 2 2 2 2 

Note that because of Property I, the expression in the last line of Eqn. (9.35) is not 
needed, since the line before that already allows us to conclude that the answer is 12 : 
since the number of sign changes in any interval must be either even or odd, their 
probabilities add up to 1, so P (X(t) = 1) = 12 . However, if Property 1 is relaxed to 
allow P(X(0) = 1) = p0 = 2

1 , then the above computation must be carried through 
to the last line, and yields the result 

(1 − e−2λt)P(X(t) = 1) = p0 (1 + e−2λt) +(1−p0) = 

{ 
1 

} { 
1 

} 
1 {

1 + (2p0 − 1)e−2λt
} 

. 
2 2 2 

(9.36) 

Returning to the case where Property 1 holds, so P(X(t) = 1), we get 

µX (t) = 0, and (9.37) 

RXX (t1, t2) = E[X(t1)X(t2)] 

= 1 × P (X(t1) = X(t2)) + (−1) × P (X(t1) =6 X(t2)) 

= e−2λ|t2−t1| . (9.38) 

In other words, the process is exponentially correlated and WSS. 

9.6 ERGODICITY 

The concept of ergodicity is sophisticated and subtle, but the essential idea is de­
scribed here. We typically observe the outcome of a random process (e.g., we record 
a noise waveform) and want to characterize the statistics of the random process by 
measurements on one ensemble member. For instance, we could consider the time-
average of the waveform to represent the mean value of the process (assuming this 
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mean is constant for all time). We could also construct histograms that represent 
the fraction of time (rather than the probability-weighted fraction of the ensemble) 
that the waveform lies in different amplitude bins, and this could be taken to reflect 
the probability density across the ensemble of the value obtained at a particular 
sampling time. If the random process is such that the behavior of almost every par­
ticular realization over time is representative of the behavior down the ensemble, 
then the process is called ergodic. 

A simple example of a process that is not ergodic is Example 9.2, an ensemble of 
batteries. Clearly, for this example, the behavior of any realization is not represen­
tative of the behavior down the ensemble. 

Narrower notions of ergodicity may be defined. For example, if the time average 

1 
∫ T 

〈x〉 = 
T →∞ 2T −T 

x(t) dt (9.39) lim 

almost always (i.e. for almost every realization or outcome) equals the ensemble 
average µX , then the process is termed ergodic in the mean. It can be shown, 
for instance, that a WSS process with finite variance at each instant and with a 
covariance function that approaches 0 for large lags is ergodic in the mean. Note 
that a (nonstationary) process with time-varying mean cannot be ergodic in the 
mean. 

In our discussion of random processes, we will primarily be concerned with first-
and second-order moments of random processes. While it is extremely difficult 
to determine in general whether a random process is ergodic, there are criteria 
(specified in terms of the moments of the process) that will establish ergodicity 
in the mean and in the autocorrelation. Frequently, however, such ergodicity is 
simply assumed for convenience, in the absence of evidence that the assumption 
is not reasonable. Under this assumption, the mean and autocorrelation can be 
obtained from time-averaging on a single ensemble member, through the following 
equalities: 

1 
∫T

E{x(t)} = lim x(t)dt (9.40) 
T →∞ 2T 

−T 

and 

1 
∫T

E{x(t)x(t + τ)} = lim x(t)x(t + τ)dt (9.41) 
T →∞ 2T 

−T 

A random process for which (9.40) and (9.41) are true is referred as second-order 
ergodic. 

9.7 LINEAR ESTIMATION OF RANDOM PROCESSES 

A common class of problems in a variety of aspects of communication, control and 
signal processing involves the estimation of one random process from observations 
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of another, or estimating (predicting) future values from the observation of past 
values. For example, it is common in communication systems that the signal at the 
receiver is a corrupted (e.g., noisy) version of the transmitted signal, and we would 
like to estimate the transmitted signal from the received signal. Other examples 
lie in predicting weather and financial data from past observations. We will be 
treating this general topic in much more detail in later chapters, but a first look at 
it here can be beneficial in understanding random processes. 

We shall first consider a simple example of linear prediction of a random process, 
then a more elaborate example of linear FIR filtering of a noise-corrupted process to 
estimate the underlying random signal. We conclude the section with some further 
discussion of the basic problem of linear estimation of one random variable from 
measurements of another. 

9.7.1 Linear Prediction 

As a simple illustration of linear prediction, consider a discrete-time process x[n]. 
Knowing the value at time n0 we may wish to predict what the value will be m 
samples into the future, i.e. at time n0 + m. We limit the prediction strategy to a 
linear one, i.e., with x̂[n0 + m] denoting the predicted value, we restrict x̂[n0 + m] 
to be of the form 

x̂[n0 + m] = ax[n0] + b (9.42) 

and choose the prediction parameters a and b to minimize the expected value of 
the square of the error, i.e., choose a and b to minimize 

ǫ = E{(x[n0 + m] − x̂[n0 + m])2} (9.43) 

or 
ǫ = E{(x[n0 + m] − ax[n0] − b)2}. (9.44) 

To minimize ǫ we set to zero its partial derivative with respect to each of the two 
parameters and solve for the parameter values. The resulting equations are 

E{(x[n0 + m] − ax[n0] − b)x[n0]} = E{(x[n0 + m] − x̂[n0 + m])x[n0]} = 0 
(9.45a) 

E{x[n0 + m] − ax[n0] − b} = E{x[n0 + m] − x̂[n0 + m]} = 0 . 
(9.45b) 

Equation (9.45a) states that the error x[n0 + m] − x̂[n0 + m] associated with the 
optimal estimate is orthogonal to the available data x[n0]. Equation (9.45b) states 
that the estimate is unbiased. 

Carrying out the multiplications and expectations in the preceding equations results 
in the following equations, which can be solved for the desired constants. 

Rxx[n0 + m,n0] − aRxx[n0, n0] − bµx[n0] = 0 (9.46a) 

µx[n0 + m] − aµx[n0] − b = 0. (9.46b) 
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If we assume that the process is WSS so that Rxx[n0+m,n0] = Rxx[m], Rxx[n0, n0] = 
Rxx[0], and also assume that it is zero mean, (µx = 0), then equations (9.46) reduce 
to 

a = Rxx[m]/Rxx[0] (9.47) 

b = 0 (9.48) 

so that 
Rxx[m] 

x̂[n0 + m] = 
Rxx[0] 

x[n0]. (9.49) 

If the process is not zero mean, then it is easy to see that 

Cxx[m] 
x̂[n0 + m] = µx + 

Cxx[0] 
(x[n0] − µx) . (9.50) 

An extension of this problem would consider how to do prediction when measure­
ments of several past values are available. Rather than pursue this case, we illustrate 
next what to do with several measurements in a slightly different setting. 

9.7.2 Linear FIR Filtering 

As another example, which we will treat in more generality in chapter 11 on Wiener 
filtering, consider a discrete-time signal s[n] that has been corrupted by additive 
noise d[n]. For example, s[n] might be a signal transmitted over a channel and d[n] 
the noise introduced by the channel. The received signal r[n] is then 

r[n] = s[n] + d[n]. (9.51) 

Assume that both s[n] and d[n] are zero-mean random processes and are uncor­
related. At the receiver we would like to process r[n] with a causal FIR (finite 
impulse response) filter to estimate the transmitted signal s[n]. 

d[n] 

s[n] �� � ŝ[n]⊕ 
r[n] 

� h[n] 

FIGURE 9.5 Estimating the noise corrupted signal. 

If h[n] is a causal FIR filter of length L, then 

L−1

ŝ[n] = 
∑ 

h[k]r[n − k]. (9.52) 
k=0 
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We would like to determine the filter coefficients h[k] to minimize the mean square 
error between ŝ[n] and s[n], i.e., minimize ǫ given by 

ǫ = E(s[n] − ŝ[n])2 

L−1

= E(s[n] − 
∑ 

h[k]r[n − k])2 . (9.53) 
k=0 

∂ǫ To determine h, we set ∂h[m] = 0 for each of the L values of m. Taking this 
derivative, we get 

∂ǫ 
= −E{2(s[n] − 

∑ 
h[k]r[n − k])r[n − m]}

∂h[m] 
k 

= −E{2(s[n] − ŝ[n])r[n − m]}
= 0 m = 0, 1, , L − 1 (9.54) · · · 

which is the orthogonality condition we should be expecting: the error (s[n] − ŝ[n]) 
associated with the optimal estimate is orthogonal to the available data, r[n − m]. 

Carrying out the multiplications in the above equations and taking expectations 
results in 

L−1∑ 
h[k]Rrr[m − k] = Rsr[m] , m = 0, 1, , L − 1 (9.55) · · · 

k=0 

Eqns. (9.55) constitute L equations that can be solved for the L parameters h[k]. 
With r[n] = s[n] + d[n], it is straightforward to show that Rsr[m] = Rss[m] + 
Rsd[m] and since we assumed that s[n] and d[n] are uncorrelated, then Rsd[m] = 0. 
Similarly, Rrr[m] = Rss[m] + Rdd[m]. 

These results are also easily modified for the case where the processes no longer 
have zero mean. 

9.8 THE EFFECT OF LTI SYSTEMS ON WSS PROCESSES 

Your prior background in signals and systems, and in the earlier chapters of these 
notes, has characterized how LTI systems affect the input for deterministic signals. 

We will see in later chapters how the correlation properties of a random process, 
and the effects of LTI systems on these properties, play an important role in under­
standing and designing systems for such tasks as filtering, signal detection, signal 
estimation and system identification. We focus in this section on understanding 
in the time domain how LTI systems shape the correlation properties of a random 
process. In Chapter 10 we develop a parallel picture in the frequency domain, af­
ter establishing that the frequency distribution of the expected power in a random 
signal is described by the Fourier transform of the autocorrelation function. 

Consider an LTI system whose input is a sample function of a WSS random process 
x(t), i.e., a signal chosen by a probabilistic experiment from the ensemble that con­
stitutes the random process x(t); more simply, we say that the input is the random 
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process x(t). The WSS input is characterized by its mean and its autocovariance 
or (equivalently) autocorrelation function. 

Among other considerations, we are interested in knowing when the output process 
y(t) — i.e., the ensemble of signals obtained as responses to the signals in the input 
ensemble — will itself be WSS, and want to determine its mean and autocovariance 
or autocorrelation functions, as well as its cross-correlation with the input process. 
For an LTI system whose impulse response is h(t), the output y(t) is given by the 
convolution 

∫ +∞ ∫ +∞ 

y(t) = h(v)x(t − v)dv = x(v)h(t − v)dv (9.56) 
−∞ −∞ 

for any specific input x(t) for which the convolution is well-defined. The convolution 
is well-defined if, for instance, the input x(t) is bounded and the system is bounded-
input bounded-output (BIBO) stable, i.e. h(t) is absolutely integrable. Figure 9.6 
indicates what the two components of the integrand in the convolution integral may 
look like. 

x(v) 

v 

h(t - v) 

t v 

FIGURE 9.6 Illustration of the two terms in the integrand of Eqn. (9.56) 

Rather than requiring that every sample function of our input process be bounded, 
it will suffice for our convolution computations below to assume that E[x2(t)] = 
Rxx(0) is finite. With this assumption, and also assuming that the system is BIBO 
stable, we ensure that y(t) is a well-defined random process, and that the formal 
manipulations we carry out below — for instance, interchanging expectation and 
convolution — can all be justified more rigorously by methods that are beyond 
our scope here. In fact, the results we obtain can also be applied, when properly 
interpreted, to cases where the input process does not have a bounded second 
moment, e.g., when x(t) is so-called CT white noise, for which Rxx(τ ) = δ(τ ). The 
results can also be applied to a system that is not BIBO stable, as long as it has a 
well-defined frequency response H(jω), as in the case of an ideal lowpass filter, for 
example. 

We can use the convolution relationship (9.56) to deduce the first- and second-
order properties of y(t). What we shall establish is that y(t) is itself WSS, and that 
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x(t) and y(t) are in fact jointly WSS. We will also develop relationships for the 
autocorrelation of the output and the cross-correlation between input and output. 

First, consider the mean value of the output. Taking the expected value of both 
sides of (9.56), we find 

{∫ +∞ } 

E[y(t)] = E h(v)x(t − v) dv 

∫ +∞
−∞ 

= h(v)E[x(t − v)] dv 
−∞∫ +∞ 

= h(v)µx dv 
−∞∫ +∞ 

= µx h(v) dv 
−∞ 

= H(j0) µx = µy . (9.57) 

In other words, the mean of the output process is constant, and equals the mean of 
the input scaled by the the DC gain of the system. This is also what the response 
of the system would be if its input were held constant at the value µx. 

The preceding result and the linearity of the system also allow us to conclude that 
applying the zero-mean WSS process x(t)−µx to the input of the stable LTI system 
would result in the zero-mean process y(t) − µy at the output. This fact will be 
useful below in converting results that are derived for correlation functions into 
results that hold for covariance functions. 

Next consider the cross-correlation between output and input: 

{[ ∫ +∞ ] } 

E{y(t + τ )x(t)} = E h(v)x(t + τ − v)dv x(t) 

∫ +∞ 
−∞ 

= h(v)E{x(t + τ − v)x(t)}dv . (9.58) 
−∞ 

Since x(t) is WSS, E{x(t + τ − v)x(t)} = Rxx(τ − v), so 

∫ +∞ 

E{y(t + τ )x(t)} = h(v)Rxx(τ − v)dv 
−∞ 

= h(τ ) ∗ Rxx(τ)


= Ryx(τ ) . (9.59)


Note that the cross-correlation depends only on the lag τ between the sampling 
instants of the output and input processes, not on both τ and the absolute time 
location t. Also, this cross-correlation between the output and input is determinis­
tically related to the autocorrelation of the input, and can be viewed as the signal 
that would result if the system input were the autocorrelation function, as indicated 
in Figure 9.7. 
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� Ryx(τ)Rxx(τ) � h(τ) 

FIGURE 9.7 Representation of Eqn. (9.59) 

We can also conclude that 

Rxy(τ) = Ryx(−τ) = Rxx(−τ) ∗ h(−τ) = Rxx(τ ) ∗ h(−τ) , (9.60) 

where the second equality follows from Eqn. (9.59) and the fact that time-reversing 
the two functions in a convolution results in time-reversal of the result, while the 
last equality follows from the symmetry Eqn. (9.13) of the autocorrelation function. 

The above relations can also be expressed in terms of covariance functions, rather 
than in terms of correlation functions. For this, simply consider the case where the 
input to the system is the zero-mean WSS process x(t) − µx, with corresponding 
zero-mean output y(t) − µy. Since the correlation function for x(t) − µx is the same 
as the covariance function for x(t), i.e., since 

Rx−µx ,x−µx (τ) = Cxx(τ) , (9.61) 

the results above hold unchanged when every correlation function is replaced by 
the corresponding covariance function. We therefore have, for instance, that 

Cyx(τ) = h(τ ) ∗ Cxx(τ) (9.62) 

Next we consider the autocorrelation of the output y(t): 
{[ ∫ +∞ ] } 

E{y(t + τ)y(t)} = E h(v)x(t + τ − v)dv y(t) 
−∞ 

∫ +∞ 

= h(v) E{x(t + τ − v)y(t)} dv 
−∞ ︸ ︷︷ ︸

Rxy (τ−v) 

∫ +∞ 

= h(v)Rxy(τ − v)dv 
−∞ 

= h(τ ) ∗ Rxy(τ )


= Ryy(τ) . (9.63)


Note that the autocorrelation of the output depends only on τ , and not on both 
τ and t. Putting this together with the earlier results, we conclude that x(t) and 
y(t) are jointly WSS, as claimed. 

©Alan V. Oppenheim and George C. Verghese, 2010 c



︸ ︷︷ ︸ 

︸ ︷︷ ︸ 

180 Chapter 9 Random Processes 

The corresponding result for covariances is 

Cyy(τ) = h(τ) ∗ Cxy(τ ) . (9.64) 

Combining (9.63) with (9.60), we find that 

Ryy(τ ) = Rxx(τ) ∗ h(τ) ∗ h(−τ) = Rxx(τ ) ∗ Rhh(τ) . (9.65) 

△ 
h(τ)∗h(−τ)=Rhh(τ ) 

The function Rhh(τ) is typically referred to as the deterministic autocorrelation 
function of h(t), and is given by 

∫ +∞ 

Rhh(τ ) = h(τ ) ∗ h(−τ ) = h(t + τ)h(t)dt . (9.66) 
−∞ 

For the covariance function version of (9.65), we have 

Cyy(τ ) = Cxx(τ) ∗ h(τ) ∗ h(−τ) = Cxx(τ) ∗ Rhh(τ) . (9.67) 

△ 
h(τ)∗h(−τ)=Rhh(τ ) 

Note that the deterministic correlation function of h(t) is still what we use, even 
when relating the covariances of the input and output. Only the means of the input 
and output processes get adjusted in arriving at the present result; the impulse 
response is untouched. 

The correlation relations in Eqns. (9.59), (9.60), (9.63) and (9.65), as well as 
their covariance counterparts, are very powerful, and we will make considerable 
use of them. Of equal importance are their statements in the Fourier and Laplace 
transform domains. Denoting the Fourier and Laplace transforms of the correlation 
function Rxx(τ) by Sxx(jω) and Sxx(s) respectively, and similarly for the other 
correlation functions of interest, we have: 

Syx(jω) = Sxx(jω)H(jω), Syy (jω) = Sxx(jω)|H(jω)| 2 , 

Syx(s) = Sxx(s)H(s), Syy(s) = Sxx(s)H(s)H(−s) . (9.68) 

We can denote the Fourier and Laplace transforms of the covariance function Cxx(τ) 
by Dxx(jω) and Dxx(s) respectively, and similarly for the other covariance functions 
of interest, and then write the same sorts of relationships as above. 

Exactly parallel results hold in the DT case. Consider a stable discrete-time LTI 
system whose impulse response is h[n] and whose input is the WSS random process 
x[n]. Then, as in the continuous-time case, we can conclude that the output process 
y[n] is jointly WSS with the input process x[n], and 

∞
µy = µx 

∑ 
h[n] (9.69) 

−∞ 

Ryx[m] = h[m] ∗ Rxx[m] (9.70) 

Ryy[m] = Rxx[m] ∗ Rhh[m] , (9.71) 
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where Rhh[m] is the deterministic autocorrelation function of h[m], defined as 

+∞
Rhh[m] = 

∑ 
h[n + m]h[n] . (9.72) 

n=−∞ 

The corresponding Fourier and Z-transform statements of these relationships are: 

µy = H(ej0)µx , Syx(ejΩ) = Sxx(ejΩ)H(ejΩ) , Syy(ejΩ) = Sxx(ejΩ)|H(ejΩ)| 2 , 

µy = H(1)µx , Syx(z) = Sxx(z)H(z) , Syy (z) = Sxx(z)H(z)H(1/z). 
(9.73) 

All of these expressions can also be rewritten for covariances and their transforms. 

The basic relationships that we have developed so far in this chapter are extremely 
powerful. In Chapter 10 we will use these relationships to show that the Fourier 
transform of the autocorrelation function describes how the expected power of a 
WSS process is distributed in frequency. For this reason, the Fourier transform of 
the autocorrelation function is termed the power spectral density (PSD) of the 
process. 

The relationships developed in this chapter are also very important in using random 
processes to measure or identify the impulse response of an LTI system. For exam­
ple, from (9.70), if the input x[n] to a DT LTI system is a WSS random process with 
autocorrelation function Rxx[m] = δ[m], then by measuring the cross-correlation 
between the input and output we obtain a measurement of the system impulse re­
sponse. It is easy to construct an input process with autocorrelation function δ[m], 
for example an i.i.d. process that is equally likely to take the values +1 and −1 at 
each time instant. 

As another example, suppose the input x(t) to a CT LTI system is a random 
telegraph wave, with changes in sign at times that correspond to the arrivals in a 
Poisson process with rate λ, i.e., 

(λT )ke−λT 

P(k switches in an interval of length T ) = . (9.74) 
k! 

Then, assuming x(0) takes the values ±1 with equal probabilities, we can determine 
that the process x(t) has zero mean and correlation function Rxx(τ ) = e−2λ|τ |, so 
it is WSS (for t ≥ 0). If we determine the cross-correlation Ryx(τ) with the output 
y(t) and then use the relation 

Ryx(τ) = Rxx(τ) ∗ h(τ) , (9.75) 

we can obtain the system impulse response h(τ). For example, if Syx(s), Sxx(s) and 
H(s) denote the associated Laplace transforms, then 

Syx(s)
H(s) = . (9.76) 

Sxx(s) 

Note that Sxx(s) is a rather well-behaved function of the complex variable s in this 
case, whereas any particular sample function of the process x(t) would not have 
such a well-behaved transform. The same comment applies to Syx(s). 
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As a third example, suppose that we know the autocorrelation function Rxx[m] 
of the input x[n] to a DT LTI system, but do not have access to x[n] and there­
fore cannot determine the cross-correlation Ryx[m] with the output y[n], but can 
determine the output autocorrelation Ryy [m]. For example, if 

Rxx[m] = δ[m] (9.77) 

and we determine Ryy[m] to be Ryy[m] = 
( 

2
1 
)|m|

, then 

( 
1 
)|m|

Ryy[m] = = Rhh[m] = h[m] ∗ h[−m]. (9.78) 
2 

Equivalently, H(z)H(z−1) can be obtained from the Z-transform Syy (z) of Ryy [m]. 
Additional assumptions or constraints, for instance on the stability and causality 
of the system and its inverse, may allow one to recover H(z) from knowledge of 
H(z)H(z−1). 
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