
C H A P T E R 6 

State Observers and State Feedback 

Our study of the modal solutions of LTI state-space models made clear in complete 
analytical detail that the state at any given time summarizes everything about the 
past that is relevant to future behavior of the model. More specifically, given the 
value of the state vector at some initial instant, and given the entire input trajectory 
over some interval of time extending from the initial instant into the future, one 
can determine the entire future state and output trajectories of the model over 
that interval. The same general conclusion holds for nonlinear and time-varying 
state-space models, although they are generally far less tractable analytically. Our 
focus will be on LTI models. 

It is typically the case that we do not have any direct measurement of the ini­
tial state of a system, and will have to make some guess or estimate of it. This 
uncertainty about the initial state generates uncertainty about the future state tra­
jectory, even if our model for the system is perfect, and even if we have accurate 
knowledge of the inputs to the system. 

The first part of this chapter is devoted to addressing the issue of state trajectory 
estimation, given uncertainty about the initial state of the system. We shall see that 
the state can actually be asymptotically determined under appropriate conditions, 
by means of a so-called state observer. The observer uses a model of the system 
along with past measurements of both the input and output trajectories of the 
system. 

The second part of the chapter examines how the input to the system should be 
controlled in order to yield desirable system behavior. We shall see that having 
knowledge of the present state of the system provides a powerful basis for designing 
feedback control to stabilize or otherwise improve the behavior of the resulting 
closed-loop system. When direct measurements of the state are not available, the 
asymptotic state estimate provided by an observer turns out to suffice. 

6.1 PLANT AND MODEL 

It is important now to make a distinction between the actual, physical (and causal) 
system we are interested in studying or working with or controlling — what is often 
termed the plant (as in “physical plant”) — and our idealized model for the plant. 
The plant is usually a complex, highly nonlinear and time-varying object, typically 
requiring an infinite number (or a continuum) of state variables and parameters to 
represent it with ultimate fidelity. Our model, on the other hand, is an idealized 
and simplified (and often LTI) representation, of relatively low order, that aims to 
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102 Chapter 6 State Observers and State Feedback 

capture the behavior of the plant in some limited regime of its operation, while 
remaining tractable for analysis, computation, simulation and design. 

The inputs to the model represent the inputs acting on or driving the actual plant, 
and the outputs of the model represent signals in the plant that are accessible for 
measurement. In practice we will typically not know all the driving inputs to the 
plant exactly. Apart from those driving inputs that we have access to, there will 
also generally be additional unmeasured disturbance inputs acting on the plant that 
we are only able to characterize in some general way, perhaps as random processes. 
Similarly, the measured outputs of the plant will differ from what we might predict 
on the basis of our limited model, partly because of measurement noise. 

6.2 STATE ESTIMATION BY REAL-TIME SIMULATION 

Suppose the plant of interest to us is correctly described by the following equations, 
which constitute an Lth-order LTI state-space representation of the plant: 

q[n + 1] = Aq[n] + bx[n] + w[n] , (6.1) 

y[n] = c T q[n] + dx[n] + ζ[n] . (6.2) 

Here x[n] denotes the known (scalar) control input, and w[n] denotes the vector 
of unknown disturbances that drive the plant, not necessarily through the same 
channels as the input x[n]. For example, we might have w[n] = f v[n], where v[n] is 
a scalar disturbance signal and f is a vector describing how this scalar disturbance 
drives the system (just as b describes how x[n] drives the system). The quantity 
y[n] denotes the known or measured (scalar) output, and ζ[n] denotes the unknown 
noise in this measured output. We refer to w[n] as plant disturbance or plant 
noise, and to ζ[n] as measurement noise. We focus mainly on the DT case now, but 
essentially everything carries over in a natural way to the CT case. 

With the above equations representing the true plant, what sort of model might 
we use to study or simulate the behavior of the plant, given that we know x[n] and 
y[n]? If nothing further was known about the disturbance variables in w[n] and 
the measurement noise ζ[n], or if we only knew that they could be represented as 
zero-mean random processes, for instance, then one strategy would be to simply 
ignore these variables when studying or simulating the plant. If everything else 
about the plant was known, our representation of the plant’s behavior would be 
embodied in an LTI state-space model of the form 

q̂[n + 1] = Aq̂[n] + bx[n] , (6.3) 

ŷ[n] = c T q̂[n] + dx[n] . (6.4) 

The x[n] that drives our model is the same known x[n] that is an input (along with 
possibly other inputs) to the plant. However, the state q̂[n] and output ŷ[n] of the 
model will generally differ from the corresponding state q[n] and output y[n] of the 
plant, because in our formulation the plant state and output are additionally per­
turbed by w[n] and ζ[n] respectively. The assumption that our model has correctly 
captured the dynamics of the plant and the relationships among the variables is 
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Section 6.3 The State Observer 103 

what allows us to use the same A, b, cT and d in our model as occur in the “true” 
plant. 

It bears repeating that in reality there are several sources of uncertainty we are 
ignoring here. At the very least, there will be discrepancies between the actual and 
assumed parameter values — i.e., between the actual entries of A, b, cT and d in 
(6.1), (6.2) and the assumed entries of these matrices in (6.3), (6.4) respectively. 
Even more troublesome is the fact that the actual system is probably more accu­
rately represented by a nonlinear, time-varying model of much higher order than 
that of our assumed LTI model, and with various other disturbance signals acting 
on it. We shall not examine the effects of all these additional sources of uncertainty. 

With a model in hand, it is natural to consider obtaining an estimate of the current 
plant state by running the model forward in real time, as a simulator. For this, we 
initialize the model (6.3) at some initial time (which we take to be n = 0 without 
loss of generality), picking its initial state q̂[0] to be some guess or estimate of the 
initial state of the plant. We then drive the model with the known input x[n] from 
time n = 0 onwards, generating an estimated or predicted state trajectory q̂[n] for 
n > 0. We could then also generate the predicted output ŷ[n] using the prescription 
in (6.4). 

In order to examine how well this real-time simulator performs as a state estimator, 
we examine the error vector 

q̃[n] = q[n] − q̂[n] . (6.5) 

Note that q̃[n] is the difference between the actual and estimated (or predicted) 
state trajectories. By subtracting (6.3) from (6.1), we see that this difference, the 
estimation error or prediction error q̃[n], is itself governed by an LTI state-space 
equation: 

q̃[n + 1] = Aq̃[n] + w[n] (6.6) 

with initial condition 
q̃[0] = q[0] − q̂[0] . (6.7) 

This initial condition is our uncertainty about the initial state of the plant. 

What (6.6) shows is that, if the original system (6.1) is unstable (i.e., if A has 
eigenvalues of magnitude greater than 1), or has otherwise undesirable dynamics, 
and if either q̃[0] or w[n] is nonzero, then the error q̃[n] between the actual and 
estimated state trajectories will grow exponentially, or will have otherwise undesir­
able behavior, see Figure 6.1. Even if the plant is not unstable, we see from (6.6) 
that the error dynamics are driven by the disturbance process w[n], and we have no 
means to shape the effect of this disturbance on the estimation error. The real-time 
simulator is thus generally an inadequate way of reconstructing the state. 

6.3 THE STATE OBSERVER 

To do better than the real-time simulator (6.3), we must use not only the input x[n] 
but also the measured output y[n]. The key idea is to use the discrepancy between 
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FIGURE 6.1 Schematic representation of the effect of an erroneous initial condition 
on the state estimate produced by the real-time simulator for an unstable plant. 

actual and predicted outputs, y[n] in (6.2) and ŷ[n] in (6.4) respectively — i.e., to 
use the output prediction error — as a correction term for the real-time simulator. 
The resulting system is termed a state observer (or state estimator) for the plant, 
and in our setting takes the form 

q̂[n + 1] = Aq̂[n] + bx[n] 

− ℓ y[n] − ŷ[n] . (6.8) 

The observer equation above has been written in a way that displays its two con­
stituent parts: a part that simulates as closely as possible the plant whose states 
we are trying to estimate, and a part that feeds the correction term y[n] − ŷ[n] into 
this simulation. This correction term is applied through the L-component vector 
ℓ, termed the observer gain vector, with ith component ℓi. (The negative sign in 
front of ℓ in (6.8) is used only to simplify the appearance of some later expressions). 
Figure 6.2 is a block-diagram representation of the resulting structure. 

Now subtracting (6.8) from (6.1), we find that the state estimation error or observer 
error satisfies 

(
T 

)
q̃[n + 1] = Aq̃[n] + w[n] + ℓ y[n] − c q̂[n] − dx[n]

= (A + ℓc T )q̃[n] + w[n] + ℓζ[n] . (6.9) 

If the observer gain ℓ is 0, then the error dynamics are evidently just the dynamics 
of the real-time simulator (6.6). More generally, the dynamics are governed by the 
system’s natural frequencies, namely the eigenvalues of A + ℓcT or the roots of the 
characteristic polynomial 

κ(λ) = det
(
λI − (A + ℓc T )

) 
(6.10) 

= λL + κL−1λ
L−1 + + κ0 . (6.11) · · · 

(This polynomial, like all the characteristic polynomials we deal with, has real 
coefficients and is monic, i.e., its highest-degree term is scaled by 1 rather than 
some non-unit scalar.) 
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FIGURE 6.2 An observer for the plant in the upper part of the diagram comprises 
a real-time simulation of the plant, driven by the same input, and corrected by a 
signal derived from the output prediction error. 

Two questions immediately arise: 

(i)	 How much freedom do we have in placing the observer eigenvalues, i.e., the 
eigenvalues of A + ℓcT or the roots of κ(λ), by appropriate choice of the 
observer gain ℓ ? 

(ii)	 How does the choice of ℓ shape the effects of the disturbance and noise terms 
w[n] and ζ[n] on the observer error? 

Brief answers to these questions are respectively as follows: 

(i)	 At ℓ = 0 the observer eigenvalues, namely the eigenvalues of A + ℓcT , are 
those of the real-time simulator, which are also those of the given system or 
plant. By varying the entries of ℓ away from 0, it turns out we can move all 
the eigenvalues that correspond to observable eigenvalues of the plant (which 
may number as many as L eigenvalues), and those are the only eigenvalues we 
can move. Moreover, appropriate choice of ℓ allows us, in principle, to move 
these observable eigenvalues to any arbitrary set of self-conjugate points in 
the complex plane. (A self-conjugate set is one that remains unchanged by 
taking the complex conjugate of the set. This is equivalent to requiring that 
if a complex point is in such a set, then its complex conjugate is as well.) 
The self-conjugacy restriction is necessary because we are working with real 

©Alan V. Oppenheim and George C. Verghese, 2010 c



106 Chapter 6 State Observers and State Feedback 

parameters and gains. 

The unobservable eigenvalues of the plant remain eigenvalues of the observer, 
and cannot be moved. (This claim can be explicitly demonstrated by trans­
formation to modal coordinates, but we omit the details.) The reason for this 
is that information about these unobservable modes does not make its way 
into the output prediction error that is used in the observer to correct the 
real-time simulator. 

It follows from the preceding statements that a stable observer can be designed 
if and only if all unobservable modes of the plant are stable (a property that is 
termed detectability). Also, the observer can be designed to have an arbitrary 
characteristic polynomial κ(λ) if and only if the plant is observable. 

We shall not prove the various claims above. Instead, we limit ourselves to 
proving, later in this chapter, a closely analogous set of results for the case of 
state feedback control. 

In designing observers analytically for low-order systems, one way to proceed 
is by specifying a desired set of observer eigenvalues ǫ1, ǫL, thus specifying · · · 
the observer characteristic polynomial κ(λ) as 

L

κ(λ) = 
∏

(λ − ǫi) . (6.12) 
i=1 

Expanding this out and equating it to det
(
λI − (A + ℓc T )

) 
, as in (6.10), 

yields L simultaneous linear equations in the unknown gains ℓ1, , ℓL. These · · · 
equations will be consistent and solvable for the observer gains if and only if 
all the unobservable eigenvalues of the plant are included among the specified 
observer eigenvalues {ǫi}. 
The preceding results also suggest an alternative way to determine the un-

Tobservable eigenvalues of the plant: the roots of det
(
λI − (A + ℓc )

) 
that 

cannot be moved, no matter how ℓ is chosen, are precisely the unobservable 
eigenvalues of the plant. This approach to exposing unobservable modes can 
be easier in some problems than the approach used in the previous chapter, 
which required first computing the eigenvectors {vi} of the system, and then 
checking for which i we had cT vi = 0. 

(ii)	 We now address how the choice of ℓ shapes the effects of the disturbance and 
noise terms w[n] and ζ[n] on the observer error. The first point to note is 
that if the error system (6.9) is made asymptotically stable by appropriate 
choice of observer gain ℓ, then bounded plant disturbance w[n] and bounded 
measurement noise ζ[n] will result in the observer error being bounded. This 
is most easily proved by transforming to modal coordinates, but we omit the 
details. 

The observer error equation (6.9) shows that the observer gain ℓ enters in 
two places, first in causing the error dynamics to be governed by the state 
evolution matrix A + ℓcT rather than A, and again as the input vector for 
the measurement noise ζ[n]. This highlights a basic tradeoff between error 
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decay and noise immunity. The observer gain can be used to obtain fast error 
decay, as might be needed in the presence of plant disturbances w[n] that 
continually perturb the system state away from where we think it is — but 
large entries in ℓ may be required to accomplish this (certainly in the CT case, 
but also in DT if the model is a sampled-data version of some underlying CT 
system, as in the following example), and these large entries in ℓ will have 
the undesired result of accentuating the effect of the measurement noise. A 
large observer gain may also increase the susceptibility of the observer design 
to mod! eling errors and other discrepancies. In practice, such considerations 
would lead us design somewhat conservatively, not attempting to obtain overly 
fast error-decay dynamics. 

Some aspects of the tradeoffs above can be captured in a tractable optimiza­
tion problem. Modeling w[n] and ζ[n] as stationary random processes (which 
are introduced in a later chapter), we can formulate the problem of picking 
ℓ to minimize some measure of the steady-state variances in the components 
of the state estimation error q̃[n]. The solution to this and a range of related 
problems is provided by the so-called Kalman filtering framework. We will be 
in a position to work through some elementary versions of this once we have 
developed the machinery for dealing with stationary random processes. 

EXAMPLE 6.1 Ship Steering 

Consider the following simplified sampled-data model for the steering dynamics 
of a ship traveling at constant speed, with a rudder angle that is controlled in a 
piecewise-constant fashion by a computer-based controller: 

[ 
q1[n + 1] 

] [ 
1 σ 

] [ 
q1[n] 

] [ 
ǫ 

] 

q[n + 1] = = + x[n]
q2[n + 1] 0 α q2[n] σ 

= Aq[n] + bx[n] . (6.13) 

The state vector q[n] comprises the sampled heading error q1[n] (which is the 
direction the ship points in, relative to the desired direction of motion) and the 
sampled rate of turn q2[n] of the ship, both sampled at time t = nT ; x[n] is the 
constant value of the rudder angle (relative to the direction in which the ship 
points) in the interval nT ≤ t < nT + T (we pick positive rudder angle to be that 
which would tend to increase the heading error). The positive parameters α, σ 
and ǫ are determined by the type of ship, its speed, and the sampling interval T . 
In particular, α is generally smaller than 1, but can be larger than 1 for a large 
tanker; in any case, the system (6.13) is not asymptotically stable. The constant σ 
is approximately equal to the sampling interval T . 

Suppose we had (noisy) measurements of the rate of turn, so 
T c = 

( 
0 1 

) 
. (6.14) 

Then ( 
1 σ + ℓ1 

) 

A + ℓc T = . (6.15) 
0 α + ℓ2 
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108 Chapter 6 State Observers and State Feedback 

Evidently one natural frequency of the error equation is fixed at 1, no matter what 
ℓ is. This natural frequency corresponds to a mode of the original system that is 
unobservable from rate-of-turn measurements. Moreover, it is not an asymptotically 
stable mode, so the corresponding observer error will not decay. Physically, the 
problem is that the rate of turn contains no input from or information about the 
heading error itself. 

If, instead, we have (noisy) measurements of the heading error, so 

T c = 
( 

1 0 
) 

. (6.16) 

In this case ( 
1 + ℓ1 σ 

) 

A + ℓc T = . (6.17) 
ℓ2 α 

The characteristic polynomial of this matrix is 

κ(λ) = λ2 − λ(1 + ℓ1 + α) + α(1 + ℓ1) − ℓ2σ . (6.18) 

This can be made into an arbitrary monic polynomial of degree 2 by choice of the 
gains ℓ1 and ℓ2, which also establishes the observability of our plant model. 

One interesting choice of observer gains in this case is ℓ1 = −1 − α and ℓ2 = −α2/σ 
(which, for typical parameter values, results in ℓ2 being large). With this choice, 

( 
σ 

) 

A + ℓc T = −
−
α2

α
/σ α 

. (6.19) 

The characteristic polynomial of this matrix is κ(λ) = λ2, so the natural frequencies 
of the observer error equation are both at 0. 

A DT LTI system with all natural frequencies at 0 is referred to as deadbeat, because 
its zero-input response settles exactly to the origin in finite time. (This finite-time 
settling is possible for the zero-input response of an LTI DT system, but not for 
an LTI CT system, though of course it is possible for an LTI CT system to have 
an arbitrarily small zero-input response after any specified positive time.) We have 
not discussed how to analyze LTI state-space models with non-distinct eigenvalues, 
but to verify the above claim of finite settling for our observer, it suffices to confirm 
from (6.19) that (A + ℓcT )2 = 0 when the gains ℓi are chosen to yield κ(λ) = λ2 . 
This implies that in the absence of plant disturbance and measurement noise, the 
observer error goes to 0 in at most two steps. 

In the presence of measurement noise, one may want to choose a slower error decay, 
so as to keep the observer gain ℓ — and ℓ2 in particular — smaller than in the 
deadbeat case, and thereby not accentuate the effects of measurement noise on the 
estimation error. 

6.4 STATE FEEDBACK CONTROL 

For a causal system or plant with inputs that we are able to manipulate, it is 
natural to ask how the inputs should be chosen in order to cause the system to 
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behave in some desirable fashion. Feedback control of such a system is based on 
sensing its present or past behavior, and using the measurements of the sensed 
variables to generate control signals to apply to it. Feedback control is also referred 
to as closed-loop control. 

Open-loop control, by contrast, is not based on continuous monitoring of the plant, 
but rather on using only information available at the time that one starts inter­
acting with the system. The trouble with open-loop control is that errors, even if 
recognized, are not corrected or compensated for. If the plant is poorly behaved or 
unstable, then uncorrected errors can lead to bad or catastrophic consequences. 

Feedforward control refers to schemes incorporating measurements of signals that 
currently or in the future will affect the plant, but that are not themselves af­
fected by the control. For example, in generating electrical control signals for the 
positioning motor of a steerable radar antenna, the use of measurements of wind 
velocity would correspond to feedforward control, whereas the use of measurements 
of antenna position would correspond to feedback control. Controls can have both 
feedback and feedforward components. 

Our focus in this section is on feedback control. To keep our development stream­
lined, we assume the plant is well modeled by the following Lth-order LTI state-
space description: 

q[n + 1] = Aq[n] + bx[n] (6.20) 

y[n] = c T q[n] (6.21) 

rather than the more elaborate description (6.1), (6.2). As always, x[n] denotes 
the control input and y[n] denotes the measured output, both taken to be scalar 
functions of time. We shall also refer to this as the open-loop system. Again, we 
treat the DT case, but essentially everything carries over naturally to CT. Also, 
for notational simplicity, we omit from (6.21) the direct feedthrough term dx[n] 
that has appeared in our system descriptions until now, because this term can 
complicate the appearance of some of the expressions we derive, without being of 
much significance in itself; it is easily accounted for if necessary. 

Denote the characteristic polynomial of the matrix A in (6.20) by 

L

a(λ) = det(λI − A) = 
∏

(λ − λi) . (6.22) 
i=1 

The transfer function H(z) of the system (6.20), (6.21) is given by 

H(z) = c T (zI − A)−1b (6.23) 

η(z) 
= . (6.24) 

a(z) 

(The absence of the direct feedthrough term in (6.21) causes the degree of the 
polynomial η(z) to be strictly less than L. If the feedthrough term was present, the 
transfer function would simply have d added to the H(z) above.) Note that there 
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may be pole-zero cancelations involving common roots of a(z) and η(z) in (6.24), 
corresponding to the presence of unreachable and/or unobservable modes of the 
system. Only the uncanceled roots of a(z) survive as poles of H(z), and similarly 
only the uncanceled roots of η(z) survive as zeros of the transfer function. 

We reiterate that the model undoubtedly differs from the plant in many ways, 
but we shall not examine the effects of various possible sources of discrepancy 
and uncertainty. A proper treatment of such issues constitutes the field of robust 
control, which continues to be an active area of research. 

Since the state of a system completely summarizes the relevant past of the system, 
we should expect that knowledge of the state at every instant gives us a powerful 
basis for designing feedback control signals. In this section we consider the use of 
state feedback for the system (6.20), assuming that we have access to the entire state 
vector at each time. Though this assumption is unrealistic in general, it will allow 
us to develop some preliminary results as a benchmark. We shall later consider 
what happens when we treat the more realistic situation, where the state cannot 
be measured but has to be estimated instead. It will turn out in the LTI case that 
the state estimate provided by an observer will actually suffice to accomplish much 
of what can be achieved when the actual state is used for feedback. 

The particular case of LTI state feedback is represented in Figure 6.3, in which the 
feedback part of the input x[n] is a constant linear function of the state q[n] at that 
instant: 

x[n] = p[n] + g T q[n] (6.25) 

where the L-component row vector gT is the state feedback gain vector (with ith 
component gi), and p[n] is some external input signal that can be used to augment 
the feedback signal. Thus x[n] is p[n] plus a weighted linear combination of the 
state variables qi[n], with constant weights gi. 

�p + �x Linear Dynamical 
System > 

q 

<gTg T 
q 

� 

FIGURE 6.3 Linear dynamical system with LTI state feedback. The single lines 
denote scalar signals and the double lines denote vector signals. 

With this choice for x[n], the system (6.20) becomes 

(
T 

)
q[n + 1] = Aq[n] + b p[n] + g q[n]

= 
(
A + bgT 

)
q[n] + bp[n] . (6.26) 
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The behavior of this closed-loop system, and in particular its stability, is governed 
by its natural frequencies, namely by the L eigenvalues of the matrix A + bgT or 
the roots of the characteristic polynomial 

ν(λ) = det
(
λI − (A + bgT )

)	
(6.27) 

= λL + νL−1λ
L−1 + + ν0 .	 (6.28) · · · 

Some questions immediately arise: 

(i)	 How much freedom do we have in placing the closed-loop eigenvalues, i.e., the 
eigenvalues of A +bgT or the roots of ν(λ), by appropriate choice of the state 
feedback gain gT ? 

(ii)	 How does state feedback affect reachability, observability and the transfer

function of the system?


(iii)	 How does the choice of gT affect the state behavior and the control effort that 
is required? 

Brief answers to these (inter-related) questions are respectively as follows: 

(i)	 By varying the entries of gT away from 0, we can move all the reachable 
eigenvalues of the system (which may number as many as L), and only those 
eigenvalues. Moreover, appropriate choice of gT allows us, in principle, to 
move the reachable eigenvalues to any arbitrary set of self-conjugate points in 
the complex plane. 

The unreachable eigenvalues of the open-loop system remain eigenvalues of 
the closed-loop system, and cannot be moved. (This can be explicitly demon­
strated by transformation to modal coordinates, but we omit the details.) 
The reason for this is that the control input cannot access these unreachable 
modes. 

It follows from the preceding claims that a stable closed-loop system can be 
designed if and only if all unreachable modes of the open-loop system are 
stable (a property that is termed stabilizability). Also, state feedback can 
yield an arbitrary closed-loop characteristic polynomial ν(λ) if and only if the 
open-loop system (6.20) is reachable. 

The proof for the above claims is presented in Section 6.4.1.


In designing state feedback control analytically for low-order examples, one

way to proceed is by specifying a desired set of closed-loop eigenvalues µ1, µL,
· · · 
thus specifying ν(λ) as 

L

ν(λ) = 
∏

(λ − νi) . (6.29) 
i=1 

Expanding this out and equating it to det
(
λI − (A + bgT )

)
, as in (6.27), 

yields L simultaneous linear equations in the unknown gains g1, , gL. These · · · 
equations will be consistent and solvable for the state feedback gains if and 
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only if all the unreachable eigenvalues of the plant are included among the 
specified closed-loop eigenvalues {µi}. 
The preceding results also suggest an alternative way to determine the un­

reachable eigenvalues of the given plant: the roots of det
(
λI−(A+bgT )

) 
that 

cannot be moved, no matter how gT is chosen, are precisely the unreachable 
eigenvalues of the plant. This approach to exposing unreachable modes can 
be easier in some problems than the approach used in the previous chapter, 
which required first computing the eigenvectors {vi} of the plant, and then 
checking which of these eigenvectors were not needed in writing b as a linear 
combination of the eigenvectors. 

[The above discussion has closely paralleled our discussion of observers, except 
that observability statements have been replaced by reachability statements 
throughout. The underlying reason for this “duality” is that the eigenvalues 
of A + bgT are the same as those of its transpose, namely AT + gbT . The 
latter matrix has exactly the structure of the matrix A + ℓcT that was the 
focus of our discussion of observers, except that A is now replaced by AT , 
and cT is replaced by bT . It is not hard to see that the structure of observable 
and unobservable modes determined by the pair AT and bT is the same as 
the structure of reachable and unreachable modes determined by the pair A 
and b.] 

(ii)	 The results in part (i) above already suggest the following fact: that whether 
or not an eigenvalue is reachable from the external input — i.e., from x[n] 
for the open-loop system and p[n] for the closed-loop system — is unaffected 
by state feedback. An unreachable eigenvalue of the open-loop system cannot 
be excited from the input x[n], no matter how the input is generated, and 
therefore cannot be excited even in closed loop (which also explains why it 
cannot be moved by state feedback). Similarly, a reachable eigenvalue of the 
open-loop system can also be excited in the closed-loop system, because any 
x[n] that excites it in the open-loop system may be generated in the closed-
loop system by choosing p[n] = x[n] − gT q[n]. 

The proof in Section 6.4.1 of the claims in (i) will also establish that the 
transfer function of the closed-loop system, from p[n] to y[n], is now 

Hcl(z) = c T 
( 
zI − (A + bgT )

)−1 
b (6.30) 

= 
η(z) 
ν(z) 

. (6.31) 

Thus the zeros of the closed-loop transfer function are still drawn from the 
roots of the same numerator polynomial η(z) in (6.24) that contains the zeros 
of the open-loop system; state feedback does not change η(z). However, the 
actual zeros of the closed-loop system are those roots of η(z) that are not 
canceled by roots of the new closed-loop characteristic polynomial ν(z), and 
may therefore differ from the zeros of the open-loop system. 

We know from the previous chapter that hidden modes in a transfer function 
are the result of the modes being unreachable and/or unobservable. Because 
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state feedback cannot alter reachability properties, it follows that any changes 
in cancelations of roots of η(z), in going from the original open-loop system to 
the closed-loop one, must be the result of state feedback altering the observ­
ability properties of the original modes. If an unobservable (but reachable) 
eigenvalue of the open-loop system is moved by state feedback and becomes 
observable, then a previously canceled root of η(z) is no longer canceled and 
now appears as a zero of the closed-loop system. Similarly, if an observable 
(and reachable) eigenvalue of the open-loop system is moved by state feedback 
to a location where it now cancels a root of η(z), then this root is no longer a 
zero of the closed-loop system, and this hidden mode corresponds to a mode 
that has been made unobservable by state feed! back. 

(iii)	 We turn now to the question of how the choice of gT affects the state behavior 
and the control effort that is required. Note first that if gT is chosen such 
that the closed-loop system is asymptotically stable, then a bounded external 
signal p[n] in (6.26) will lead to a bounded state trajectory in the closed-loop 
system. This is easily seen by considering the transformation of (6.26) to 
modal coordinates, but we omit the details. 

The state feedback gain gT affects the closed-loop system in two key ways, 
first by causing the dynamics to be governed by the eigenvalues of A + bgT 

rather than those of A, and second by determining the scaling of the control 
input x[n] via the relationship in (6.25). This highlights a basic tradeoff 
between the response rate and the control effort. The state feedback gain 
can be used to obtain a fast response, to bring the system state from its 
initially disturbed value rapidly back to the origin — but large entries in gT 

may be needed to do this (certainly in the CT case, but also in DT if the 
model is a sampled-data version of some underlying CT system), and these 
large entries in gT result in large control effort being expended. Furthermore, 
the effects of any errors in measuring or estimating the state vector, or of 
modeling errors and other discrepancies, are likely to be accentuated with 
large feedback gains. In practice, these considerations would lead us design 
somewhat conservatively, not attempting to obtain overly fast closed-loop 
dynamics. Again, some aspects of the tradeoffs involved can be captured in 
tractable optimization problems, but these are left to more advanced courses. 

We work through a CT example first, partly to make clear that our development 
carries over directly from the DT to the CT case. 
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EXAMPLE 6.2 Inverted Pendulum with Torque Control 

R 

m 

θ 

FIGURE 6.4 Inverted pendulum. 

Consider the inverted pendulum shown in Figure 6.4, comprising a mass m at the 
end of a light, hinged rod of length R. For small deviations θ(t) from the vertical, 

d2θ(t) 
= Kθ(t) + σx(t) , (6.32) 

dt2 

where K = g/R (g being the acceleration due to gravity), σ = 1/(mR2), and 
a torque input x(t) is applied at the point of support of the pendulum. Define 
q1(t) = θ(t), q2(t) = θ̇(t); then 

[ 
0 1 

] [ 
0 

] 

q̇(t) = q(t) + x(t) . (6.33) 
K 0 σ 

We could now determine the system eigenvalues and eigenvectors to decide whether 
the system is reachable. However, this step is actually not necessary in order to 
assess reachability and compute a state feedback. Instead, considering directly the 
effect of the state feedback, we find 

x(t) = g T q(t) (6.34) 
[ 

0 1 
] [ 

0 
] 

q̇(t) = q(t) + [ g1 g2 ]q(t) (6.35) 
K 0 σ 

[ 
0 1 

] 

= q(t) . (6.36) 
K + σg1 σg2 

The corresponding characteristic polynomial is 

ν(λ) = λ2 − λσg2 − (K + σg1) . (6.37) 

Inspection of this expression shows that by appropriate choice of the real gains g1 

and g2 we can make this polynomial into any desired monic second-degree polyno­
mial. In other words, we can obtain any self-conjugate set of closed-loop eigenvalues. 
This also establishes that the original system is reachable. 
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Suppose we want the closed-loop eigenvalues at particular numbers µ1, µ2, which 
is equivalent to specifying the closed-loop characteristic polynomial to be 

ν(λ) = (λ − µ1)(λ − µ2) = λ2 − λ(µ1 + µ2) + µ1µ2 . (6.38) 

Equating this to the polynomial in (6.37) shows that 

µ1µ2 + K µ1 + µ2 
g1 = − and g2 = . (6.39) 

σ σ 

Both gains are negative when µ1 and µ2 form a self-conjugate set in the open 
left-half plane. 

We return now to the ship steering example introduced earlier. 

EXAMPLE 6.3 Ship Steering (continued) 

Consider again the DT state-space model in Example 6.1, repeated here for conve­
nience: 

[ 
q1[n + 1] 

] [ 
1 σ 

] [ 
q1[n] 

] [ 
ǫ 

] 

q[n + 1] = = + x[n]
q2[n + 1] 0 α q2[n] σ 

= Aq[n] + bx[n] . (6.40) 

(A model of this form is also obtained for other systems of interest, for instance the 
motion of a DC motor whose input is a voltage that is held constant over intervals 
of length T by a computer-based controller. In that case, for x[n] in appropriate 
units, we have α = 1, σ = T , and ǫ = T 2/2.) 

For the purposes of this example, take 
1 

] [ 
1 

][ 
1 

A = 4 , b = 32 (6.41) 
0 1 1 

4 

and set 
x[n] = g1q1[n] + g2q2[n] (6.42) 

to get the closed-loop matrix 
1 g2 

][ 
1 + g1 

32 4 32 A + bgT = g1 

+ 
. (6.43) 

1 + g2 
4 4 

The fastest possible closed-loop response in this DT model is the deadbeat behavior 
described earlier in Example 6.1, obtained by placing both closed-loop natural 
frequencies at 0, i.e., choosing the closed-loop characteristic polynomial to be ν(λ) = 
λ2 . A little bit of algebra shows that g1 and g2 need to satisfy the following equations 
for this to be achieved: 

g1 g2 
+ = −2 

32 4 
g1 g2 − 
32 

+
4 

= −1 . (6.44) 
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Solving these simultaneously, we get g1 = −16 and g2 = −6. We have not shown 
how to analyze system behavior when there are repeated eigenvalues, but in the 
particular instance of repeated eigenvalues at 0, it is easy to show that the state 
will die to 0 in a finite number of steps — at most two steps, for this second-order 
system. To establish this, note that with the above choice of g we get 

1 1 
] 

2 16 A + bgT = 1 , (6.45) −4 − 2 

so (
A + bgT 

)2 
= 0 , (6.46) 

which shows that any nonzero initial condition will vanish in two steps. In practice, 
such deadbeat behavior may not be attainable, as unduly large control effort — 
rudder angles, in the case of the ship — would be needed. One is likely therefore 
to aim for slower decay of the error. 

Typically, we do not have direct measurements of the state variables, only knowl­
edge of the control input, along with noisy measurements of the system output. 
The state may then be reconstructed using an observer that produces asymptot­
ically convergent estimates of the state variables, under the assumption that the 
system (6.20), (6.21) is observable. We shall see in more detail shortly that one can 
do quite well using the state estimates produced by the observer, in place of direct 
state measurements, in a feedback control scheme. 

6.4.1 Proof of Eigenvalue Placement Results 

This subsection presents the proof of the main result claimed earlier for state feed­
back, namely that it can yield any (monic, real-coefficient) closed-loop characteristic 
polynomial ν(λ) that includes among its roots all the unreachable eigenvalues of the 
original system. We shall also demonstrate that the closed-loop transfer function 
is given by the expression in (6.31). 

First transform the open-loop system (6.20), (6.21) to modal coordinates; this 
changes nothing essential in the system, but simplifies the derivation. Using the 
same notation for modal coordinates as in the previous chapter, the closed-loop 
system is now defined by the equations 

ri[n + 1] = λiri[n] + βix[n] , i = 1, 2, . . . , L (6.47) 

x[n] = γ1r1[n] + + γLrL[n] + p[n] , (6.48) · · · 

where ( 
γ1 γL 

) 
= g T V , (6.49) · · · 

and V is the modal matrix, whose columns are the eigenvectors of the open-loop 
system. The γi are therefore just the state-feedback gains in modal coordinates. 
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Now using (6.47) and (6.48) to evaluate the transfer function from p[n] to x[n], we 
get 

L
X(z)

= 
(
1 − 

∑ γiβi 
)−1 

= 
a(z) 

. (6.50) 
P (z) z − λi ν(z)

1 

To obtain the second equality in the above equation, we have used the following 
facts: (ii) the open-loop characteristic polynomial a(z) is given by (6.22), and this 
is what appears in the numerator of (6.50; (ii) the poles of this transfer function 
must be the closed-loop poles of the system, and its denominator degree must equal 
its numerator degree, so the denominator of this expression must be the closed-loop 
characteristic polynomial ν(z). Then using (6.24), we find that the overall transfer 
function from the input p[n] of the closed-loop system to the output y[n] is 

Y (z) Y (z) X(z) 
= (6.51) 

P (z) X(z) P (z) 

η(z) a(z) 
= (6.52) 

a(z) ν(z) 

η(z) 
= . (6.53) 

ν(z) 

The conclusion from all this is that state feedback has changed the denominator of 
the input-output transfer function expression from a(z) in the open-loop case to ν(z) 
in the closed-loop case, and has accordingly modified the characteristic polynomial 
and poles. State feedback has left unchanged the numerator polynomial η(z) from 
which the zeros are selected; all roots of η(z) that are not canceled by roots of ν(z) 
will appear as zeros of the closed-loop transfer function. 

Inverting (6.50), we find 
L

ν(z) ∑ γiβi 

a(z) 
= 1 − 

z − λi 
. (6.54) 

1 

Hence, given the desired closed-loop characteristic polynomial ν(λ), we can expand 
ν(z)/a(z) in a partial fraction expansion, and determine the state feedback gain γi 

(in modal coordinates) for each i by dividing the coefficient of 1/(z − λi) by −βi, 
assuming this is nonzero, i.e., assuming the ith mode is reachable. If the jth mode 
is unreachable, so βj = 0, then λj does not appear as a pole on the right side of 
(6.54), which must mean that ν(z) has to contain z − λj as a factor (in order for 
this factor to cancel out on the left side of the equation), i.e., every unreachable 
natural frequency of the open-loop system has to remain as a natural frequency of 
the closed-loop system. 

6.5 OBSERVER-BASED FEEDBACK CONTROL 

The obstacle to state feedback is the general unavailability of direct measurements 
of the state. All we typically have are knowledge of what control signal x[n] we 
are applying, along with (possibly noise-corrupted) measurements of the output 
y[n], and a nominal model of the system. We have already seen how to use this 
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information to estimate the state variables, using an observer or state estimator. 
Let us therefore consider what happens when we use the state estimate provided 
by the observer, rather than the (unavailable) actual state, in the feedback control 
law (6.25). With this substitution, (6.25) is modified to 

x[n] = p[n] + g T q̂[n] 

= p[n] + g T (q[n] − q̃[n]) . (6.55) 

The overall closed-loop system is then as shown in Figure 6.5, and is governed by 
the following state-space model, obtained by combining the representations of the 
subsystems that make up the overall system, namely the plant (6.1), observer error 
dynamics (6.9), and feedback control law (6.55): 
[ 

q[n + 1] 
] [ 

A + bgT −bgT 
] [ 

q[n] 
] [ 

b 
] [ 

I 
] [ 

0 
] 

q[n + 1] 
= 

0 A + ℓcT q[n]
+

0 
p[n]+ 

I
w[n]+ 

ℓ
ζ[n] . 

(6.56) 
Note that we have reverted here to the more elaborate plant representation in 
(6.1), (6.2) rather than the streamlined one in (6.20), (6.21), in order to display 
the effect of plant disturbance and measurement error on the overall closed-loop 
system. (Instead of choosing the state vector of the overall system to comprise 
the state vector q[n] of the plant and the state vector q̃[n] of the error equation, 
we could equivalently have picked q[n] and q̂[n]. The former choice leads to more 
transparent expressions.) 

The (block) triangular structure of the state matrix in (6.56) allows us to conclude 
that the natural frequencies of the overall system are simply the eigenvalues of A + 
bgT along with those of A+ℓcT . (This is not hard to demonstrate, either based on 
the definition of eigenvalues and eigenvectors, or using properties of determinants, 
but we omit the details.) In other words, our observer-based feedback control law 
results in a nicely behaved closed-loop system, with natural frequencies that are 
the union of those obtained with perfect state feedback and those obtained for the 
observer error equation. Both sets of natural frequencies can be arbitrarily selected, 
provided the open-loop system is reachable and observable. One would normally 
pick the modes that govern observer error decay to be faster than those associated 
with state feedback, in order to have reasonably accurate estimates available to the 
feedback control law before the plant state can wander too far away from what is 
desired. 

The other interesting fact is that the transfer function from p[n] to y[n] in the new 
closed-loop system is exactly what would be obtained with perfect state feedback, 
namely the transfer function in (6.46). The reason is that the condition under which 
the transfer function is computed — as the input-output response when starting 
from the zero state — ensures that the observer starts up from the same initial 
condition as the plant. This in turn ensures that there is no estimation error, so 
the estimated state is as good as the true state. Another way to see this is to note 
that the observer error modes are unobservable from the available measurements. 

The preceding observer-based compensator is the starting point for a very general 
and powerful approach to control design, one that carries over to the multi-input, 
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FIGURE 6.5 Observer-based compensator, feeding back an LTI combination of the 
estimated state variables. 

multi-output case. With the appropriate embellishments around this basic struc­
ture, one can obtain every possible stabilizing LTI feedback controller for the system 
(6.20), (6.21). Within this class of controllers, we can search for those that have 
good robustness properties, in the sense that they are relatively immune to the 
uncertainties in our models. Further exploration of all this has to be left to more 
advanced courses. 
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