
Problem Set 9: Schedule Optimization
Handed out: Lecture 18
Due: 11:59pm, Lecture 20.

Introduction
At an institute of higher education that shall be nameless, it used to be the case that a human
advisor would help each student formulate a list of subjects that would meet the student’s
objectives. However, because of financial troubles, the Institute has decided to replace human
advisors with software. Given the amount of work a student wants to do, the program returns a
list of subjects that maximizes the amount of value.

The goal of this problem set is to implement optimization algorithms.

You should submit 2 files for this problem set: your code in ps9.py, and a write-up in pdf format
called ps9_writeup.pdf.

Workload: Please let us know how long you spend on each problem. We want to be careful not
to overload you by giving out problems that take longer than we anticipated.

Getting Started

Download and save

Download the files in the zip folder containing all the files you need, including:

• ps9.py, the skeleton you’ll fill in for Problems 1-5.
• ps9_test.py, some code to help you test your solution.
• subjects.txt, the list of subjects with value and work information.
• shortened_subjects.txt, a shortened version of subjects.txt.

Problem 1: Building A Subject Dictionary
The first step is to implement loadSubjects in ps9.py, which loads a list of subjects from a
file. Each line of the file contains a string of the form “name,value,work”, where the name is a
string, the value is an integer indicating how much a student learns by taking the subject, and the
work is an integer indicating the number of hours a student must spend to pass the subject.
loadSubjects should return a dictionary mapping subject names to tuples, where the tuples are
pairs of (learning value, work hours) integers.

def loadSubjects(filename):
 """
 Returns a dictionary mapping subject name to (value, work),

 where the name is a string and the value and work are integers.
 The subject information is read from the file named by the string
 filename. Each line of the file contains a string of the form
 "name,value,work".

 returns: dictionary mapping subject name to (value, work)
 """
 # The following sample code reads lines from the specified file
 # and prints each one.
 inputFile = open(filename)
 for line in inputFile:
 print line

 # TODO: Instead of printing each line, modify the above to parse
 # the name, value, and work of each subject and create a
 # dictionary mapping the name to the (value, work).

You can think of the dictionary returned by loadSubjects as a representation of the full subject
catalog. In subsequent problems, we will use dictionaries of the same structure to represent
subject selections (subsets of the full subject catalog).

We’ve provided a function called printSubjects to neatly display the contents of such
dictionaries. Here is a sample output (truncated):

>>> subjects = loadSubjects(SUBJECT_FILENAME)
>>> printSubjects(subjects)
Course Value Work
====== ==== =====
10.00 1 20
10.01 2 20
10.02 1 16
10.03 6 19
10.04 3 13
10.15 8 13
[... TRUNCATED ...]
9.16 9 10
9.17 9 11
9.18 7 16
9.19 9 9

Total Value: 1804
Total Work: 3442

You may want to consider running your code on the smaller shortened_subjects.txt files so
that you have a simpler, more manageable set of subjects on which to test your functions.

Problem 2: Subject Selection By Greedy Optimization
The Institute hired you to implement the program. They asked you to implement a greedy
method (greedyAdvisor) to formulate a list of subjects that satisfies each student’s constraint
(the amount of work student is willing to do).

The algorithm should pick the “best” subjects first. The notion of “best” is determined by the use
of the comparator. The comparator is a function that takes two argument — each of which is a
(value, work) tuple — and returns a boolean indicating whether the first argument is “better”
than the second. Here, the definition of “better” can be altered by passing in different
comparators.

Implement the three comparators in ps9.py:

• cmpValue, which compares the values of the subjects
• cmpWork, which compares the workload of the subjects
• cmpRatio, which compares the value/work ratios of the subjects

Each comparator takes in two (value, work) tuples and returns True if the first tuple is better
than the second tuple, and False otherwise. Each comparator has its own definition of “better.”
Be sure to read and satisfy the specifications of each comparator.

For instance, if we’re given the following subject dictionary, smallCatalog, and a maximum of
15 hours of work:

name value work
{'6.00': (16, 8),
'1.00': (7, 7),
'6.01': (5, 3),
'15.01': (9, 6)}

If we were to use greedyAdvisor with the value comparator (look below to see what the
function’s arguments are):

>>> greedyAdvisor(smallCatalog, 15, cmpValue)

your function will use the comparator and select 6.00 first, then 15.01, and return the following
dictionary:

{'6.00': (16, 8), '15.01': (9, 6)}

The other subjects are not included because they would bring the total workload above the
maxWork limit.

If we were to use the work comparator:

>>> greedyAdvisor(smallCatalog, 15, cmpWork)

your function will select 6.01 followed by 15.01 and return:

{'6.01': (5, 3), '15.01': (9, 6)}

If we were to use the ratio comparator, your function would return:

>>> greedyAdvisor(smallCatalog, 15, cmpRatio)

your function will select 6.00 followed by 6.01 and return:

{'6.00': (16, 8), '6.01': (5, 3)}

Again, printSubjects can be used to neatly format the dictionary returned by greedyAdvisor:

>>> selected = greedyAdvisor(smallCatalog, 15, cmpRatio)
>>> printSubjects(selected)
Course Value Work
====== ==== =====
6.00 16 8
6.01 5 3

Total Value: 21
Total Work: 11

Implement greedyAdvisor in ps9.py:

def greedyAdvisor(subjects, maxWork, comparator):
 """
 Returns a dictionary mapping subject name to (value, work)
 which includes subjects selected by the algorithm, such
 that the total work of subjects in the dictionary is not
 greater than maxWork. The subjects are chosen using
 a greedy algorithm. The subjects dictionary should not
 be mutated.

 subjects: dictionary mapping subject name to (value, work)
 maxWork: int >= 0
 comparator: function taking two tuples and returning a bool
 returns: dictionary mapping subject name to (value, work)
 """
 # TODO...

Note: For any given input, there is not always a single (i.e. unique) right answer for the list of
subjects. For instance, multiple classes may have the same value and/or work – for example, the
query

>>> subjects = loadSubjects("shortened_subjects.txt")
>>> print greedyAdvisor(subjects, 7, cmpWork)

may output a few different results, such as

{'6.00': (10, 1), '6.17': (9, 3), '6.04': (1, 2)}

or

{'6.00': (10, 1), '6.12': (6, 3), '6.04': (1, 2)}

The ordering of your output doesn’t matter, as long as your results match the constraints – so an
output of {'6.00':(10,1), '6.04': (1,2)} for the above query wouldn’t be right, as it is still
possible to add another subject with the constraint of maxWork = 7.Finally, be sure to test your
greedy algorithm on the full subject data from the subjects.txt file.

Problem 3: Subject Selection By Brute Force
As we learned in lecture, a greedy algorithm does not always lead to the globally optimal
solution. One approach to finding the globally optimal solution is to use brute force to enumerate
all possible solutions and choose the one yielding the best value while satisfying the given
constraints.

Implement bruteForceAdvisor in ps9.py:

def bruteForceAdvisor(subjects, maxWork):
 """
 Returns a dictionary mapping subject name to (value, work), which
 represents the globally optimal selection of subjects using a brute force
 algorithm.

 subjects: dictionary mapping subject name to (value, work)
 maxWork: int >= 0
 returns: dictionary mapping subject name to (value, work)
 """
 # TODO...

For this problem, it may be useful to define and call some helper functions.

Do not worry about efficiency. This is a brute force algorithm after all. In fact, you will find that
running bruteForceAdvisor on the full subject data may take an extremely long time, or even
cause an OverflowError, depending on your implementation. You can test your code on
shortened_subjects.txt and small values of maxWork:

>>> subjects = loadSubjects("shortened_subjects.txt")
>>> print bruteForceAdvisor(subjects, 3)
{'6.00': (10, 1), '6.04': (1, 2)}
>>> print bruteForceAdvisor(subjects, 4)
{'6.00': (10, 1), '6.17': (9, 3)}
>>> print bruteForceAdvisor(subjects, 5)
{'6.00': (10, 1), '6.18': (10, 4)}
>>> print bruteForceAdvisor(subjects, 6)
{'6.00': (10, 1), '6.18': (10, 4)}
>>> print bruteForceAdvisor(subjects, 7)
{'6.00': (10, 1), '6.12': (6, 3), '6.17': (9, 3)}

Notice how the brute force algorithm returns better results than any of the greedy algorithms:

>>> subjects = loadSubjects("shortened_subjects.txt")
>>> print greedyAdvisor(subjects, 7, cmpValue)
{'6.00': (10, 1), '6.18': (10, 4), '6.04': (1, 2)}

>>> print greedyAdvisor(subjects, 7, cmpWork)
{'6.00': (10, 1), '6.17': (9, 3), '6.04': (1, 2)}
>>> print greedyAdvisor(subjects, 5, cmpRatio)
{'6.00': (10, 1), '6.17': (9, 3)}

However, a brute force algorithm takes a long time! Later in the course, we will discuss dynamic
programming, which is a way we can speed up these algorithms.

Problem 4: How efficient are these algorithms?
Answer the following questions in the file ps9_writeup.pdf:

1. What is the algorithmic complexity of greedyAdvisor?
2. What is the algorithmic complexity of bruteForceAdvisor?
3. Assuming 1 microsecond (1 microsecond = 1×10^-6 seconds) to compute the value of a

solution in bruteForceAdvisor, how much time in years (365 days per year) would it take
for bruteForceAdvisor to find an optimal solution for the following number of subjects:

1. 8 subjects?
2. 16 subjects?
3. 32 subjects?
4. 321 subjects (the number of courses in the problem set)?

Hand-In Procedure

1. Save

Save your solutions as ps9.py. Your writeup should be called ps9_writeup.pdf.

2. Time and Collaboration Info

At the start of each file, in a comment, write down the number of hours (roughly) you spent on
the problems in that part, and the names of the people you collaborated with. For example:

Problem Set 9
Name: Jane Lee
Collaborators: John Doe
Time: 3:30

... your code goes here ...

3. Sanity checks

After you are done with the problem set, do these sanity checks:

• Run the ps9.py file, and make sure it can be run without errors.
• Test your loadSubjects and make sure it can load the supplied subjects.txt.

• Run each function you’ve implemented and make sure they return what you think they
do.

Also, make sure that your writeup contains everything we’ve asked for.

MIT OpenCourseWare
http://ocw.mit.edu

6.00SC Introduction to Computer Science and Programming
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

