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Your Full Name: 

Recitation Instructor & Time : at o’clock 

This exam is closed book, but 4 sheets of notes are allowed. Calculators and other • 
electronic aids will not be necessary and are not allowed.


Check that this question booklet has pages numbered up to 10. The accompanying
• 
answer booklet contains spaces for all relevant reasoning and answers; DO NOT use 
this question booklet for answers! 

Neat work and clear explanations count; show all relevant work and reasoning! • 

There are 5 problems, weighted as shown, for a total of 100 points. (The indicated • 
weightings on subparts of problems are nominal, and may be altered slightly prior to the 
start of grading.) 
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Problem 1 (17 points) 

In the block diagram in Figure 1,


x[n] = xc(nT1) ; y[n] = h[n] ∗ x[n] ;


∞
r(t) = 

� 
y[n]p(t − nT2) ; q[n] = r(nT2) . 

−∞ 

Also, assume the continuous-time input xc(t) is bandlimited to frequencies |ω| < 2π × 103, so 

Xc(jω) = 0 for |ω| ≥ 2π × 103 . 

Take h[n] to be the unit sample response of an ideal lowpass filter, with frequency response 
H(ejΩ) that is 1 in the passband |Ω| < (π/2), and 0 for (π/2) ≤ |Ω| ≤ π, as shown in Figure 2. 

Note that part (d) below does not require the answers to parts (a)–(c), and can 
therefore be done independently of them. 
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-
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Figure 1: Block diagram.
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Figure 2: Frequency response H(ejΩ) of the LTI filter. 

(a) (4 points) Determine the largest value of T1 to ensure that 

y[n] = xc(nT1) . 
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(b) (6 points) With T1 picked as in (a), determine a choice for T2 and p(t) to ensure that 

r(t) = xc(t) . 

(It is fine — especially if you are not sure of your answer in (a)! — to leave your expressions 
for T2 and p(t) in terms of T1, instead of substituting in the numerical value you obtained 
in (a) for T1.) 

Also determine if there is another choice of T2 and p(t) that could ensure the equality 
r(t) = xc(t). Explain your answer carefully. 

(c) (3 points) With T1 picked as in (a), how would you modify your choice of T2 and p(t) 
from (b) to ensure that


r(t) = xc(2.7t) .


(d) (4 points) Assume that p(t) is now chosen so that its CTFT, P (jω), is as shown in Figure 
3. Determine a value of T2 to ensure that q[n] = y[n]. 

P (jω)
6

10−3 

-
−2π × 103 2π × 103 ω 

Figure 3: Transform P (jω) of p(t), for part (d). 
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Problem 2 (18 points) 

For each of the following parts, write down whether the statement is True or False, giving 
a clear explanation or counterexample. 

Caution: The fact that these are True/False questions does not mean that a quick and 
intuitive answer will suffice! — you will need to think carefully and present your answer clearly. 
Your explanation/counterexample is an essential part of your answer, and may take more than 
a sentence. Sloppy work here will mean you lose 18% of your points on the exam — consider 
yourself adequately warned! 

(a) (4 points) Suppose x[n] is a zero-mean discrete-time (DT) wide-sense stationary (WSS) 
random process. If its autocorrelation function Rxx[m] is 0 for |m| ≥ 2 but nonzero for 
m = −1, 0, 1, then the linear minimum mean-square-error (LMMSE) estimator of x[n +1] 
from measurements of x[n] and x[n − 1], namely 

x�[n + 1] = a0x[n] + a1x[n − 1] , 

will necessarily have a1 = 0. 

(b) (4 points) If the power spectral density Syy(jω) of a continuous-time (CT) WSS random 
process y(t) is given by


17 + ω2


Syy(jω) = 
23 + ω2 

then the mean value of the process is zero, i.e., µy = E[y(t)] = 0. 

(c) (4 points) If the autocovariance function Cvv[m] of a DT WSS random process v[n] is 
given by 

m
Cvv[m] = 

�1�| | 
,

3 

then the LMMSE estimator of v[n + 1] from all past measurements, which we write as 

v�[n + 1] = 
� ∞

hkv[n − k]
� 

+ d , 
k=0 

will have hk = 0 for all k ≥ 1, i.e., only the coefficients h0 and d can be nonzero. 

(d) (3 points) The process v[n] in (c) is ergodic in mean value. 

(e) (3 points) If z[n] = v[n] + W , where v[n] is the process in (c), and where W is a random 
variable with mean 0 and variance σ2 > 0, then the process z[n] is ergodic in mean value. W 
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Problem 3 (25 points) 

A causal discrete-time system is governed by the following state evolution equation and 
associated output equation: 

q[n + 1] = Aq[n] + bx[n] + hw[n] , 
y[n] = cT q[n] + v[n] . 

where 
� 

q1[n] 
� � � 

, h = 

� 
0 

� 

, cT = 
� 

0 1 
� 
, 

31 
42 

1 
2 
1

q[n] =
 A =
 b =

q2[n] 

,
 ,

0 2
 1


Here x[n] denotes a known (i.e., available or accessible) input signal, while w[n] is an unknown

(i.e., unavailable or inaccessible) disturbance input signal that is modeled as a (zero-mean) wide­


2sense stationary (WSS) white-noise process, with variance σ
 at each instant. The unknown
w 
(unavailable or inaccessible) measurement noise v[n] is also modeled as (zero-mean) WSS white

noise, with variance σ
2 

v at each instant. We also assume the noise processes v[ ] and w[ ] are · ·
uncorrelated with each other. 

(a) (8 points) Determine the two natural frequencies of the system (i.e., the eigenvalues λ1 

and λ2 of A), and for each of them specify whether the associated mode satisfies the 
following properties: 

(i) decays asymptotically to 0 in the zero-input response; 

(ii) is reachable from the input x[n] (with w[n] kept at zero); 

(iii) is reachable from the input w[n] (with x[n] kept at zero); 

(iv) is observable from the output y[n]. 

(b) (2 points) Suppose you wish to implement an observer to estimate the state q[n], and you 
ask a friend for advice. Your friend, who denotes the state estimate by q�f [n], suggests 
the following (causal) specification for the observer: 

q�f [n + 1] = Aq�f [n] + bx[n] + hw[n] − � ( y[n] − cT q�f [n] − v[n] ) , 
� 

�1 
�

where � = denotes the observer gain vector. Write down what you think is the ap­
�2 

propriate specification of an observer that you can implement, explaining your reasoning. 
(Agreeing with your friend is one option, of course.) 

Here and for the rest of this problem, use the notation q�[n] to denote the state 
estimate in your observer (whether or not you agree with your friend’s specification). 
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q
2 

q�[n + 1] = Bq�[n] + fw[n] + gv[n] . 

(c) (2 points) Denote the state estimation error by [ ] = [ ] [ ]. Now explain carefully q q q� − �n n n
why the components [ ] and [ ] of [ ] at time are uncorrelated with the noise terms q�� �q n q n n n1 2

[ ] and [ ] at time (or — equivalently, of course! — explain why the components of w n v n n 
[ + 1] are uncorrelated with [ + 1] and [ + 1]). q n w n v n 

(d) (4 points) The state estimation error in (c) is governed by a state-space model of the form 

Determine and in terms of previously specified quantities. B f g, 

constraints, if any, on and must be satisfied to make the error evolution equation � �1 2 

asymptotically stable. In particular, would the choice = 0 allow you to obtain a good �2

3If you have done things correctly, you should find that choosing makes the matrix � = −1 4
3in part (d) a diagonal matrix. , and also B Keep fixed at for the rest of this problem� −1 

is chosen so that the error evolution equation is asymptotically stable (you should �assume 2
3find that this is possible by proper choice of , even with ).� � = −2 1 4 

(f) (4 points) Under the preceding assumption of asymptotic stability, and assuming that 
the system and the observer have been running since , it turns out that the = −∞n 

2 2mean-squared estimation errors ( [ ]) and ( [ ]) attain constant steady-state values E E� �q n q n
2 2at any finite ; denote these constant values by and respectively. Find explicit σ σn q
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(e) (5 points) Is it possible to arbitrarily vary the natural frequencies of the state estimation 
error evolution equation in (d) by controlling the observer gains �1 and �2? Explicitly 
note how your answer here is consistent with your answer to (a)(iv). Also specify what 

state estimate? — explain. 

1 2


1 
2 2expressions for andσ σq1q


E(q�12[n + 1]) = E(q�12[n]) and E(q�22[n + 1]) = E(q�22[n]).] 
, expressing them as functions of �2. [Hint: At steady state, 2
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Problem 4 (20 points) 

Assume we have to decide between hypotheses H0 and H1 based on a measured random 
variable X. The conditional densities for X given H0 and H1 respectively are shown Figure 4. 

6 
f(x|H0) f(x H1)

6 
|

1 
2 

1 
4 

- -
2 x −1 1 x−2 

Figure 4: The conditional densities for X given H0 and H1. 

We would like to design a decision rule that will maximize the conditional probability of 
“detection” PD = P (‘H1 ’ H1), subject to the conditional probability of “false alarm” PFA =|
P (‘H1 ’ H0) not exceeding some limit β. The Neyman-Pearson result tells us that the optimal |
test will, on obtaining the measurement X = x, compute the likelihood ratio 

Λ(x) = 
fX|H (x|H1) 
fX|H (x|H0) 

and announce ‘H1’ if Λ(x) > η, ‘H0’ if Λ(x) < η for some suitably chosen threshold η. However, 
as this problem shows, a closer look may be needed in the case where Λ(x) — or, more correctly, 
Λ(X) — can be exactly at the threshold η with a nonzero probability. 

(a) (4 points) Sketch Λ(x) as a function of x for −2 < x < 2. (You needn’t spend time 
wondering what Λ(x) is at the edges of the pdf’s or for x > 2, since the probability that | |
X will take any of these specific values is 0.) 

(b) (6 points) For η fixed at some value in each of the following ranges, specify the corre­
sponding PD and PFA: 

(i) η at some value strictly above 2; 
(ii) η at some value strictly between 0 and 2; 
(iii) η at some value strictly below 0. 

(c) (2 points) If the specified limit on PFA is β = 0.3, which of the choices in (b) can we pick, 
and what is the associated PD? 

The reason we don’t seem to be able to do too well in (c) is that with η restricted to the 
ranges in (b), we will only get three possible values of PFA, with the three values of PD that 
go along with these. In other words, the “receiver operating characteristic” (ROC) that plots 
PD as a function of PFA will only have three points on it. Here’s how to do better: 
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(d) (8 points) Suppose we choose η = 0. What is the probability that we get Λ(X) = 0 if H0 

holds? And what is the probability we get Λ(X) = 0 if H1 holds? 

With η = 0, we will of course never get Λ(x) < η (as the likelihood ratio in always 
nonnegative), but we might well get Λ(x) = η or Λ(x) > η. Suppose we announce ‘H0 ’ 
when Λ(x) = 0; however, when Λ(x) > 0 we shall announce ‘H1’ with probability α, and 
otherwise announce ‘H0’. What are PD and PFA with this randomized decision rule? 

Note how the choice of α can give you new points on the ROC, between the points you 
found in (b)(i) and (b)(ii). What choice of α will allow you to maximize PD while keeping 
PFA ≤ 0.3 with this decision rule? 
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Problem 5 (20 points) 

The diagram in Figure 5 represents a received signal r[n] as the sum of two components. 
Parts (a) and (b) of this problem have distinct specifications for what these two components 
are, so read the problem statements carefully! In both cases, assume the parameter µ that 
defines the transfer function K(z) is known to you, and satisfies the condition µ < 1.| | 

r[n]x[n] 
- + -- K(z) = 1 − µz−1 

6 

y[n] 

Figure 5: Generation of the received signal r[n]. 

(a) (10 points) Suppose x[n] is a signal that we are interested in, while y[n] is a zero-mean, 
i.i.d., Gaussian noise process, with variance σ2 at each instant of time. The block in 
the figure denotes a communication channel — modeled as LTI with transfer function 
K(z) = 1−µz−1 — through which x[n] has to pass. We have the following two hypotheses 
regarding the signal x[n]: 

H0 : x[n] = 0 , P (H0) = p0 , 

H1 : x[n] = δ[n] , P (H1) = p1 = 1 − p0 . 

You are to design a receiver that takes r[n] as input and decides between H0 and H1 with 
minimum probability of error (MPE). We have shown that optimum processing at the 
receiver involves the sequence of steps shown in Figure 6: LTI (but possibly noncausal) 
filtering of r[n] using a filter with unit sample response f [n]; sampling the output g[n] of 
the filter at some appropriate time n0; and deciding in favor of H0 or H1, based on where 
the sample value is relative to a threshold γ. 

‘H1 ’ 
r[n] g[n] � n = n0 - >- - < 

g[n0] 
Threshold γf [n], F (z) 

‘H0 ’ 

Figure 6: Structure of optimal receiver for this problem. 

(i) Fully specify the MPE receiver in Figure 6 when n0 = 0, i.e., specify f [n] or F (z) 
and the value of γ. 
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(ii) Write down an expression for P (‘H1 ’ H0) and for the minimum probability of error |
in the case where the two hypotheses are equally likely, p0 = p1. You can write these 
in terms of the standard function 

21 
� ∞ 

t

Q(α) = e− 
2 dt√

2π α 

(iii) If the value of µ is changed to a new value µ = µ/2, we can get the same probability 
of error as prior to the change if the noise variance changes to some new value σ2 . 
Express σ in terms of σ. 

(b) (10 points) Suppose now that x[n] in Figure 5 is a zero-mean, i.i.d., Gaussian noise process, 
with variance σ2 at each instant of time, and that y[n] is the signal we are interested in. 
We have the following two hypotheses regarding y[n]: 

H0 : y[n] = 0 , P (H0) = p0 , 

H1 : y[n] = δ[n] , P (H1) = p1 = 1 − p0 . 

Fully specify the MPE receiver in Figure 6 when n0 = 0, i.e., specify f [n] or F (z) and the 
value of γ for this case. Also write down (in terms of µ and σ) the relevant “signal energy 
to noise power” ratio that governs the performance of this system. Be sure to explain 
your reasoning throughout! 

10




MIT OpenCourseWare
http://ocw.mit.edu 

6.011  Introduction to Communication, Control, and Signal Processing 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

