Topics Covered in 6.00SC Spring 2011

Linguistic issues

Values, types, expressions variables

Builtin types: int, float, string, list, dictionary, tuple

Mutability and aliasing

Control flow and iteration

Functions and methods

Input/output

Recursion and call stacks

Exceptions

Polymorphism

Classes, objects

Pylab

Algorithms

Big O notation

Exhaustive enumeration

Guess and check

Successive approximation

Newton's method

Divide and conquer algorithms

Binary search

Merge sort

Hashing

Orders of growth

Exponential

Polynomial

Linear

Log

Amortized analysis

Simulations and modeling

Random walks

Monte Carlo methods

Queuing network models

Graph-based models

Understanding data

Building computational models

Normal distributions, standard deviation, coefficient of variation,

Confidence interval, confidence level

Linear regressions

Plotting

Evaluating fits

Over fitting

Statistical sins

GIGO

Texas sharpshooter Data enhancement

Non-representative sample cum hoc ergo propter hoc

Optimization problems

Knapsack

Shortest path

Dynamic programming

Machine learning

Supervised learning, basic idea Unsupervised learning, clustering

Hierarchical

k-means

Software engineering

Debugging and testing

Data abstraction and inheritance

Program organization

Specifications

Anything needed to successfully complete problem sets

MIT OpenCours	seWare
http://ocw.mit.ed	du

6.00SC Introduction to Computer Science and Programming Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.