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Department of Electrical Engineering and Computer Science


6.011: Introduction to Communication, Control and Signal Processing


FINAL EXAM, May 18, 2010


ANSWER BOOKLET 

Your Full Name: SOLUTIONS 

Recitation Time : o’clock 

•	 This exam is closed book, but 4 sheets of notes are allowed. Calculators and other 
electronic aids will not be necessary and are not allowed. 

•	 Check that this ANSWER BOOKLET has pages numbered up to 26. The booklet 
contains spaces for all relevant reasoning and answers. 

•	 Neat work and clear explanations count; show all relevant work and reasoning! 
You may want to first work things through on scratch paper and then neatly transfer to 
this booklet the work you would like us to look at. Let us know if you need additional 
scratch paper. Only this booklet will be considered in the grading; no additional an­
swer or solution written elsewhere will be considered. Absolutely no exceptions! 

•	 There are 5 problems, weighted as shown, for a total of 100 points. (The points 
indicated on the following pages for the various subparts of the problems are our best 
guess for now, but may be modified slightly when we get to grading.) 

Problem Your Score 

1 (17 points) 

2 (18 points) 

3 (25 points) 

4 (20 points) 

5 (20 points) 

Total (100 points) 
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Problem 1 (17 points)


Note that 1(d) does not depend on your answers to 1(a)-(c), and can be done

independently of them. 

Xc(jω) = 0 for |ω| � 2π × 103 . 

C/D 
xc(t) � 

x[n] 
� h[n] 

y[n] 
� PAM �

r(t) 
C/D 

q[n] = r(nT2) 

T1 p(t), T2 T2 

� 

�H(ejΩ) 

Ω 

1 

−π π−� 
2 

� 
2 

1(a) (3 points) Determine the largest value of T1 to ensure that y[n] = xc(nT1) . 

Solution: For y[n] = xc(nT1) = x[n], we need to choose T1 so that X(ejΩ) is bandlimited 
to π/2. You might anticipate that this will require sampling at twice the Nyquist rate. 
After sampling (and assuming no aliasing — a good assumption if we will be sampling at 
twice the Nyquist rate), we know X(ejΩ) is related to its continuous counterpart as follows 
in the interval |Ω| < π (and repeats periodically with period 2π outside this interval): 

X(ejΩ) = 
1 
Xc(jω) . 

ΩT1 T1 

Since Xc(jω) is bandlimited to 2π ×103, we know from the above relation that the highest 
frequency in X(ejΩ) is Ωo = (2π × 103)T1. Since we require |Ωo| � π/2, we conclude that 
T1 � 2.5 × 10−4 . This does indeed correspond to sampling at twice the Nyquist rate for 
the signal xc(t). 
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1(b) (6 points) With T1 picked as in 1(a), determine a choice for T2 and p(t) to ensure that 

r(t) = xc(t) . 

(You can leave your expressions for T2 and p(t) in terms of T1, instead of substituting in 
the numerical value you obtained in 1(a) for T1.) 

Solution: For r(t) = xc(t), with the PAM relation ∑ 
r(t) = y[n]p(t − nT2) , 

n 

we need to perfectly reconstruct xc(t) from the samples y[n]. Since we chose T1 in part 1(a) 
to ensure that y[n] = x[n], attaining the equality r(t) = xc(t) amounts to using the PAM 
block in the figure to perfectly reconstruct xc(t) from the samples y[n] = x[n] = x(nT1). 
This is possible, by the sampling theorem, since the samples are collected at greater than 
the Nyquist rate. Specifically, perfect reconstruction can be achieved by interpolating the 
samples y[n] with interval T1 using a sinc function (i.e., using an ideal D/C converter), 
as follows: ∑ sin( � (t − nT1)) 

r(t) = y[n] �
T1 . 
(t − nT1)n T1 

(This is the standard sampling-theorem reconstruction of a bandlimited signal from sam­
ples taken at a sufficiently high rate.) Hence we can choose T2 = T1 and use the PAM 
pulse 

p(t) = 
sin( 

�
T
� 
1 
t) 

. 
tT1 

Note for future reference that P (jω) = T1 in the interval |ω| < (π/T1), and 0 elsewhere. 

(Continue 1(b) on next page:) 
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1(b) (continued) Also determine if there is another choice of T2 and p(t) that could ensure the 
equality r(t) = xc(t). Explain your answer carefully. 

Solution: Since our samples were obtained at twice the Nyquist rate, we can actually 
use any interpolating pulse whose transform P (jω) 

where X(ejΩ) 

T1 in the interval ω < π/(2T ),| | 1∣∣
is nonzero; the choice ∣ =


jΩ)is nonzero, and 0 wherever else X(e

Ω=�T1 

of P (jω) in intervals where X(ejΩ) 
Ω=�T1 

= 0 is arbitrary. To see this more concretely, 
Ω=�T1 

note that the PAM relation 

r(t) = 
∑


y[n]p(t − nT2) 
n 

translates in the frequency domain to
∑

R(jω) = y[n]e−j�nT2 P (jω) 

∑

n(
 )


P (jω)
y[n]e−j�nT2=

n 

Y (ejΩ) P (jω)
=

Ω=�T2 

We chose T1 in part 1(a) to ensure that y[n] = x(nT1) = x[n], so we can write 

R(jω) = X(ejΩ) P (jω) . 
Ω=�T2 

To get r(t) = xc(t), we must ensure R(jω) = Xc(jω), so we require 

X(e
jΩ) P (jω) = X(e
jΩ) T1 
Ω=�T2 Ω=�T1 

for |ω| < π/(2T1), and require the left side to be 0 for |ω| > π/(2T1). 

The above expression implies the constraints T2 = T1 and P (jω) = T1 for |ω| � 2
�
T1 
. 

replicates at multiples of 2�Moving to higher values of |ω|, note that since X(ejΩ)|Ω=�T1 T1 
, 

2� �jΩ)we need P (jω) to be zero before the first replication edge of X(e
 at
 −
 =
T1 2T1Ω=�T1 
3� (One can have P (jω) change back to nonzero values at yet higher |ω| for which
.
2T1 

X(ejΩ) goes to 0 again, but we don’t pursue this here.) 
Ω=�/T1 

If we stick to sinc functions for p(t), then we achieve r(t) = xc(t) if we use a PAM block 
with T2 = T1 and 

sin(T
� 
3 
t) 

p(t) = � , 
tT1 
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π π 3π 
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� 
T3 

� 
2T1


or

2T1 � T3 � 2T1 . 
3 

1(c) (3 points) With T1 picked as in 1(a), how would you modify your choice of T2 and p(t) 
from 1(b) to ensure that 

r(t) = xc(2.7t) . 

Solution: From part (b) we know one choice of PAM parameters that ensures r(t) = xc(t) 

is T2 = T1 and p(t) = 
sin( 

�
T
� 
2 
t

t) 
. This allows us to express r(t) = xc(t) as 

T2 ∑ sin(π( t − n)) 
r(t) = xc(t) = y[n] T1 

π( t − n)
n T1 

For r(t) to equal xc(2.7t), we subsitute 2.7t for t in the above relation to get 

∑ sin(π(2.7t − n)) 
r(t) = xc(2.7t) = y[n] 

π(2.7
T
t 
1 

n T1 
− n) ∑ sin(π( t − n)) 

= y[n] T2 

π( t − n)
n T2 

where T2 = T1/2.7. So, a PAM block with T2 = T1/2.7 and p(t) = 
sin( 

�t 
T
�t 
2 
) 
will ensure that 

T2 

r(t) = xc(2.7t). 

1(d) (4 points) Assume that p(t) is now chosen so that its CTFT, P (jω), is as shown below. 
Determine a value of T2 to ensure that q[n] = y[n]. 

P (jω) 

10−3 

−2π × 103 2π × 103 ω 
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Solution: To ensure that q[n] = y[n], we must choose T2 so that the pulse P (jω) satisfies 
the Nyquist condition for zero ISI. In the frequency domain, this condition requires that the 
sum of replicas of P (jω) centered at integer multiples of 2T

� 
2 
adds up to T2: ∑ 2π 

T2 = P (j(ω − k))
T2

k 

For the given pulse P (jω), choosing 2� = 2π × 103 or T2 = 10−3 allows us to satisfy the T2 

Nyquist condition for zero ISI. Note that this T2 is four times the T2 picked in (b), but this is 
because now we are only trying to preserve the samples, not the CT waveform. 
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Problem 2 (18 points) 

For each of the following parts, write down whether the statement is True or False (circle 
whichever is appropriate), giving a clear explanation or counterexample. (Take care with this!) 

2(a) (4 points) Suppose x[n] is a zero-mean discrete-time (DT) wide-sense stationary (WSS) 
random process. If its autocorrelation function Rxx[m] is 0 for |m| � 2 but nonzero for 
m = −1, 0, 1, then the linear minimum mean-square-error (LMMSE) estimator of x[n +1] 
from measurements of x[n] and x[n − 1], namely 

x̂[n + 1] = a0x[n] + a1x[n − 1] , 

will necessarily have a1 = 0. 

TRUE FALSE 

Explanation/counterexample:


Solution: FALSE.


Since the mean of x[n] is zero, Rxx[m] = Cxx[m]. The coefficients a0 and a1 are formed

by solving the normal equations:
[ ] [ ] [ ]

Cxx[0] Cxx[1] a0 Cxx[−1]
= 

Cxx[−1] Cxx[0] a1 0 

This matrix equation cannot be solved with a1 = 0. 

7




2(b) (4 points) If the power spectral density Syy(jω) of a continuous-time (CT) WSS random 
process y(t) is given by 

17 + ω2 

Syy(jω) = 
23 + ω2 

then the mean value of the process is zero, i.e., µy = E[y(t)] = 0. 

TRUE FALSE 

Explanation/counterexample: 

Solution: TRUE.


In general, Cyy(τ) ≤ Dyy(jω) = Syy(jω) − µy
22πδ(ω), and Dyy(jω) � 0. For the given


Syy(jω), the inequality Dyy(jω) � 0 cannot be satisfied unless µy = 0 since Syy(jω) has

no impulses at ω = 0.
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2(c) (4 points) If the autocovariance function Cvv[m] of a DT WSS random process v[n] is 
given by (1)|m|

Cvv[m] = ,
3

then the LMMSE estimator of v[n + 1] from all past measurements, which we write as 

∑ 
v̂[n + 1] = hkv[n − k] + d , 

k=0 

will have hk = 0 for all k � 1, i.e., only the coefficients h0 and d can be nonzero. 

TRUE FALSE 

Explanation/counterexample: 

Solution: TRUE.


The claim is that the LMMSE estimator of v[n + 1] has the form:


v̂[n + 1] = h0v[n] + d 

To verify this claim, we need to show that the estimation error is orthogonal to 1 (i.e., 
that the estimator is unbiased) and to v[n], for some appropriately chosen h0 and d. 

Orthogonality to v[n] implies: 

E[(v[n + 1] − v̂[n + 1])v[n]] = 0 

Rvv[1] − h0Rvv[0] − dµv = 0 

Cvv[1] − h0Cvv[0] + (1 − h0)µv 
2 − dµv = 0 

1 2 

3 
− h0 + (1 − h0)µv − dµv = 0 

Orthogonality to 1 implies: 

E[(v[n + 1] − v̂[n + 1])] = 0 

µv − h0µv − d = 0 

These equalities are satisfied when h0 = 13 and d = 23 µv. Hence, v̂[n +1] = 13 v[n] + 23 µv is 
the LMMSE estimator of v[n + 1]. 
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2(d) (3 points) The process v[n] in 2(c) is ergodic in mean value. 

TRUE FALSE 

Explanation/counterexample: 

Solution: TRUE. 

Since the covariance function Cxx[m] goes to zeros as m ∗ ≥, we can conclude that the 
process v[n] is ergodic in the mean. 

2(e) (3 points) If z[n] = v[n] + W , where v[n] is the process in 2(c), and where W is a random 
variable with mean 0 and variance σ2 > 0, then the process z[n] is ergodic in mean value. W 

TRUE FALSE 

Explanation/counterexample: 

Solution: FALSE. 

The ensemble average of z[n] is E[z[n]] = µv. However, the time-average of any particular 
realization of z[n] will be µv + w, where w is the particular realization of W in that 
outcome. Since the time-average of z[n] does not equal its ensemble average, we conclude 
that the process z[n] is not ergodic in the mean. 

10 



Problem 3 (25 points) 

q[n + 1] = Aq[n] + bx[n] + hw[n] , 

y[n] = c T q[n] + v[n] . 

where [ 
q1[n] 

] [ 
1 3 ] [ 

1 ] [ 
0 
] [ ]

q[n] = 
q2[n] 

, A =
0 
2 

2 
4 , b =

1 
2 , h =

1 
, c T = 0 1 , 

3(a) Determine the two natural frequencies of the system (i.e., the eigenvalues of A), and for 
each of them specify whether the associated mode satisfies the properties listed on the 
next page. 

Solution:. 

The matrix A is upper triangular, so its eigenvalues are its diagonal entries. Hence, 
λ1 = 2

1 and λ2 = 2. The eigenvector associated with λ1 is v1 = [1 0]T and the eigenvector 
associated with λ2 is v2 = [12 1]

T . 

(Write your answers on the next page.) 
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3(a) (continued)(8 points)


The two eigenvalues are: λ1 = 12 λ2 = 2 

List below whichever of the eigenvalues, if either, has an associated mode that satisfies 
the indicated condition: 

(i) decays asymptotically to 0 in the zero-input response:


λ1 since |λ1| < 1


(ii) is reachable from the input x[n] (with w[n] kept at zero): [ ]
λ2 since V−1b =

0 
1 

(iii) is reachable from the input w[n] (with x[n] kept at zero): [ ]
1 
2λ1 and λ2 since V−1h = 

−
1 

(iv) is observable from the output y[n]: 

λ2 since cT V = [0 1] 

12 



3(b) (2 points) Your specification of the observer, to obtain an estimate q̂[n] of the state q[n] 
(explain your choice): 

Solution:.


Since w[n] and v[n] are noise processes that are not accessible to us, our observer takes

the form:


q̂[n + 1] = Aq̂[n] + bx[n] − l(y[n] − c T q̂[n]) 

i.e., q̂[n + 1] = Aq̂[n] + bx[n] − l(c T q[n] + v[n] − c T q̂[n]) 

3(c) (2 points) With q̃[n] = q[n] − q̂[n], explain carefully why the components q̃1[n] and q̃2[n] 
of q̃[n] at time n are uncorrelated with the noise terms w[n] and v[n] at time n (or — 
equivalently, of course! — explain why the components of q̃[n + 1] are uncorrelated with 
w[n + 1] and v[n + 1]): 

Solution:.


The state vector q[n + 1] depends on w[k] for k � n. The estimated state vector q̂[n + 1]

depends on v[k] for k � n, and on w[j] for j � n − 1 since q̂[n + 1] is a function of q[n].

Hence, q̃[n +1] = q[n +1] − q̂[n +1] depends only on v[k] for k � n and on w[k] for k � n.


Since the processes w[n] and v[n] are white and uncorrelated with each other, we know that

each of w[n + 1] and v[n + 1] is uncorrelated with w[k] and v[k] for k � n. Consequently, 
w[n + 1] and v[n + 1] are uncorrelated with q̃[n + 1]. 

13




3(d) (4 points) The state estimation error in 3(c) is governed by a state-space model of the 
form 

q̃[n + 1] = Bq̃[n] + fw[n] + gv[n] . 

Determine B, f and g in terms of previously specified quantities. 

Solution:. 

q̃[n + 1]	 = q[n] − q̂[n] 

= Aq[n] + hw[n] + bx[n] − (Aq̂[n] + bx[n] − l(y[n] − c T q̂[n])) 

= Aq[n] + hw[n] + bx[n] − (Aq̂[n] + bx[n] − l(c T q[n] + v[n] − c T q̂[n])) 

= (A + lcT )q̃[n] + hw[n] + lv[n] 

= Bq̃[n] + fw[n] + gv[n] 

So B = A + lcT =


[

3 
4

1 
2 
0


] [ ] [ ]
+ l1 0 l1 , f = , and g = 

2 + l2 1 l2 
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3(e) (5 points) Is it possible to arbitrarily vary the natural frequencies of the state estimation 
error evolution equation in 3(d) by controlling the observer gains ℓ1 and ℓ2? Explicitly 
note how your answer here is consistent with your answer to 3(a)(iv). 

Solution: The eigenvalues of the matrix B, which governs the state estimation error 
dynamics, are 12 and 2+ l2. So, only one of the eigenvalues can be arbitrarily placed using 
the observer gain vector l. This is consistent with λ2 being the only mode observable 
from the output y[n]. 

What constraints, if any, on ℓ1 and ℓ2 must be satisfied to make the error evolution 
equation asymptotically stable? 

Solution: For the error evolution equation to be asymptotically stable, we need the 
eigenvalues of the matrix B to be within the unit circle. One eigenvalue is already within 
the unit circle and fixed at 2

1 . For the second eigenvalue to be within the unit circle we 
need |2 + l2| < 1 or −3 < l2 < −1. There is no constraint on the value of l1. 

Would the choice ℓ2 = 0 allow you to obtain a good state estimate? — explain. 

Solution: No. Choosing l2 = 0 would result in a exponentially growing error in estimat­
ing the state q2[n]. 

15 



If you have done things correctly, you should find that choosing ℓ1 = −4
3 makes the matrix 

B in part 3(d) a diagonal matrix. Keep ℓ1 fixed at −3 for the rest of this problem, and 4 
also assume ℓ2 is chosen so that the error evolution equation is asymptotically stable. 

3(f) (4 points) Under the given assumptions, the mean-squared estimation errors attain con­
2σqσ2
2. 

and σ2
2, expressing them as functions of ℓ2. [Hint: At steady state, 

q

q

2 2stant steady-state values, E(q̃1[n]) and E(q̃2 [n]) Find explicit expres­
=
 =
1 

2E[ [ ]] + σq n1 v 

sions for σ2


E(q̃1
2[n + 1]) = E(q̃1

2[n]) and E(q̃2
2[n + 1]) = E(q̃2

2[n]).]


2σv 

2σv 

Solution: With l1 = −4
3 the error evolution equation becomes 

1 3 
2 4q̃[n + 1] = 

[ 

0 2 + 
0 
l2 

] 

q̃[n] + 

[ 
0
1 

] 

w[n] + 

[ 
−
l2 

] 

v[n] 

For the state q̃1[n] we have 

E[q̃1
2[n + 1]] = E[(

1 
q1[n] − 

3 
v[n])2]

2 4 
1 2 9 

q1 

=

4
 16


In steady state we have E(q̃1
2[n + 1]) = E(q̃1

2[n]) so 

3 2 9 
E[q̃1[n]] = 

4 16 

σ2 3 
= q1 4 

For the state q̃2[n] we have 

2 E[((2 + l2)q2[n] + w[n] + l2v[n])
2]E[q̃2[n + 1]] = 

(2 + l2)
2E[q 2 2[ ]] + σn2 w

2 2l σ+ 2 v =


In steady state we have E(q̃2
2[n + 1]) = E(q̃2

2[n]) so 

2σw
1 − (2 + l2)2 

16 

2 2l σ+ 2 vσ2 = q2 
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Problem 4 (20 points)


� 
f(x|H0) 

� 1 
f(x|H1) 

2 
1 
4 

� � 
−2 x2 −1 1 x 

fX|H (x|H1)
4(a) (4 points) Sketch Λ(x) = as a function of x for −2 < x < 2:fX|H (x|H0) 

Solution: 
Λ(x) 

2 

−1 1 x 
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4(b) (6 points) 

(i) For threshold η at some value strictly above 2, determine PD and PFA: 

Solution: In this case, we will always declare ‘H0 ’ since Λ(x) < η. Consequently, 
PD = 0 and PFA = 0. 

(ii) For η at some value strictly between 0 and 2, determine PD and PFA: 

Solution: In this case, we will declare ‘H1 ’ for |x| � 1 and ‘H0 ’ for |x| > 2. 
Consequently, PD = 1 and PFA = 2

1 . 

18




4(b) (continued) 

(iii) For η at some value strictly below 0, determine PD and PFA: 

Solution: In this case, we will always declare ‘H1 ’ since Λ(x) > η. Consequently, 
PD = 1 and PFA = 1. 

4(c) (2 points) If the specified limit on PFA is β = 0.3, which of the choices in 4(b) can we 
pick, and what is the associated PD? 

Solution: Only η > 2, i.e. always declare ‘H0’, results in PFA < 0.3. However, PD = 0. 
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4(d) (8 points) What is the probability that we get Λ(X) = 0 if H0 holds? And what is the 
probability we get Λ(X) = 0 if H1 holds? 

Solution: Under the hypothesis H0, Λ(X) = 0 when 1 < |x| < 2. The value of x falls 
within this range with probability 12 , so P (Λ(X) = 0 | H0) = 12 . Under the hypothesis H1, 
Λ(X) never equals 0 since |x| � 1. So, P (Λ(X) = 0 | H1) = 0 

Announce ‘H0 ’ when Λ(x) = 0. When Λ(x) > 0, announce ‘H1 ’ with probability α, and 
otherwise announce ‘H0’. What are PD and PFA with this randomized decision rule? 

Solution: 

PD = αP (‘H1 ’|H1) = αP (Λ > 0|H1) = α 

α 
PFA = αP (‘H1 ’|H0) = P (Λ > 0|H0) = 

2 

To maximize PD while keeping PFA � 0.3 with this decision rule, choose α as follows 

Solution: 

PFA = � � 0.3 so α � 0.6. Since PD = α, we choose α = 0.6 to maximize PD while2 
satisfying the constraint on PFA. 
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Problem 5 (20 points) 

r[n]x[n] 
� K(z) = 1 − µz−1 

y[n] 

‘H1 ’ 
r[n] g[n] � n = n0 � <Threshold γ� f [n], F (z) 

‘H0 ’g[n0] 

5(a) (10 points) Suppose x[n] is a signal that we are interested in, while y[n] is a zero-mean, 
i.i.d., Gaussian noise process, with variance σ2 at each instant of time. 

H0 : x[n] = 0 , P (H0) = p0 ,


H1 : x[n] = δ[n] , P (H1) = p1 = 1 − p0 .


(i) Fully specify the MPE receiver when n0 = 0, i.e., specify f [n] or F (z) and the value 
of γ. 

Solution: The received signal r[n] takes the following values under each hypothesis: 

H0 : r[n] = y[n]


H1 : r[n] = δ[n] − µδ[n − 1] + y[n]


Since y[n] is an i.i.d. process, we know the MPE receiver will employ a filter whose 
impluse response is a time-reversed replica of the pulse to be detected. So f [n] = 
δ[n] − µδ[n + 1] and F (z) = 1 − µz. 

To compute the threshold γ, we need to apply the MAP detection rule. The distri­
bution of g[0] conditioned on each hypothesis is 

fg[0]|H0 = N(0, σ2(1 + µ 2)) 

fg[0]|H1 = N(1 + µ 2, σ2(1 + µ 2)) 

The MAP detection rule in this case declares ‘H1’ when 

21 



fg[0]|H1 p1 > fg[0]|H0 p0 

1 (g[0]−(1+µ2))2 

e
− 

2�2(1+µ2) p0 
>1 

e
− 

2�2(1+µ2) 
(g[0])2 p1 

g[0] > σ2 ln(
p0 

) + 
1 + µ2 

p1 2 

g[0] > γ 

5(a)(ii) Write down an expression for P (‘H1 ’|H0) and for the minimum probability of error 
in the case where the two hypotheses are equally likely, p0 = p1. You can write these 
in terms of the standard function ∫ 

21 � 
t

Q(α) = e− 
2 dt→

2π � 

Solution: When p0 = p1, then γ = 1+2 
µ2 
. In this case P (‘H1 ’|H0) is 

g[0] 1+
2 
µ2 

P (g[0] > γ H0) = P ( √ > √ H0)
2

|
σ 1 + µ2 σ 1 + µ

|

1+µ2 

= Q( √ 2 ) 
σ 1 + µ2 

The probability of error Pe is given by 

Pe = p0P (‘H1 ’|H0) + p1P (‘H0 ’|H1) 
1+µ2 1+µ2 √ √=

1 
Q( 2 ) + 

1
(1 − Q( 

− 2 ))
2 σ 1 + µ2 2 σ 1 + µ2 

1 1+
2 
µ2 

1 1+
2 
µ2 

= Q( √ ) + Q( √ )
2 σ 1 + µ2 2 σ 1 + µ2 

1+µ2 

= Q( √ 2 ) 
σ 1 + µ2 
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5(a)(iii) If the value of µ is changed to a new value µ = µ/2, we can get the same probability 
of error as prior to the change if the noise variance changes to some new value σ2 . 
Express σ in terms of σ: 

Solution: With the new parameters µ and σ2, we require that the probability of 
error remain equal to that in part 5(a)(ii), this implies 

1+µ2 1+µ2 

Q( √ 2 ) = Q( √ 2 ) 
σ 1 + µ2 σ 1 + µ2 

1+µ2 1+µ2 √ 2 = √ 2 

σ 1 + µ2 σ 1 + µ2 

Since µ = µ/2 

1+µ2 1+ µ 
2
2 √ 2 = √ 2 

σ 1 + µ2 
σ 1 + µ 2 

2 √ 
1 + (µ )2 

σ = σ 2 

1 + µ2 
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5(b) (10 points) Suppose now that x[n] is a zero-mean, i.i.d., Gaussian noise process, with 
variance σ2 at each instant of time, and that y[n] is the signal we are interested in. We 

r[n]x[n] 
� K(z) = 1 − µz−1 

y[n] 

‘H1 ’ 
r[n] g[n] � n = n0 >� Threshold γ 

g[n0] 
� f [n], F (z) 

‘H0 ’ 

have the following two hypotheses regarding y[n]: 

H0 : y[n] = 0 , P (H0) = p0 , 

H1 : y[n] = δ[n] , P (H1) = p1 = 1 − p0 . 

Fully specify the MPE receiver when n0 = 0, i.e., specify f [n] or F (z) and the value of γ 
for this case. 

Solution: The received signal r[n] takes the following values under each hypothesis: 

H0 : r[n] = v[n] 

H1 : r[n] = δ[n] + v[n] 

where v[n] is a colored noise process with Svv(z) = K(z)K(z−1)σ2 . In this scenario, the 
MPE receiver first passes the signal r[n] through a whitening filter Hw(z) = K

1
(z) in order 

to transform the problem into one of detecting a known pulse in a white noise process. 
After applying the whitening filter, the hypothesis testing problem becomes 

H0 : r[n] � hw[n] = v[n] � hw[n] = x[n] 

H1 : r[n] � hw[n] = δ[n] � hw[n] + v[n] � hw[n] = µ n u[n] + x[n] 

Now the receiver will employ a filter whose impluse response is a time-reversed replica of 
the new pulse. So hm[n] = µ−nu[−n] and Hm(z) = 1 . Overall, the MPE receiver is 

K(z−1) 
a cascade of a whitening filter and a matched filter that is followed by a threshold test on 
the output at n0 = 0. 
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1 1 σ2 

F (z) = Hw(z)Hm(z) = = 
K(z) K(z−1) Svv(z) 

To compute the threshold γ, we need to apply the MAP detection rule. The distribution 
of g[0] conditioned on each hypothesis is 

σ2 

fg[0]|H0 = N(0, 
1 − µ

)
2 

1 σ2 

fg[0]|H1 = N(
1 − µ2 , 1 − µ2 ) 

The MAP detection rule in this case declares ‘H1’ when 

fg[0]|H1 p1 > fg[0]|H0 p0 

− 
2 �

1
2 (g[0]− 

1−
1 
µ

)2 
2 

e 1−µ2 p0 
>1− 

2 �2 (g[0])2 p1 
e 1−µ2 

g[0] > σ2 ln(
p0 

) + 
1 

p1 2(1 − µ2) 

g[0] > γ 

The relevant “signal energy to noise power” ratio that governs the performance of this 
system is 

1 
1−µ2 1 

= 
σ2 σ2(1 − µ2) 
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