
C H A P T E R 2 

Signals and Systems 

This text assumes a basic background in the representation of linear, time-invariant 
systems and the associated continuous-time and discrete-time signals, through con­
volution, Fourier analysis, Laplace transforms and Z-transforms. In this chapter 
we briefly summarize and review this assumed background, in part to establish no­
tation that we will be using throughout the text, and also as a convenient reference 
for the topics in the later chapters. We follow closely the notation, style and presen­
tation in Signals and Systems, Oppenheim and Willsky with Nawab, 2nd Edition, 
Prentice Hall, 1997. 

2.1 SIGNALS, SYSTEMS, MODELS, PROPERTIES 

Throughout this text we will be considering various classes of signals and systems, 
developing models for them and studying their properties. 

Signals for us will generally be real or complex functions of some independent 
variables (almost always time and/or a variable denoting the outcome of a proba­
bilistic experiment, for the situations we shall be studying). Signals can be: 

1-dimensional or multi-dimensional • 

• continuous-time (CT) or discrete-time (DT) 

• deterministic or stochastic (random, probabilistic) 

Thus, a DT deterministic time-signal may be denoted by a function x[n] of the 
integer time (or clock or counting) variable n. 

Systems are collections of software or hardware elements, components, subsys­
tems. A system can be viewed as mapping a set of input signals to a set of output 
or response signals. A more general view is that a system is an entity imposing 
constraints on a designated set of signals, where the signals are not necessarily la­
beled as inputs or outputs. Any specific set of signals that satisfies the constraints 
is termed a behavior of the system. 

Models are (usually approximate) mathematical or software or hardware or lin­
guistic or other representations of the constraints imposed on a designated set of 
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22 Chapter 2 Signals and Systems 

signals by a system. A model is itself a system, because it imposes constraints on 
the set of signals represented in the model, so we often use the words “system” and 
“model” interchangeably, although it can sometimes be important to preserve the 
distinction between something truly physical and our representations of it mathe­
matically or in a computer simulation. We can thus talk of the behavior of a model. 

A mapping model of a system comprises the following: a set of input signals {xi(t)}, 
each of which can vary within some specified range of possibilities; similarly, a set 
of output signals {yj (t)}, each of which can vary; and a description of the mapping 
that uniquely defines the output signals as a function of the input signals. As an 
example, consider the following single-input, single-output system: 

�x(t) � y(t) = x(t − t0)T { · } 

FIGURE 2.1 Name-Mapping Model 

Given the input x(t) and the mapping T { · }, the output y(t) is unique, and in this 
example equals the input delayed by t0. 

A behavioral model for a set of signals {wi(t)} comprises a listing of the constraints 
that the wi(t) must satisfy. The constraints on the voltages across and currents 
through the components in an electrical circuit, for example, are specified by Kirch­
hoff’s laws, and the defining equations of the components. There can be infinitely 
many combinations of voltages and currents that will satisfy these constraints. 

2.1.1 System/Model Properties 

For a system or model specified as a mapping, we have the following definitions 
of various properties, all of which we assume are familiar. They are stated here 
for the DT case but easily modified for the CT case. (We also assume a single 
input signal and a single output signal in our mathematical representation of the 
definitions below, for notational convenience.) 

Memoryless or Algebraic or Non-Dynamic: The outputs at any instant • 
do not depend on values of the inputs at any other instant: y[n0] = T {x[n0]}
for all n0. 

Linear: The response to an arbitrary linear combination (or “superposition”) • 
of inputs signals is always the same linear combination of the individual re­
sponses to these signals: T {axA[n] + bxB [n]} = aT {xA[n]} + bT {xB [n]}, for 
all xA, xB , a and b. 
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x(t) 
+ 

− 

�y(t) 

FIGURE 2.2 RLC Circuit 

•	 Time-Invariant: The response to an arbitrarily translated set of inputs is 
always the response to the original set, but translated by the same amount: 
If x[n] y[n] then x[n − n0] y[n − n0] for all x and n0.→	 → 

•	 Linear and Time-Invariant (LTI): The system, model or mapping is both 
linear and time-invariant. 

•	 Causal: The output at any instant does not depend on future inputs: for all 
n0, y[n0] does not depend on x[n] for n > n0. Said another way, if x̂[n], ŷ[n] 
denotes another input-output pair of the system, with x̂[n] = x[n] for n ≤ n0, 
then it must be also true that ŷ[n] = y[n] for n ≤ n0. (Here n0 is arbitrary 
but fixed.) 

•	 BIBO Stable: The response to a bounded input is always bounded: |x[n]| ≤
Mx < ∞ for all n implies that |y[n]| ≤ My < ∞ for all n. 

EXAMPLE 2.1 System Properties 

Consider the system with input x[n] and output y[n] defined by the relationship 

y[n] = x[4n + 1]	 (2.1) 

We would like to determine whether or not the system has each of the following 
properties: memoryless, linear, time-invariant, causal, and BIBO stable. 

memoryless: a simple counter example suffices. For example, y[0] = x[1], i.e. the 
output at n = 0 depends on input values at times other than at n = 0. Therefore 
it is not memoryless. 

linear: To check for linearity, we consider two different inputs, xA[n] and xB [n], 
and compare the output of their linear combination to the linear combination of 
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24 Chapter 2 Signals and Systems 

their outputs. 

xA[n] xA[4n + 1] = yA[n]→ 

xB [n] xB [4n + 1] = yB [n]→ 

xC [n] = (axA[n] + bxB [n]) (axA[4n + 1] + bxB [4n + 1]) = yC [n]→ 

If yC [n] = ayA[n] + byB [n], then the system is linear. This clearly happens in this 
case. 

time-invariant: To check for time-invariance, we need to compare the output due 
to a time-shifted version of x[n] to the time-shifted version of the output due to 
x[n]. 

x[n] x[4n + 1] = y[n]→ 

xB [n] = x[n + n0] x[4n + n0 + 1] = yB [n]→ 

We now need to compare y[n] time-shifted by n0 (i.e. y[n + n0]) to yB [n]. If they’re 
not equal, then the system is not time-invariant. 

y[n + n0] = x[4n + 4n0 + 1] 

but yB [n] = x[4n + n0 + 1] 

Consequently, the system is not time-invariant. To illustrate with a specific counter­
example, suppose that x[n] is an impulse, δ[n], at n = 0. In this case, the output, 
yδ[n], would be δ[4n + 1], which is zero for all values of n, and y[n + n0] would 
likewise always be zero. However, if we consider x[n + n0] = δ[n + n0], the output 
will be δ[4n + 1 + n0], which for n0 = 3 will be one at n = −4 and zero otherwise. 

causal: Since the output at n = 0 is the input value at n = 1, the system is not 
causal. 

BIBO stable: Since y[n] = x[4n + 1] and the maximum value for all n of x[n] and | | | |
x[4n + 1] is the same, the system is BIBO stable. 

2.2 LINEAR, TIME-INVARIANT SYSTEMS 

2.2.1 Impulse-Response Representation of LTI Systems 

Linear, time-invariant (LTI) systems form the basis for engineering design in many 
situations. They have the advantage that there is a rich and well-established theory 
for analysis and design of this class of systems. Furthermore, in many systems that 
are nonlinear, small deviations from some nominal steady operation are approxi­
mately governed by LTI models, so the tools of LTI system analysis and design can 
be applied incrementally around a nominal operating condition. 

A very general way of representing an LTI mapping from an input signal x to 
an output signal y is through convolution of the input with the system impulse 
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Section 2.2 Linear, Time-Invariant Systems 25 

response. In CT the relationship is 
∫ ∞ 

y(t) = x(τ )h(t − τ)dτ (2.2) 
−∞ 

where h(t) is the unit impulse response of the system. In DT, we have 

∞
y[n] = 

∑ 
x[k] h[n − k] (2.3) 

k=−∞ 

where h[n] is the unit sample (or unit “impulse”) response of the system. 

A common notation for the convolution integral in (2.2) or the convolution sum in 
(2.3) is as 

y(t) = x(t) ∗ h(t) (2.4) 

y[n] = x[n] ∗ h[n] (2.5) 

While this notation can be convenient, it can also easily lead to misinterpretation 
if not well understood. 

The characterization of LTI systems through the convolution is obtained by repre­
senting the input signal as a superposition of weighted impulses. In the DT case, 
suppose we are given an LTI mapping whose impulse response is h[n], i.e., when 
its input is the unit sample or unit “impulse” function δ[n], its output is h[n]. Now 
a general input x[n] can be assembled as a sum of scaled and shifted impulses, as 
follows: ∞

x[n] = 
∑ 

x[k] δ[n − k] (2.6) 
k=−∞ 

The response y[n] to this input, by linearity and time-invariance, is the sum of 
the similarly scaled and shifted impulse responses, and is therefore given by (2.3). 
What linearity and time-invariance have allowed us to do is write the response to 
a general input in terms of the response to a special input. A similar derivation 
holds for the CT case. 

It may seem that the preceding derivation shows all LTI mappings from an in­
put signal to an output signal can be represented via a convolution relationship. 
However, the use of infinite integrals or sums like those in (2.2), (2.3) and (2.6) 
actually involves some assumptions about the corresponding mapping. We make 
no attempt here to elaborate on these assumptions. Nevertheless, it is not hard 
to find “pathological” examples of LTI mappings — not significant for us in this 
course, or indeed in most engineering models — where the convolution relationship 
does not hold because these assumptions are violated. 

It follows from (2.2) and (2.3) that a necessary and sufficient condition for an LTI 
system to be BIBO stable is that the impulse response be absolutely integrable 
(CT) or absolutely summable (DT), i.e., 

∫ ∞ 

BIBO stable (CT) ⇐⇒ 
−∞ 

|h(t)|dt < ∞ 
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∞
BIBO stable (DT) 

∑ 
h[n]⇐⇒ | | < ∞ 

n=−∞ 

It also follows from (2.2) and (2.3) that a necessary and sufficient condition for an 
LTI system to be causal is that the impulse response be zero for t < 0 (CT) or for 
n < 0 (DT) 

2.2.2 Eigenfunction and Transform Representation of LTI Systems 

Exponentials are eigenfunctions of LTI mappings, i.e., when the input is an expo­
nential for all time, which we refer to as an “everlasting” exponential, the output is 
simply a scaled version of the input, so computing the response to an exponential 
reduces to just multiplying by the appropriate scale factor. Specifically, in the CT 
case, suppose 

x(t) = e s0t (2.7) 

for some possibly complex value s0 (termed the complex frequency). Then from 
(2.2) 

y(t) = h(t) ∗ x(t) 
∫ ∞ 

= h(τ )x(t − τ )dτ 
−∞∫ ∞ 

= h(τ )e s0(t−τ )dτ 
−∞ 

= H(s0)e s0t (2.8) 

where ∫ ∞ 

H(s) = h(τ)e−sτ dτ (2.9) 
−∞ 

provided the above integral has a finite value for s = s0 (otherwise the response to 
the exponential is not well defined). Note that this integral is precisely the bilateral 
Laplace transform of the impulse response, or the transfer function of the system, 
and the (interior of the) set of values of s for which the above integral takes a finite 
value constitutes the region of convergence (ROC) of the transform. 

From the preceding discussion, one can recognize what special property of the 
everlasting exponential causes it to be an eigenfunction of an LTI system: it is 
the fact that time-shifting an everlasting exponential produces the same result as 
scaling it by a constant factor. In contrast, the one-sided exponential es0 tu(t) — 
where u(t) denotes the unit step — is in general not an eigenfunction of an LTI 
mapping: time-shifting a one-sided exponential does not produce the same result 
as scaling this exponential. 

When x(t) = ejωt, corresponding to having s0 take the purely imaginary value jω in 
(2.7), the input is bounded for all positive and negative time, and the corresponding 
output is 

y(t) = H(jω)ejωt (2.10) 
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where ∫ ∞ 

h(t)e−jωt dt H(jω) = (2.11) 
−∞ 

EXAMPLE 2.2 Eigenfunctions of LTI Systems 

While as demonstrated above, the everlasting complex exponential, ejωt, is an 
eigenfunction of any stable LTI system, it is important to recognize that ejωtu(t) 
is not. Consider, as a simple example, a time delay, i.e. 

y(t) = x(t − t0) (2.12) 

The output due to the input ejωtu(t) is 

e−jωt0 +jωtu(t − t0)e 

This is not a simple scaling of the input, so ejωtu(t) is not in general an eigenfunction 
of LTI systems. 

The function H(jω) in (2.10) is the system frequency response, and is also the 
continuous-time Fourier transform (CTFT) of the impulse response. The integral 
that defines the CTFT has a finite value (and can be shown to be a continuous 
function of ω) if h(t) is absolutely integrable, i.e. provided 

∫ +∞ 

|h(t)| dt < ∞
−∞ 

We have noted that this condition is equivalent to the system being bounded-input, 
bounded-output (BIBO) stable. The CTFT can also be defined for signals that are 
not absolutely integrable, e.g., for h(t) = (sin t)/t whose CTFT is a rectangle in 
the frequency domain, but we defer examination of conditions for existence of the 
CTFT. 

We can similarly examine the eigenfunction property in the DT case. A DT ever­
lasting “exponential” is a geometric sequence or signal of the form 

x[n] = z0 
n (2.13) 

for some possibly complex z0 (termed the complex frequency). With this DT ex­
ponential input, the output of a convolution mapping is (by a simple computation 
that is analogous to what we showed above for the CT case) 

y[n] = h[n] ∗ x[n] = H(z0)z0 
n (2.14) 

where ∞
H(z) = 

∑ 
h[k]z−k (2.15) 

k=−∞ 
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provided the above sum has a finite value when z = z0. Note that this sum is 
precisely the bilateral Z-transform of the impulse response, and the (interior of 
the) set of values of z for which the sum takes a finite value constitutes the ROC 
of the Z-transform. As in the CT case, the one-sided exponential z0 

nu[n] is not in 
general an eigenfunction. 

Again, an important case is when x[n] = (ejΩ)n = ejΩn, corresponding to z0 in 
(2.13) having unit magnitude and taking the value ejΩ , where Ω — the (real) 
“frequency” — denotes the angular position (in radians) around the unit circle in 
the z-plane. Such an x[n] is bounded for all positive and negative time. Although 
we use a different symbol, Ω, for frequency in the DT case, to distinguish it from 
the frequency ω in the CT case, it is not unusual in the literature to find ω used in 
both CT and DT cases for notational convenience. The corresponding output is 

y[n] = H(ejΩ)ejΩn (2.16) 

where ∞
H(ejΩ) = 

∑ 
h[n]e−jΩn (2.17) 

n=−∞ 

The function H(ejΩ) in (2.17) is the frequency response of the DT system, and is 
also the discrete-time Fourier transform (DTFT) of the impulse response. The sum 
that defines the DTFT has a finite value (and can be shown to be a continuous 
function of Ω) if h[n] is absolutely summable, i.e., provided 

∞∑ 
| h[n] | < ∞ (2.18) 

n=−∞ 

We noted that this condition is equivalent to the system being BIBO stable. As with 
the CTFT, the DTFT can be defined for signals that are not absolutely summable; 
we will elaborate on this later. 

Note from (2.17) that the frequency response for DT systems is always periodic, 
with period 2π. The “high-frequency” response is found in the vicinity of Ω = ±π, 
which is consistent with the fact that the input signal e±jπn = (−1)n is the most 
rapidly varying DT signal that one can have. 

When the input of an LTI system can be expressed as a linear combination of 
bounded eigenfunctions, for instance (in the CT case), 

jωℓt x(t) = 
∑ 

aℓe (2.19) 
ℓ 

then, by linearity, the output is the same linear combination of the responses to 
the individual exponentials. By the eigenfunction property of exponentials in LTI 
systems, the response to each exponential involves only scaling by the system’s 
frequency response. Thus 

jωℓt y(t) = 
∑ 

aℓH(jωℓ)e (2.20) 
ℓ 

Similar expressions can be written for the DT case. 
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2.2.3 Fourier Transforms 

A broad class of input signals can be represented as linear combinations of bounded 
exponentials, through the Fourier transform. The synthesis/analysis formulas for 
the CTFT are 

1 
∫ ∞ 

jωtdω x(t) = X(jω) e (synthesis) (2.21) 
2π −∞∫ ∞ 

x(t) e−jωtdt X(jω) = (analysis) (2.22) 
−∞ 

Note that (2.21) expresses x(t) as a linear combination of exponentials — but this 
weighted combination involves a continuum of exponentials, rather than a finite or 
countable number. If this signal x(t) is the input to an LTI system with frequency 
response H(jω), then by linearity and the eigenfunction property of exponentials 
the output is the same weighted combination of the responses to these exponentials, 
so 

1 
∫ ∞ 

jωtdω y(t) = H(jω)X(jω) e (2.23) 
2π −∞ 

By viewing this equation as a CTFT synthesis equation, it follows that the CTFT 
of y(t) is 

Y (jω) = H(jω)X(jω) (2.24) 

Correspondingly, the convolution relationship (2.2) in the time domain becomes 
multiplication in the transform domain. Thus, to find the response Y at a particular 
frequency point, we only need to know the input X at that single frequency, and 
the frequency response of the system at that frequency. This simple fact serves, in 
large measure, to explain why the frequency domain is virtually indispensable in 
the analysis of LTI systems. 

The corresponding DTFT synthesis/analysis pair is defined by 

1 
∫ 

x[n] = X(ejΩ) ejΩndΩ (synthesis) (2.25) 
2π <2π> 

∞
X(ejΩ) = 

∑ 
x[n] e−jΩn (analysis) (2.26) 

n=−∞ 

where the notation < 2π > on the integral in the synthesis formula denotes integra­
tion over any contiguous interval of length 2π, since the DTFT is always periodic in 
Ω with period 2π, a simple consequence of the fact that ejΩ is periodic with period 
2π. Note that (2.25) expresses x[n] as a weighted combination of a continuum of 
exponentials. 

As in the CT case, it is straightforward to show that if x[n] is the input to an LTI 
mapping, then the output y[n] has DTFT 

Y (ejΩ) = H(ejΩ)X(ejΩ) (2.27) 
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30 Chapter 2 Signals and Systems 

2.3 DETERMINISTIC SIGNALS AND THEIR FOURIER TRANSFORMS 

In this section we review the DTFT of deterministic DT signals in more detail, and 
highlight the classes of signals that can be guaranteed to have well-defined DTFTs. 
We shall also devote some attention to the energy density spectrum of signals that 
have DTFTs. The section will bring out aspects of the DTFT that may not have 
been emphasized in your earlier signals and systems course. A similar development 
can be carried out for CTFTs. 

2.3.1 Signal Classes and their Fourier Transforms 

The DTFT synthesis and analysis pair in (2.25) and (2.26) hold for at least the 
three large classes of DT signals described below. 

Finite-Action Signals. Finite-action signals, which are also called absolutely 
summable signals or ℓ1 (“ell-one”) signals, are defined by the condition 

∞∑ ∣∣∣x[k]
∣∣∣ < ∞ (2.28) 

k=−∞ 

The sum on the left is called the ‘action’ of the signal. For these ℓ1 signals, the 
infinite sum that defines the DTFT is well behaved and the DTFT can be shown 
to be a continuous function for all Ω (so, in particular, the values at Ω = +π and 
Ω = −π are well-defined and equal to each other — which is often not the case 
when signals are not ℓ1). 

Finite-Energy Signals. Finite-energy signals, which are also called square summable 
or ℓ2 (“ell-two”) signals, are defined by the condition 

2∞∑ ∣∣∣x[k]
∣∣∣ < ∞ (2.29) 

k=−∞ 

The sum on the left is called the ‘energy’ of the signal. 

In discrete-time, an absolutely summable (i.e., ℓ1) signal is always square summable 
(i.e., ℓ2). (In continuous-time, the story is more complicated: an absolutely inte­
grable signal need not be square integrable, e.g., consider x(t) = 1/

√
t for 0 < t ≤ 1 

and x(t) = 0 elsewhere; the source of the problem here is that the signal is not 
bounded.) However, the reverse is not true. For example, consider the signal 
(sin Ωcn)/πn for 0 < Ωc < π, with the value at n = 0 taken to be Ωc/π, or consider 
the signal (1/n)u[n − 1], both of which are ℓ2 but not ℓ1. If x[n] is such a signal, 
its DTFT X(ejΩ) can be thought of as the limit for N → ∞ of the quantity 

N

XN (e
jΩ) = 

∑ 
x[k]e−jΩk (2.30) 

k=−N 

and the resulting limit will typically have discontinuities at some values of Ω. For 
instance, the transform of (sin Ωcn)/πn has discontinuities at Ω = ±Ωc. 
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Signals of Slow Growth. Signals of ‘slow’ growth are signals whose magnitude 
grows no faster than polynomially with the time index, e.g., x[n] = n for all n. In 
this case XN (e

jΩ) in (2.30) does not converge in the usual sense, but the DTFT 
still exists as a generalized (or singularity) function; e.g., if x[n] = 1 for all n, then 
X(ejΩ) = 2πδ(Ω) for |Ω| ≤ π. 

Within the class of signals of slow growth, those of most interest to us are bounded 
(or ℓ ) signals: ∞

∣∣∣x[k]
∣∣∣ ≤ M < ∞ (2.31) 

i.e., signals whose amplitude has a fixed and finite bound for all time. Bounded 
everlasting exponentials of the form ejΩ0 n, for instance, play a key role in Fourier 
transform theory. Such signals need not have finite energy, but will have finite 
average power over any time interval, where average power is defined as total energy 
over total time. 

Similar classes of signals are defined in continuous-time. Specifically, finite-action 
(or L1) signals comprise those that are absolutely integrable, i.e., 

∫ ∞ ∣∣∣x(t)
∣∣∣dt < ∞ (2.32) 

−∞ 

Finite-energy (or L2) signals comprise those that are square summable, i.e., 

2
∫ ∞ ∣∣∣x(t)

∣∣∣ < ∞ (2.33) 
−∞ 

And signals of slow growth are ones for which the magnitude grows no faster than 
polynomially with time. Bounded (or L ) continuous-time signals are those for ∞
which the magnitude never exceeds a finite bound M (so these are slow-growth 
signals as well). These may again not have finite energy, but will have finite average 
power over any time interval. 

In both continuous-time and discrete-time there are many important Fourier trans­
form pairs and Fourier transform properties developed and tabulated in basic texts 
on signals and systems (see, for example, Chapters 4 and 5 of Oppenheim and Will-
sky). For convenience, we include here a brief table of DTFT pairs. Other pairs 
are easily derived from these by applying various DTFT properties. (Note that the 
δ’s in the left column denote unit samples, while those in the right column are unit 
impulses!) 
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DT Signal DTFT for − π < Ω ≤ π←→ 

δ[n] 1←→ 

δ[n − n0] ←→ e−jΩn0 

1 (for all n) 2πδ(Ω) ←→ 

ejΩ0n (−π < Ω0 ≤ π) 2πδ(Ω − Ω0)←→ 

1 
a n u[n] , a < 1| | ←→ 

1 − ae−jΩ 

1 
u[n] + πδ(Ω) 

sinΩcn 

←→ 
{ 1 −

1,

e−j

−
Ω 

Ωc < Ω < Ωc 

πn 
←→ 

0, otherwise 

1, −M ≤ n ≤ M 
} 

sin[Ω(2M + 1)/2] 
0, otherwise 

←→ 
sin(Ω/2) 

In general it is important and useful to be fluent in deriving and utilizing the 
main transform pairs and properties. In the following subsection we discuss a 
particular property, Parseval’s identity, which is of particular significance in our 
later discussion. 

There are, of course, other classes of signals that are of interest to us in applications, 
for instance growing one-sided exponentials. To deal with such signals, we utilize 
Z-transforms in discrete-time and Laplace transforms in continuous-time. 

2.3.2 Parseval’s Identity, Energy Spectral Density, Deterministic Autocorrelation 

An important property of the Fourier transform is Parseval’s identity for ℓ2 signals. 
For discrete time, this identity takes the general form 

∞
1 

∫∑ 
x[n]y∗[n] = X(ejΩ)Y ∗(ejΩ) dΩ (2.34) 

2π <2π> n=−∞ 

and for continuous time, 
∫ ∞ 1 

∫ ∞ 

x(t)y∗(t)dt = X(jω)Y ∗(jω) dω (2.35) 
2π−∞ −∞ 

where the ∗ denotes the complex conjugate. Specializing to the case where y[n] = 
x[n] or y(t) = x(t), we obtain 

∞
2 1 

∫∑ 
|x[n]| =

2π <2π> 
|X(ejΩ)| 2 dΩ (2.36) 

n=−∞ 
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� y[n]x[n] � H(ejΩ) 

� 

� 

ΩΩ0−Ω0 

H(ejΩ) 
1 

�Δ ��Δ� 

FIGURE 2.3 Ideal bandpass filter. 

∫ ∞ 1 
∫ ∞ 

|x(t)|2 =
2π 

|X(jω)|2 dω (2.37) 
−∞ −∞ 

Parseval’s identity allows us to evaluate the energy of a signal by integrating the 
squared magnitude of its transform. What the identity tells us, in effect, is that 
the energy of a signal equals the energy of its transform (scaled by 1/2π). 

The real, even, nonnegative function of Ω defined by 

Sxx(ejΩ) = |X(ejΩ)|2 (2.38) 

or 
Sxx(jω) = |X(jω)| 2 (2.39) 

is referred to as the energy spectral density (ESD), because it describes how the 
energy of the signal is distributed over frequency. To appreciate this claim more 
concretely, for discrete-time, consider applying x[n] to the input of an ideal bandpass 
filter of frequency response H(ejΩ) that has narrow passbands of unit gain and 
width Δ centered at ±Ω0 as indicated in Figure 2.3. The energy of the output 
signal must then be the energy of x[n] that is contained in the passbands of the 
filter. To calculate the energy of the output signal, note that this output y[n] has 
the transform 

Y (ejΩ) = H(ejΩ)X(ejΩ) (2.40) 

Consequently the output energy, by Parseval’s identity, is given by 

jΩ)

∞
| |2 

2

1 
π 

∫ 

<2π> 
|Y (e |2 dΩ

∑ 
y[n] = 

n=−∞ 

1 
∫ 

= Sxx(ejΩ) dΩ (2.41) 
2π passband 

Thus the energy of x[n] in any frequency band is given by integrating Sxx(ejΩ) over 
that band (and scaling by 1/2π). In other words, the energy density of x[n] as a 
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function of Ω is Sxx(Ω)/(2π) per radian. An exactly analogous discussion can be 
carried out for continuous-time signals. 

Since the ESD Sxx(ejΩ) is a real function of Ω, an alternate notation for it could 
perhaps be Exx(Ω), for instance. However, we use the notation Sxx(ejΩ) in order 
to make explicit that it is the squared magnitude of X(ejΩ) and also the fact that 
the ESD for a DT signal is periodic with period 2π. 

Given the role of the magnitude squared of the Fourier transform in Parseval’s 
identity, it is interesting to consider what signal it is the Fourier transform of. The 
answer for DT follows on recognizing that with x[n] real-valued 

|X(ejΩ)|2 = X(ejΩ)X(e−jΩ) (2.42) 

and that X(e−jΩ) is the transform of the time-reversed signal, x[−k]. Thus, since 
multiplication of transforms in the frequency domain corresponds to convolution of 
signals in the time domain, we have 

∞
Sxx(ejΩ) = |X(ejΩ)|2 ⇐⇒ x[k] ∗ x[−k] = 

∑ 
x[n + k]x[n] = Rxx[k] (2.43) 

n=−∞ 

The function Rxx[k] = x[k]∗x[−k] is referred to as the deterministic autocorrelation 
function of the signal x[n], and we have just established that the transform of the 
deterministic autocorrelation function is the energy spectral density Sxx(ejΩ). A 
basic Fourier transform property tells us that Rxx[0] — which is the signal energy ∑∞ 

x2[n] — is the area under the Fourier transform of Rxx[k], scaled by 1/(2π), n=−∞
namely the scaled area under Sxx(ejΩ) = |X(ejΩ)|2; this is just Parseval’s identity, 
of course. 

The deterministic autocorrelation function measures how alike a signal and its time-
shifted version are, in a total-squared-error sense. More specifically, in discrete-time 
the total squared error between the signal and its time-shifted version is given by 

∞ ∞
2

∑ 
(x[n + k] − x[n])2 = 

∑ 
|x[n + k]|

n=−∞ n=−∞ 

∞
2 

∞
+ 

∑ 
|x[n]| − 2 

∑ 
x[n + k]x[n] 

n=−∞ n=−∞ 

= 2(Rxx[0] − Rxx[k]) (2.44) 

Since the total squared error is always nonnegative, it follows that Rxx[k] ≤ Rxx[0], 
and that the larger the deterministic autocorrelation Rxx[k] is, the closer the signal 
x[n] and its time-shifted version x[n + k] are. 

Corresponding results hold in continuous time, and in particular 
∫ ∞ 

Sxx(jω) = |X(jω)| 2 ⇐⇒ x(τ) ∗ x(−τ ) = 
−∞ 

x(t + τ )x(t)dt = Rxx(τ) (2.45) 

where Rxx(t) is the deterministic autocorrelation function of x(t). 
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2.4 THE BILATERAL LAPLACE AND Z-TRANSFORMS 

The Laplace and Z-transforms can be thought of as extensions of Fourier transforms 
and are useful for a variety of reasons. They permit a transform treatment of certain 
classes of signals for which the Fourier transform does not converge. They also 
augment our understanding of Fourier transforms by moving us into the complex 
plane, where the theory of complex functions can be applied. We begin in Section 
2.4.1 with a detailed review of the bilateral Z-transform. In Section 2.4.3 we give 
a briefer review of the bilateral Laplace transform, paralleling the discussion in 
Section 2.4.1. 

2.4.1 The Bilateral Z-Transform 

The bilateral Z-transform is defined as: 

∞
X(z) = Z{x[n]} = 

∑ 
x[n]z−n (2.46) 

n=−∞ 

Here z is a complex variable, which we can also represent in polar form as 

z = rejΩ , r ≥ 0 , −π < Ω ≤ π (2.47) 

so 
∞

X(z) = 
∑ 

x[n]r−n e−jΩn (2.48) 
n=−∞ 

The DTFT corresponds to fixing r = 1, in which case z takes values on the unit 
circle. However there are many useful signals for which the infinite sum does not 
converge (even in the sense of generalized functions) for z confined to the unit 
circle. The term z−n in the definition of the Z-transform introduces a factor r−n 

into the infinite sum, which permits the sum to converge (provided r is appropriately 
restricted) for interesting classes of signals, many of which do not have discrete-time 
Fourier transforms. 

More specifically, note from (2.48) that X(z) can be viewed as the DTFT of x[n]r−n . 
If r > 1, then r−n decays geometrically for positive n and grows geometrically for 
negative n. For 0 < r < 1, the opposite happens. Consequently, there are many 
sequences for which x[n] is not absolutely summable but x[n]r−n is, for some range 
of values of r. 

For example, consider x1[n] = anu[n]. If a > 1, this sequence does not have a | |
DTFT. However, for any a, x[n]r−n is absolutely summable provided r > a . In | |
particular, for example, 

X1(z) = 1 + az−1 + a 2 z−2 + (2.49) · · · 
1 

= , z = r > a (2.50) 
1 − az−1 

| | | | 
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As a second example, consider x2[n] = −anu[−n − 1]. This signal does not have a 
DTFT if a < 1. However, provided r < a ,| | | |

X2(z) = −a−1 z − a−2 z 2 − · · · (2.51) 

= , z = r < a (2.52) 
1 
−
− 
a

a

−

−

1z 
1z 

| | | | 
1 

= , z = r < a (2.53) 
1 − az−1 

| | | | 

The Z-transforms of the two distinct signals x1[n] and x2[n] above get condensed 
to the same rational expressions, but for different regions of convergence. Hence 
the ROC is a critical part of the specification of the transform. 

When x[n] is a sum of left-sided and/or right-sided DT exponentials, with each 
term of the form illustrated in the examples above, then X(z) will be rational in z 
(or equivalently, in z−1): 

Q(z)
X(z) = (2.54) 

P (z) 

with Q(z) and P (z) being polynomials in z. 

Rational Z-transforms are typically depicted by a pole-zero plot in the z-plane, with 
the ROC appropriately indicated. This information uniquely specifies the signal, 
apart from a constant amplitude scaling. Note that there can be no poles in the 
ROC, since the transform is required to be finite in the ROC. Z-transforms are 
often written as ratios of polynomials in z−1 . However, the pole-zero plot in the 
z-plane refers to the polynomials in z. Also note that if poles or zeros at z = ∞
are counted, then any ratio of polynomials always has exactly the same number of 
poles as zeros. 

Region of Convergence. To understand the complex-function properties of the 
Z-transform, we split the infinite sum that defines it into non-negative-time and 
negative-time portions: The non-negative-time or one-sided Z-transform is defined 
by 

∞∑ 
x[n]z−n (2.55) 

n=0 

and is a power series in z−1 . The convergence of the finite sum 
∑N

n=0 x[n]z−n as 
N → ∞ is governed by the radius of convergence R1 ≥ 0, of the power series, i.e. 
the series converges for each z such that z > R1. The resulting function of z is | |
an analytic function in this region, i.e., has a well-defined derivative with respect 
to the complex variable z at each point in this region, which is what gives the 
function its nice properties. The infinite sum diverges for z < R1. The behavior | |
of the sum on the circle z = R1 requires closer examination, and depends on the | |
particular series; the series may converge (but may not converge absolutely) at all 
points, some points, or no points on this circle. The region z > R1 is referred to | |
as the region of convergence (ROC) of the power series. 
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Next consider the negative-time part: 

−1 ∞
m

∑ 
x[n]z−n = 

∑ 
x[−m]z (2.56) 

n=−∞ m=1 

which is a power series in z, and has a radius of convergence R2. The series 
converges (absolutely) for z < R2, which constitutes its ROC; the series is an | |
analytic function in this region. The sum diverges for z > R2; the behavior for | |
the circle z = R2 takes closer examination, and depends on the particular series; | |
the series may converge (but may not converge absolutely) at all points, some 
points, or no points on this circle. If R1 < R2 then the Z-transform converges 
(absolutely) for R1 < z < R2; this annular region is its ROC, and is denoted by | |
RX . The transform is analytic in this region. The sum that defines the transform 
diverges for |z| < R1 and |z| > R2. If R1 > R2, then the Z-transform does not 
exist (e.g., for x[n] = 0.5nu[−n − 1] + 2nu[n]). If R1 = R2, then the transform 
may exist in a technical sense, but is not useful as a Z-transform because it has no 
ROC. However, if R1 = R2 = 1, then we may still be able to compute and use a 
DTFT (e.g., for x[n] = 3, all n; or for x[n] = (sin ω0n)/(πn)). 

Relating the ROC to Signal Properties. For an absolutely summable signal 
(such as the impulse response of a BIBO-stable system), i.e., an ℓ1-signal, the unit 
circle must lie in the ROC or must be a boundary of the ROC. Conversely, we can 
conclude that a signal is ℓ1 if the ROC contains the unit circle because the transform 
converges absolutely in its ROC. If the unit circle constitutes a boundary of the 
ROC, then further analysis is generally needed to determine if the signal is ℓ1. 
Rational transforms always have a pole on the boundary of the ROC, as elaborated 
on below, so if the unit circle is on the boundary of the ROC of a rational transform, 
then there is a pole on the unit circle, and the signal cannot be ℓ1. 

For a right-sided signal it is the case that R2 = ∞, i.e., the ROC extends everywhere 
in the complex plane outside the circle of radius R1, up to (and perhaps including) 
∞. The ROC includes ∞ if the signal is 0 for negative time. 

We can state a converse result if, for example, we know the signal comprises only 
sums of one-sided exponentials, of the form obtained when inverse transforming a 
rational transform. In this case, if R2 = ∞, then the signal must be right-sided; if 
the ROC includes ∞, then the signal must be causal, i.e., zero for n < 0. 

For a left-sided signal, one has R1 = 0, i.e., the ROC extends inwards from the 
circle of radius R2, up to (and perhaps including) 0. The ROC includes 0 if the 
signal is 0 for positive time. 

In the case of signals that are sums of one-sided exponentials, we have a converse: 
if R1 = 0, then the signal must be left-sided; if the ROC includes 0, then the signal 
must be anti-causal, i.e., zero for n > 0. 

It is also important to note that the ROC cannot contain poles of the Z-transform, 
because poles are values of z where the transform has infinite magnitude, while 
the ROC comprises values of z where the transform converges. For signals with 
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rational transforms, one can use the fact that such signals are sums of one-sided 
exponentials to show that the possible boundaries of the ROC are in fact precisely 
determined by the locations of the poles. Specifically: 

(a)	 the outer bounding circle of the ROC in the rational case contains a pole 
and/or has radius ∞. If the outer bounding circle is at infinity, then (as we 
have already noted) the signal is right-sided, and is in fact causal if there is 
no pole at ∞; 

(b)	 the inner bounding circle of the ROC in the rational case contains a pole 
and/or has radius 0. If the inner bounding circle reduces to the point 0, then 
(as we have already noted) the signal is left-sided, and is in fact anti-causal if 
there is no pole at 0. 

2.4.2 The Inverse Z-Transform 

One way to invert a rational Z-transform is through the use of a partial fraction 
expansion, then either directly “recognizeing” the inverse transform of each term 
in the partial fraction representation, or expanding the term in a power series that 
converges for z in the specified ROC. For example, a term of the form 

1 
1 − az−1	

(2.57) 

can be expanded in a power series in az−1 if |a| < |z| for z in the ROC, and 
expanded in a power series in a−1z if |a| > |z| for z in the ROC. Carrying out this 
procedure for each term in a partial fraction expansion, we find that the signal x[n] 
is a sum of left-sided and/or right-sided exponentials. For non-rational transforms, 
where there may not be a partial fraction expansion to simplify the process, it is 
still reasonable to attempt the inverse transformation by expansion into a power 
series consistent with the given ROC. 

Although we will generally use partial fraction or power series methods to invert Z-
transforms, there is an explicit formula that is similar to that of the inverse DTFT, 
specifically, 

x[n] = X(z)z n dω (2.58) 
jω 2

1 
π 

∫ 

−

π

π 

∣∣∣
z=re

where the constant r is chosen to place z in the ROC, RX . This is not the most 
general inversion formula, but is sufficient for us, and shows that x[n] is expressed 
as a weighted combination of discrete-time exponentials. 

As is the case for Fourier transforms, there are many useful Z-transform pairs and 
properties developed and tabulated in basic texts on signals and systems. Appro­
priate use of transform pairs and properties is often the basis for obtaining the 
Z-transform or the inverse Z-transform of many other signals. 
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2.4.3 The Bilateral Laplace Transform 

As with the Z-transform, the Laplace transform is introduced in part to handle 
important classes of signals that don’t have CTFT’s, but also enhances our under­
standing of the CTFT. The definition of the Laplace transform is 

∫ ∞ 

X(s) = x(t) e−st dt (2.59) 
−∞ 

where s is a complex variable, s = σ + jω. The Laplace transform can thus be 
thought of as the CTFT of x(t) e−σt . With σ appropriately chosen, the integral 
(2.59) can exist even for signals that have no CTFT. 

The development of the Laplace transform parallels closely that of the Z-transform 
in the preceding section, but with eσ playing the role that r did in Section 2.4.1. 
The (interior of the) set of values of s for which the defining integral converges, 
as the limits on the integral approach ±∞, comprises the region of convergence 
(ROC) for the transform X(s). The ROC is now determined by the minimum and 
maximum allowable values of σ, say σ1 and σ2 respectively. We refer to σ1, σ2 as the 
abscissa of convergence. The corresponding ROC is a vertical strip between σ1 and 
σ2 in the complex plane, σ1 < Re(s) < σ2. Equation (2.59) converges absolutely 
within the ROC; convergence at the left and right bounding vertical lines of the 
strip has to be separately examined. Furthermore, the transform is analytic (i.e., 
differentiable as a complex function) throughout the ROC. The strip may extend 
to σ1 = −∞ on the left, and to σ2 = +∞ on the right. If the strip collapses to a 
line (so that the ROC vanishes), then the Laplace transform is not useful (except 
if the line happens to be the jω axis, in which case a CTFT analysis may perhaps 
be recovered). 

For example, consider x1(t) = eatu(t); the integral in (2.59) evaluates to X1(s) = 
1/(s − a) provided Re{s} > a. On the other hand, for x2(t) = −eatu(−t), the 
integral in (2.59) evaluates to X2(s) = 1/(s − a) provided Re{s} < a. As with the 
Z-transform, note that the expressions for the transforms above are identical; they 
are distinguished by their distinct regions of convergence. 

The ROC may be related to properties of the signal. For example, for absolutely 
integrable signals, also referred to as L1 signals, the integrand in the definition of 
the Laplace transform is absolutely integrable on the jω axis, so the jω axis is in 
the ROC or on its boundary. In the other direction, if the jω axis is strictly in 
the ROC, then the signal is L1, because the integral converges absolutely in the 
ROC. Recall that a system has an L1 impulse response if and only if the system is 
BIBO stable, so the result here is relevant to discussions of stability: if the jω axis 
is strictly in the ROC of the system function, then the system is BIBO stable. 

For right-sided signals, the ROC is some right-half-plane (i.e. all s such that 
Re{s} > σ1). Thus the system function of a causal system will have an ROC 
that is some right-half-plane. For left-sided signals, the ROC is some left-half­
plane. For signals with rational transforms, the ROC contains no poles, and the 
boundaries of the ROC will have poles. Since the location of the ROC of a transfer 
function relative to the imaginary axis relates to BIBO stability, and since the poles 
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identify the boundaries of the ROC, the poles relate to stability. In particular, a 
system with a right-sided impulse response (e.g., a causal system) will be stable 
if and only if all its poles are in the left-half-plane, because this is precisely the 
condition that allows the ROC to contain the imaginary axis. Also note that a 
signal with a rational transform is causal if and only if it is right-sided. 

A further property worth recalling is connected to the fact that exponentials are 
eigenfunctions of LTI systems. If we denote the Laplace transform of the impulse 
response h(t) of an LTI system by H(s), referred to as the system function or 
transfer function, then es0t at the input of the system yields H(s0) es0t at the 
output, provided s0 is in the ROC of the transfer function. 

2.5 DISCRETE-TIME PROCESSING OF CONTINUOUS-TIME SIGNALS 

Many modern systems for applications such as communication, entertainment, nav­
igation and control are a combination of continuous-time and discrete-time subsys­
tems, exploiting the inherent properties and advantages of each. In particular, the 
discrete-time processing of continuous-time signals is common in such applications, 
and we describe the essential ideas behind such processing here. As with the earlier 
sections, we assume that this discussion is primarily a review of familiar material, 
included here to establish notation and for convenient reference from later chapters 
in this text. In this section, and throughout this text, we will often be relating the 
CTFT of a continuous-time signal and the DTFT of a discrete-time signal obtained 
from samples of the continuous-time signal. We will use the subscripts c and d 
when necessary to help keep clear which signals are CT and which are DT. 

2.5.1 Basic Structure for DT Processing of CT Signals 

The basic structure is shown in Figure 2.4. As indicated, the processing involves 
continuous-to-discrete or C/D conversion to obtain a sequence of samples of the CT 
signal, then DT filtering to produce a sequence of samples of the desired CT output, 
then discrete-to-continuous or D/C conversion to reconstruct this desired CT signal 
from the sequence of samples. We will often restrict ourselves to conditions such 
that the overall system in Figure 2.4 is equivalent to an LTI continuous-time system. 
The necessary conditions for this typically include restricting the DT filtering to 
be LTI processing by a system with frequency response Hd(e

jΩ), and also requiring 
that the input xc(t) be appropriately bandlimited. To satisfy the latter requirement, 
it is typical to precede the structure in the figure by a filter whose purpose is to 
ensure that xc(t) is essentially bandlimited. While this filter is often referred to as 
an anti-aliasing filter, we can often allow some aliasing in the C/D conversion if the 
discrete-time system removes the aliased components; the overall system can then 
still be a CT LTI system. 

The ideal C/D converter in Figure 2.4 has as its output a sequence of samples of 
xc(t) with a specified sampling interval T1, so that the DT signal is xd[n] = xc(nT1). 
Conceptually, therefore, the ideal C/D converter is straightforward. A practical 
analog-to-digital (or A/D) converter also quantizes the signal to one of a finite set 
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of output levels. However, in this text we do not consider the additional effects of 
quantization. 

Hc(jω) 

xc(t)� C/D 

� 

�x[n] 
Hd(e

jΩ) �y[n] 
D/C 

� 

�yc(t) 

T1 T2 

FIGURE 2.4 DT processing of CT signals. 

In the frequency domain, the CTFT of xc(t) and the DTFT of xd[n] are related by 

Xd 
(
ejΩ

) 
=

1 ∑ 
Xc 

( 

jω − jk 
2π 

) 

. (2.60) 
T1 T1 

∣∣∣∣∣
Ω=ωT1 k 

When xc(t) is sufficiently bandlimited so that 

π 
Xc(jω) = 0 , ω| | ≥ 

T1 
(2.61) 

then (2.60) can be rewritten as 

1 
Xd 

(
ejΩ

)
∣∣∣∣∣
Ω=ωT1 

= 
T1 

Xc(jω) |ω| < π/T1 (2.62a) 

or equivalently 

Xd 
(
ejΩ

) 
= 

T

1 

1 
Xc 

( 

j
T

Ω 

1 

) 

|Ω| < π . (2.62b) 

Note that Xd(e
jΩ) is extended periodically outside the interval |Ω| < π. The fact 

that the above equalities hold under the condition (2.61) is the content of the 
sampling theorem. 

The ideal D/C converter in Figure 2.4 is defined through the interpolation relation 

yc(t) = 
∑ 

yd[n]
sin (π (t − nT2) /T2) 

(2.63) 
π(t − nT2)/T2 n 

which shows that yc(nT2) = yd[n]. Since each term in the above sum is bandlimited 
to ω < π/T2, the CT signal yc(t) is also bandlimited to this frequency range, so this | |
D/C converter is more completely referred to as the ideal bandlimited interpolating 
converter. (The C/D converter in Figure 2.4, under the assumption (2.61), is 
similarly characterized by the fact that the CT signal xc(t) is the ideal bandlimited 
interpolation of the DT sequence xd[n].) 
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Because yc(t) is bandlimited and yc(nT2) = yd[n], analogous relations to (2.62) hold 
between the DTFT of yd[n] and the CTFT of yc(t): 

Yd 
(
ejΩ

) 
= 

T

1 

2 
Yc(jω) |ω| < π/T2 (2.64a) 

∣∣∣∣∣
Ω=ωT2 

or equivalently 

Yd 
(
ejΩ

) 
=

1 
( 

Ω 
) 

T2 
Yc j

T2 
|Ω| < π (2.64b) 

One conceptual representation of the ideal D/C converter is given in Figure 2.5. 
This figure interprets (2.63) to be the result of evenly spacing a sequence of impulses 
at intervals of T2 — the reconstruction interval — with impulse strengths given by 
the yd[n], then filtering the result by an ideal low-pass filter L(jω) of amplitude T2 

in the passband ω < π/T2. This operation produces the bandlimited continuous­| |
time signal yc(t) that interpolates the specified sequence values yd[n] at the instants 
t = nT2, i.e., yc(nT2) = yd[n]. 

D/C 

�yd[n] δ[n − k] → 
δ(t − kT2) 

�yp(t) 
L(jω) �yc(t) 

FIGURE 2.5 Conceptual representation of processes that yield ideal D/C conversion, 
interpolating a DT sequence into a bandlimited CT signal using reconstruction 
interval T2. 

2.5.2 DT Filtering, and Overall CT Response 

Suppose from now on, unless stated otherwise, that T1 = T2 = T . If in Figure 2.4 
the bandlimiting constraint of (2.61) is satisfied, and if we set yd[n] = xd[n], then 
yc(t) = xc(t). More generally, when the DT system in Figure 2.4 is an LTI DT 
filter with frequency response Hd 

(
ejΩ

)
, so 

Yd(e
jΩ) = Hd(e

jΩ)Xd(e
jΩ) (2.65) 

and provided any aliased components of xc(t) are eliminated by Hd(e
jΩ), then 

assembling (2.62), (2.64) and (2.65) yields: 

Yc(jω) = Hd 
(
ejΩ

)
Xc(jω) |ω| < π/T (2.66) 

∣∣∣∣∣
Ω=ωT 
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The action of the overall system is thus equivalent to that of a CT filter whose 
frequency response is 

Hc(jω) = Hd 
(
ejΩ

) 
|ω| < π/T . (2.67) 

∣∣∣∣∣
Ω=ωT 

In other words, under the bandlimiting and sampling rate constraints mentioned 
above, the overall system behaves as an LTI CT filter, and the response of this filter 
is related to that of the embedded DT filter through a simple frequency scaling. 
The sampling rate can be lower than the Nyquist rate, provided that the DT filter 
eliminates any aliased components. 

If we wish to use the system in Figure 2.4 to implement a CT LTI filter with 
frequency response Hc(jω), we choose Hd 

(
ejΩ

) 
according to (2.67), provided that 

xc(t) is appropriately bandlimited. 

If Hc(jω) = 0 for |ω| ≥ π/T , then (2.67) also corresponds to the following relation 
between the DT and CT impulse responses: 

hd[n] = T hc(nT ) (2.68) 

The DT filter is therefore termed an impulse-invariant version of the CT filter. 
When xc(t) and Hd(e

jΩ) are not sufficiently bandlimited to avoid aliased compo­
nents in yd[n], then the overall system in Figure 2.4 is no longer time invariant. It 
is, however, still linear since it is a cascade of linear subsystems. 

The following two important examples illustrate the use of (2.67) as well as Figure 
2.4, both for DT processing of CT signals and for interpretation of an important DT 
system, whether or not this system is explicitly used in the context of processing 
CT signals. 

EXAMPLE 2.3 Digital Differentiator 

In this example we wish to implement a CT differentiator using a DT system in 
dxc(t)the configuration of Figure 2.4 . We need to choose Hd 

(
ejΩ

) 
so that yc(t) = dt , 

assuming that xc(t) is bandlimited to π/T . The desired overall CT frequency 
response is therefore 

Yc(jω)
Hc(jω) = = jω (2.69) 

Xc(jω) 

Consequently, using (2.67) we choose Hd(e
jΩ) such that 

Hd 
(
ejΩ

)
∣∣∣∣∣
Ω=ωT 

= jω |ω| < 
T

π 
(2.70a) 

or equivalently 

Hd 
(
ejΩ

) 
= jΩ/T |Ω| < π (2.70b) 

A discrete-time system with the frequency response in (2.70b) is commonly referred 
to as a digital differentiator. To understand the relation between the input xd[n] 
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and output yd[n] of the digital differentiator, note that yc(t) — which is the ban­
dlimited interpolation of yd[n] — is the derivative of xc(t), and xc(t) in turn is the 
bandlimited interpolation of xd[n]. It follows that yd[n] can, in effect, be thought 
of as the result of sampling the derivative of the bandlimited interpolation of xd[n]. 

EXAMPLE 2.4 Half-Sample Delay 

It often arises in designing discrete-time systems that a phase factor of the form 
e−jαΩ , |Ω| < π, is included or required. When α is an integer, this has a straight­
forward interpretation, since it corresponds simply to an integer shift by α of the 
time sequence. 

When α is not an integer, the interpretation is not as straightforward, since a 
DT sequence can only be directly shifted by integer amounts. In this example we 
consider the case of α = 1/2, referred to as a half-sample delay. To provide an 
interpretation, we consider the implications of choosing the DT system in Figure 
2.4 to have frequency response 

Hd(e
jΩ) = e−jΩ/2 |Ω| < π (2.71) 

Whether or not xd[n] explicitly arose by sampling a CT signal, we can associate with 
xd[n] its bandlimited interpolation xc(t) for any specified sampling or reconstruction 
interval T . Similarly, we can associate with yd[n] its bandlimited interpolation yc(t) 
using the reconstruction interval T . With Hd 

(
ejΩ

) 
given by (2.71), the equivalent 

CT frequency response relating yc(t) to xc(t) is 

Hc(jω) = e−jωT/2 (2.72) 

representing a time delay of T/2, which is half the sample spacing; consequently, 
yc(t) = xc(t − T/2). We therefore conclude that for a DT system with frequency 
response given by (2.71), the DT output yd[n] corresponds to samples of the half-
sample delay of the bandlimited interpolation of the input sequence xd[n]. Note 
that in this interpretation the choice for the value of T is immaterial. (Even if 
xd[n] had been the result of regular sampling of a CT signal, that specific sampling 
period is not required in the interpretation above.) 

The preceding interpretation allows us to find the unit-sample (or impulse) response 
of the half-sample delay system through a simple argument. If xd[n] = δ[n], then 
xc(t) must be the bandlimited interpolation of this (with some T that we could 
have specified to take any particular value), so 

sin(πt/T ) 
xc(t) = (2.73) 

πt/T 

and therefore 
sin

(
π(t − (T/2))/T 

) 

yc(t) = (2.74) 
π(t − (T/2))/T 
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which shows that the desired unit-sample response is 

sin
(
π(n − (1/2))

) 

yd[n] = hd[n] = (2.75) 
π(n − (1/2)) 

This discussion of a half-sample delay also generalizes in a straightforward way to 
any integer or non-integer choice for the value of α. 

2.5.3 Non-Ideal D/C converters 

In Section 2.5.1 we defined the ideal D/C converter through the bandlimited in­
terpolation formula (2.63); see also Figure 2.5, which corresponds to processing a 
train of impulses with strengths equal to the sequence values yd[n] through an ideal 
low-pass filter. A more general class of D/C converters, which includes the ideal 
converter as a particular case, creates a CT signal yc(t) from a DT signal yd[n] 
according to the following: 

∞
yc(t) = 

∑ 
yd[n] p(t − nT ) (2.76) 

n=−∞ 

where p(t) is some selected basic pulse shape and T is the reconstruction interval or 
pulse repetition interval. This too can be seen as the result of processing an impulse 
train of sequence values through a filter, but a filter that has impulse response p(t) 
rather than that of the ideal low-pass filter. The CT signal yc(t) is thus constructed 
by adding together shifted and scaled versions of the basic pulse shape; the number 
yd[n] scales p(t − nT ), which is the basic pulse delayed by nT . Note that the ideal 
bandlimited interpolating converter of (2.63) is obtained by choosing 

sin(πt/T ) 
p(t) = (2.77) 

(πt/T ) 

We shall be talking in more detail in Chapter 12 about the interpretation of (2.76) 
as pulse amplitude modulation (PAM) for communicating DT information over a 
CT channel. 

The relationship (2.76) can also be described quite simply in the frequency domain. 
Taking the CTFT of both sides, denoting the CTFT of p(t) by P (jω), and using the 
fact that delaying a signal by t0 in the time domain corresponds to multiplication 
by e−jωt0 in the frequency domain, we get 

∞
Yc(jω) = 

( ∑ 
yd[n] e−jnωT 

) 
P (jω) 

n=−∞ 

= Yd(e
jΩ) P (jω) (2.78) 

∣∣∣∣∣
Ω=ωT 
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FIGURE 2.6 A centered zero-order hold (ZOH) 

In the particular case where p(t) is the sinc pulse in (2.77), with transform P (jω) 
corresponding to an ideal low-pass filter of amplitude T for ω < π/T and 0 outside | |
this band, we recover the relation (2.64). 

In practice an ideal low-pass filter can only be approximated, with the accuracy 
of the approximation closely related to cost of implementation. A commonly used 
simple approximation is the (centered) zero-order hold (ZOH), specified by the 
choice 

p(t) = 

{ 
1 for |t| < (T/2) 

(2.79) 
0 elsewhere 

This D/C converter holds the value of the DT signal at time n, namely the value 
yd[n], for an interval of length T centered at nT in the CT domain, as illustrated 
in Figure 2.6. Such ZOH converters are very commonly used. Another common 
choice is a centered first-order hold (FOH), for which p(t) is triangular as shown in 
Figure 2.7. Use of the FOH represents linear interpolation between the sequence 
values. 

FIGURE 2.7 A centered first order hold (FOH) 
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