

6.00 Quiz 3, Spring 2011 --
 Name

1. _______/15

2. _______/10

3. _______/15

4. _______/18

5. _______/5

6. _______/17

7. _______/5

8. _______/5

9. _______/10

Total ______ /100

This quiz is open book and open notes, but do not use a computer (or cell phone!). You have 120
minutes.

Please write your name on the top of each page. Answer all questions in the boxes provided.

1) Are each of the following True or False? (15 points)

1.1. Dynamic programming provides an O(n) solution to the 0/1 knapsack problem, where n
is the number of items to be considered.

1.2. K-means clustering is more computationally efficient than hierarchical clustering.

1.3. The depth of a decision tree is related to the number of independent decisions it records.

1.4. Hierarchical clustering is deterministic, but k-means clustering is not.

1.5. When used to find a root of a polynomial, Newton’s method converges in O(log(n))
iterations, where n is the degree of the polynomial.

1

6.00 Quiz 3, Spring 2011 --
 Name

2) Replace the “?” in the code below by an expression that guarantees that if the first assert does not
raise an exception, the second assert will not raise an exception. The expression should not include a
call to comp. (10 points)

def comp(s):
res = 0
for c1 in s:

res += 2

for c2 in s:

res -= 1

return res

assert type(s) == str
assert comp(s) == ?

2

6.00 Quiz 3, Spring 2011 --
 Name

3) Consider the following code.

def throwNeedles(fcn, numNeedles = 100000):
inCircle = 0
estimates = []
for Needles in xrange(1, numNeedles + 1, 1):

x = fcn(0, 1)
y = fcn(0, 1)
if (x*x + y*y) <= 1.0:

inCircle += 1
return 4*(inCircle/float(numNeedles))

print throwNeedles(random.uniform)
print throwNeedles(random.gauss)
print throwNeedles(random.random)

3.1. With high probability, it will first print a value that is approximately equal to
a. 0.5*pi
b. pi
c. 2*pi
d. 4*pi
e. None of the above

3.2. With high probability, it will next print a value that is
a. less than the first value printed
b. about equal to the first value printed
c. greater than the first value printed

3.3. With high probability, it will next print a value that is approximately equal to
a. 0.5*pi
b. pi
c. 2*pi
d. 4*pi
e. None of the above

(15 points)

3

6.00 Quiz 3, Spring 2011 --
 Name

4) Next to each item in the left column write the letter labeling the item in the right column that best matches
the item in the left column. No item in the right column should be used more than once. (18 points)

objective function a) digraph

confidence interval b) undirected graph

depth first search c) local optima

hierarchical clustering d) linkage criterion

greedy algorithm e) unit testing

feature vector f) backtracking

 g) optimization

h) standard deviation

 i) normalization

4

6.00 Quiz 3, Spring 2011 --
 Name

5) To get a sense of the quality of its dormitories, MIT surveyed all students living in a dorm. This
is an example of (select one): (5 points)

a) The Texas sharpshooter fallacy

b) Sample bias

c) GIGO

d) A well-designed study

The following questions all refer to the code you were asked to study in preparation for this exam. A
copy of the posted code is at the end of this quiz. Feel free to detach it.

5

6.00 Quiz 3, Spring 2011 --
 Name

6.1) Ryan believes that if a LIFO queue were used at the bus stops, the average wait time for buses
with a small capacity would decline. Implement a class LIFO and indicate what you modification
you would make elsewhere in the code to test Ryan’s conjecture. (10 points)

6

6.00 Quiz 3, Spring 2011 --
 Name

6.2) Do you believe Ryan’s conjecture? Why or why not? (7 points)

7

6.00 Quiz 3, Spring 2011 --
 Name

7) If a bus leaves a stop with 5 passengers on it, how many passengers will get off at the next stop?
Hint: The answer is an integer in range(6). (5 points)

8) Indicate how you would modify simBus so that it returns the ratio of the total number of
passengers carried to the total number of passengers who arrive at bus stops but never board a bus.
(5 points)

8

6.00 Quiz 3, Spring 2011 --
 Name

9) Match each of the plots below with a test that could have produced it, assuming that the statement
pylab.legend(loc = 'best') were removed from test. You may not use the same plot
more than once. (10 points)

test([20], [0], 20)

test([0], [20], 20)

test([1], [200], 1)

A B

C D

9

6.00 Quiz 3, Spring 2011 --
 Name

import random, pylab, math

class Job(object):
def __init__(self, meanArrival, meanWork):

#arrival rate of jobs
self.arrival = random.expovariate(1.0/meanArrival)
#time required to perform job, other distributions worth considering
self.wk = random.gauss(meanWork, meanWork/2.0)
#Next attribute used to keep track of waiting time for job
self.timeQueued = None

def interArrival(self):

return self.arrival

def work(self):

return self.wk

def queue(self, time):

self.timeQueued = time

def queuedTime(self):

return self.timeQueued

class Passenger(Job):
#Arrival rate is for passenger to arrive at bus stop
#Work is time for passenger to board bus
pass

class JobQueue(object):
def __init__(self):

self.jobs = []
def arrive(self, job):

self.jobs.append(job)
def length(self):

return len(self.jobs)

class FIFO(JobQueue):
def depart(self):

try:
return self.jobs.pop(0)

except:

print 'depart called with an empty queue'

raise ValueError('EmptyQueue')

class SRPT(JobQueue):
def depart(self):

try:

leastIndx = 0

for i in range(len(self.jobs)):

if self.jobs[i].work < self.jobs[leastIndx].work:
leastIndx = i

return self.jobs.pop(leastIndx)
except:

print 'depart called with an empty queue'

raise ValueError('EmptyQueue')

class BusStop(FIFO):
pass

10

6.00 Quiz 3, Spring 2011 --
 Name

class Bus(object):
def __init__(self, capacity, speed):

self.cap = capacity
self.speed = speed
self.onBus = 0

def getSpeed(self):
return self.speed

def getLoad(self):
return self.onBus

def enter(self):
if self.onBus < self.cap:

self.onBus +=1
else:

raise ValueError('full')
def leave(self):

if self.onBus > 0:
self.onBus -= 1

def unload(self, num):
while num > 0:

self.leave()
num -= 1

11

6.00 Quiz 3, Spring 2011 --
 Name

def simBus(bus, numStops = 6, loopLen = 1200, meanArrival = 90,
meanWork = 10, simTime = 50000):

assert loopLen%numStops == 0

stops = []

for n in range(numStops):

stops.append(BusStop())

time, totWait, totPassengers, lastArrival = [0.0]*4

aveWaitTimes = []

nextStop, busLoc, time = [0]*3

nextJob = Passenger(meanArrival, meanWork)

while time < simTime:

#advance time and move bus

time += 1

for i in range(bus.getSpeed()):

busLoc += 1
if (busLoc)%(loopLen/numStops) == 0:

break
#see if there is a passenger waiting to enter queue
if lastArrival + nextJob.interArrival() <= time:

#passengers arrive simultaneously at each stop
for stop in stops:

stop.arrive(nextJob)
nextJob.queue(time)
lastArrival = time
nextJob = Passenger(meanArrival, meanWork)

#see if bus is at a stop
if (busLoc)%(loopLen/numStops) == 0:

#some passengers get off bus
bus.unload(math.ceil(bus.getLoad()/float(numStops)))
#all passengers who arrived prior to the bus's arrival
#attempt to enter bus
while stops[nextStop%numStops].length() > 0:

try:

bus.enter()

except:

break

p = stops[nextStop%numStops].depart()
totWait += time - p.queuedTime()
totPassengers += 1
time += p.work() #advance time, but not bus

try:
aveWaitTimes.append(totWait/totPassengers)

except ZeroDivisionError:
aveWaitTimes.append(0.0)

#passengers might have arrived at stops while bus is loading
while lastArrival + nextJob.interArrival() <= time:

for stop in stops:
stop.arrive(nextJob)

nextJob.queue(time)
lastArrival += nextJob.interArrival()
nextJob = Passenger(meanArrival, meanWork)

nextStop += 1

leftWaiting = 0

for stop in stops:

leftWaiting += stop.length()

return aveWaitTimes, leftWaiting

12

6.00 Quiz 3, Spring 2011 --
 Name

def test(capacities, speeds, numTrials):
random.seed(0)
for cap in capacities:

for speed in speeds:
totWaitTimes = pylab.array([0.0]*500) #keep track of 1st 500 stops
totLeftWaiting = 0.0
for t in range(numTrials):

aveWaitTimes, leftWaiting = simBus(Bus(cap, speed))
totWaitTimes += pylab.array(aveWaitTimes[:500])
totLeftWaiting += leftWaiting

aveWaitTimes = totWaitTimes/numTrials

leftWaiting = int(totLeftWaiting/numTrials)

lab = 'Spd = ' + str(speed) + ', Cap = ' + str(cap)\

+ ', Left = ' + str(leftWaiting)
pylab.plot(aveWaitTimes, label = lab)

pylab.xlabel('Stop Number')

pylab.ylabel('Aggregate Average Wait Time')

pylab.title('Impact of Bus Speed and Capacity')

ymin, ymax = pylab.ylim()

if ymax - ymin > 200:

pylab.semilogy()

pylab.ylim(ymin = 1.0)

pylab.legend(loc = 'best')

13

MIT OpenCourseWare
http://ocw.mit.edu

6.00SC Introduction to Computer Science and Programming
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

