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ANSWER BOOKLET 
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Recitation Time : o’clock


•	 This quiz is closed book, but 3 sheet of notes are allowed. Calculators will not be 
necessary and are not allowed. 

•	 Check that this ANSWER BOOKLET has pages numbered up to 14. The booklet 
contains spaces for all relevant reasoning and answers. 

•	 Neat work and clear explanations count; show all relevant work and reasoning! 
You may want to first work things through on scratch paper and then neatly transfer to 
this booklet the work you would like us to look at. Let us know if you need additional 
scratch paper. Only this booklet will be considered in the grading; no additional an­
swer or solution written elsewhere will be considered. Absolutely no exceptions! 

•	 There are 4 problems, weighted as shown. (The points indicated on the following 
pages for the various subparts of the problems are our best guess for now, but may be 
modified slightly when we get to grading.) 

Problem	 Your Score 

1 (6 points)


2 (15 points)


3 (15 points)


4 (14 points)


Total (50 points)
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Problem 1 (6 points) 

For each of the following statements, specify whether the statement is true or false and 
give a brief (at most a few lines) justification or counterexample. 

(1a) (1.5 points) If X and Y are independent random variables, the unconstrained MMSE 
estimator Y� of Y given X = x is Y� = µY . 

True: The unconstrained MMSE estimator takes the form E[Y |X] = 
�

yfY |Xdy. Since Y 

and X are independent, we know that fY |X = fY . This implies E[Y |X] = µY = 
�

yfY dy. 

(1b) (1.5 points) The following random process is strict sense stationary: x(t) = A where A is 
a continuous random variable with a pdf uniform between ±1. 

True: Intuitively, you can conclude that the process x(t) is strict sense stationary because 
there is no way to tell where on the time axis you are by looking at any set of samples, no 
matter at what times they are taken. Mathematically, this intuition is captured by saying 
that PDF’s of all orders are shift invariant, or fx(t1),x(t2 ),...,x(tN ) = fx(t1+τ),x(t2+τ),...,x(tN+τ) 

for all N and τ . 

(1c) (1.5 points) The following random process is ergodic in the mean: x(t) = A where A is a 
continuous random variable with a pdf uniform between ±1. 

False: The process is not ergodic in the mean because the ensemble mean does not equal 
the time-average of a realization of the process x(t). The ensemble mean of the process 
x(t) is 0. The time-average of a realization of the process x(t) is the particular value of 
A obtained in that realization 
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(1d) (1.5 points) If the input to a stable LTI system is WSS then the output is guaranteed to 
be WSS. 

True: If a WSS process x(t) with mean µx and autocorrelation function Rxx(τ) is the 
input to a stable LTI system with frequency response H(jω), then the output process has 

mean µy = H(j0)µx and autocorrelation function Ryy(τ) = 
−
h ∗ Rxx(τ). Since the h ∗ ←

output process has a constant mean and autocorrelation function that depends only on 
the lag τ , the process y(t) is also WSS. 
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Problem 2 (15 points) 

Suppose x(t) and v(t) are two independent WSS random processes with autocorrelation 
functions respectively Rxx(τ) and Rvv(τ). 

(2a) (3 points) Using x(t) and v(t), show how you would construct a random process g(t) whose 
autocorrelation function Rgg(τ) is that shown in Eq. (2.1). Be sure to demonstrate 
that the resulting process g(t) has the desired autocorrelation function. 

Rgg(τ) = Rxx(τ)Rvv(τ) (2.1) 

Solution: Choose g(t) = x(t)v(t). For this choice the autocorrelation function of g(t) is 

Rgg(τ) = E[x(t + τ)v(t + τ)x(t)v(t)] 

= E[x(t + τ)x(t)]E[v(t + τ)v(t)] 

= Rxx(τ)Rvv(τ) 

4




For the remainder of this problem assume that Rxx(τ) and Rvv(τ) are known to be 

Rxx(τ) = 2e−|τ | Rvv(τ) = e −3|τ | (2.2) 

You can also invoke the Fourier transform identity 

e −β|τ | ⇐⇒ 
β2 

2

+ 

β

ω2 
(2.3) 

(2b) (6 points) Let w(t) denote a third WSS random process with autocorrelation function 
Rww(τ) = δ(τ). Suppose w(t) is the input to a first-order, stable, causal LTI system for 
which the linear constant coefficient differential equation is 

dx(t)
+ ax(t) = bw(t) (2.4) 

dt 

Determine the values of a and b so that the autocorrelation of the output x(t) is Rxx(τ) 
as given in Eq. (2.2). 

Solution: The transfer function H(s) representing this linear, constant coefficient differ­
ential equation is given by 

b 
H(s) = 

s + a 

The PSD (function of jω) and complex PSD (function of s) of the output process x(t) are 

4 
Sxx(jω) = 

1 + ω2 

4 
Sxx(s) = 

(1 + s)(1− s) 

We know that the complex PSDs of the input process w(t) and the output process x(t) 
are related as follows: 

Sxx(s) = H(s)H(−s)Sww(s) 

Since the complex PSD of the input process w(t) is Sww(s) = 1, we can write 
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Sxx(s) = H(s)H(−s) 

4 b2 

= 
(1 + s)(1− s) (a + s)(a − s) 

From the above we recognize that b = ±2 and a = 1. 
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(2c) (6 points) Is it possible to have a WSS process z(t) whose autocorrelation function 
Rzz(τ) = Rxx(τ) ∗ Rvv(τ), i.e., Rzz(τ) is the result of convolving the autocorrelation 
functions Rxx(τ) and Rvv(τ) given in Eq. (2.2)? If no, why not? If yes, show how to gen­
erate z(t) starting from a WSS process w(t) with autocorrelation function Rww(τ) = δ(τ) 
(you can perform any necessary causal LTI filtering operations). 

Solution: We would like to form a process z(t) whose autocorrelation function and PSD 
are 

Rzz(τ) = Rxx(τ) ∗ Rvv(τ) 

Szz(jω) = Sxx(jω)Svv(jω) 

Suppose we filter the process w(t) through a causal, LTI filter with frequency response 
H(jω). Then we will obtain the following relation between the Sww and Szz 

Szz(jω) = |H(jω)| 2 Sww(jω) 

Szz(s) = H(s)H(−s)Sww(s) 

Since the complex PSD of the input process w(t) is Sww(s) = 1, we can write 

Szz(s) = H(s)H(−s) 

Sxx(s)Svv(s) = H(s)H(−s) 

2 6 
= 

(1 + s)(1− s) (3 + s)(3− s) 
H(s)H(−s) 

Associating with H(s) the poles in the left half plane we obtain 

2
√

3 
H(s) = 

(1 + s)(3 + s) 
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Problem 3 (15 points) 

A DT wide-sense stationary random process s[n] has zero mean and the autocovariance 
function Css[m] shown in Figure 3.1. Css

C
ss

[m
] 

15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

−1 
−2 
−3 
−4 

[m] = 0 for |m| ≥ 5. 

Figure 3.1 

−4 −3 −2 −1 0 1 2 3 4 
m 

The process s[n] is transmitted through a communication channel that introduces noise and 
a one-step delay. The received process r[n] is related to s[n] as indicated by Eq. (3.1). The 
noise process w[n] has zero mean, autocovariance function Cww[m] = 3δ[m]. Furthermore, the 
noise process w[ ] is uncorrelated with the process s[ ]. · ·

r[n] = s[n − 1] + w[n] (3.1) 

We wish to design an estimator s�[n] for s[n]. Throughout this problem the objective is to 
choose the parameters in the estimator to minimize the mean squared error E defined as 

E � E{(s[n]− s�[n])2 } 
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(3a) (2 points) Express the covariance functions Crs[m] and Crr[m] in terms of the given 
autocovariance functions Css[m] and Cww[m]? 

Solution: Since both s[n] and w[n] are zero mean, auto and cross covariance functions 
will equal auto and cross correlation functions. 

Crs[m] = Rrs[m] 

= E[r[n + m]s[n]] 

= E[(s[n + m − 1] + w[n + m])s[n]] 

= Rss[m − 1] 

= Css[m − 1] 

Crr[m] = Rrr[m] 

= E[r(n + m)r(n)] 

= E[(s[n + m − 1] + w[n + m])(s[n − 1] + w[n])] 

= Rss[m] + Rww[m] 

= Css[m] + Cww[m] 
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(3b) (3 points) If the estimator is restricted to be of the form 

s�[n] = a0r[n] + a1r[n − 1] 

will E be minimized with the parameter values a0 = 0 and a1 = 5? 

Circle: Yes/No 

Clearly show how you arrived at your conclusion. 

Solution: No. If s�[n] minimizes E , then the estimation error must be orthogonal to both 
the data samples r[n] and r[n − 1]. We will show that orthogonality is not satisfied for 
the choice a0 = 0 and a1 = 5. 

E[(s[n]− s�[n])r[n]]


E[(s[n]− a0r[n]− a1r[n − 1])r[n]]


E[(s[n]− a1r[n − 1])r[n]]


Rsr[0]− a1Rrr[1]


−4− 5(−4) =6 0


Alternatively, note that if a0 = 0 in the minimum, then a1 must be the coefficient that 
minimizes the MSE when we use an estimator of the form s�[n] = a1r[n − 1], but then we 
would need 

Csr[1] Css[−2] 5 
a1 = = = 

Crr[0] Crr[0] 18 

10




�

(3c) (5 points) If the estimator is restricted to be of the form 

s[n] = a2r[n] 

determine the value of a2 that minimizes E . 

Solution: The value of a2 that minimizes E is given by 

Csr[0] 
a2 = 

Crr[0] 

Rsr[0] −2 
= = 

Rss[0] + Rww[0] 9 
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(3d) (5 points) If the estimator is of the form 

1 
s[n] = r[n − no] 

with no ≥ 0, determine the value of no that minimizes E . 

Solution: Express the estimation error E in terms of no 

E = E[(s[n]− 
2

1 
r[n − no])

2] 

= E[s 2[n]− s[n]r[n − no] + 
1 
r[n − no]

2]
4 

1 
= Rss[0]− Rsr[no] + Rrr[0] 

4 

= Rss[0]− Rrs[−no] + Rrr[0] 
4 

= Rss[0]− Rss[n0 + 1] + Rrr[0] 

To minimize E , we need to choose no so that Rss[n0 +1] is as large as possible and no ≥ 0. 
Looking at Figure 3.1, we see that n0 = 3 minimizes E while satisfying the constraint 
no ≥ 0. 

Note that the choice of no = 3 minimizes E , but does not result in an estimation error 
that is orthogonal to r[n−3]. The reason we lost orthogonality is because s�[n] = 1 r[n−3] 2
is not the LMMSE estimator of s[n] given r[n − 3]. The LMMSE estimator of s[n] given 

r[n − 3] is s�[n] = Csr [3] 
r[n − 3] = 1 r[n − 3]. 

Crr[0] 3

2 

1 

1 

4 
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Problem 4 (14 points) 

Note: Nothing on this problem assumes or requires that you attended today’s 
lecture. 

��������� 
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� 

���� 

����������������� 

����� 

Figure 4.1 

D/A converters utilizing oversampled noise shaping often use the structure in Figure 4.1 to 
quantize the output sequence to a 1-bit bitstream for which D/A conversion is then very simple. 
Its effectiveness assumes that x[n] is highly oversampled and that most of the error introduced 
by the quantizer falls outside the signal band. 

In Figure 4.1 the quantizer error is modeled as an additive, zero mean i.i.d sequence e[n] 
that is uniformly distributed in amplitude between ± △ at each time instant n. Furthermore, 2 
e[n] and x[n] are assumed to be independent. The input x[n] has mean µx = 0 and variance 
σx 

2 = 1. Moreover, the input x[n] is bandlimited, i.e., the power spectral density Sxx(e
jΩ) is 

zero for π < Ω < π.2 | |
The output y[n] is composed of two components: yx[n] due solely to x[n], and ye[n] due 

solely to e[n]. Similarly, w[n] = wx[n] + we[n]. Note that the transfer function from x[n] to 
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yx[n] is unity, and the transfer function from e[n] to ye[n] is (1− az−1). 

(4a) (7 points) Determine the power spectral density of ye[n] as a function of Ω for Ω < π.| | 

Solution: We know that the PSD of e[n] and the PDS of ye[n] are related as follows 

Syeye
(ejΩ) = Hye

(ejΩ)Hye
(e −jΩ)See(e

jΩ)


Substituting Hye
(ejΩ) = (1− ae−jΩ) we get


Syeye 
(ejΩ) = (1− ae −jΩ)(1− aejΩ)See(e

jΩ) 
2 

Syeye 
(ejΩ) = (1 + a 2 − 2a cos(Ω))

△ 
12 
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(4b) (7 points) Determine E{wx
2[n]}, E{we

2[n]}, and the value of the gain constant “a” that 
maximizes the signal-to-noise ratio (SNR) of w[n] defined as 

E{wx
2 [n]}

SNR = 
E{we

2[n]} 

Solution: 

π1 
�

E{wx
2 [n]} = Swxwx

(ejΩ) dΩ 
2π −π 

π 

=
1 

� ��HLPF (ejΩ)
��2 Syxyx

(ejΩ) dΩ 
2π −π 

1

π 

2 

Syxyx
(ejΩ) dΩ= 

2π −π 

2 

1

π 

2 

Sxx(ejΩ) dΩ= 
2π −π 

2 

= σ2 
x 

= 1 

π1 
�

=E{we
2[n]} 

2π −π 
π1 

�
= 

2π −π 

Swewe
(ejΩ) dΩ 

2��HLPF (ejΩ)
�� Syeye 

(ejΩ) dΩ 

1

π 

2 

Syeye 
(ejΩ) dΩ= 

2π −π 

2 
π2 2 2△


1 +
 a − 2a cos(Ω) dΩ=

24π −π 

2 

= 
△ 2 �

π(1 + a 2)− 4a
� 

24π 

The SNR is given by 

1 
SNR = 

△2 

24π 
(π(1 + a2)− 4a) 
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To maximize the SNR we select the gain constant a that minimizes the expression 
π(1 + a2) − 4a. Differentiating with respect to a and setting the derivative equal to 0 re­
sults in a = 2 2 . We know the value of a = minimizes the denominator because the second 

π π 

derivative of π(1 + a2)− 4a is greater than zero for this choice of a. 
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