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6.00 Notes On Big-O Notation 
Sarina Canelake 

See also http://en.wikipedia.org/wiki/Big O notation 

•	 We use big-O notation in the analysis of algorithms to describe an algorithm’s usage 
of computational resources, in a way that is independent of computer architecture or 
clock rate. 

•	 The worst case running time, or memory usage, of an algorithm is often expressed as 
a function of the length of its input using big O notation. 

–	 In 6.00 we generally seek to analyze the worst-case running time. However it is 
not unusual to see a big-O analysis of memory usage. 

–	 An expression in big-O notation is expressed as a capital letter “O”, followed by 
a function (generally) in terms of the variable n, which is understood to be the 
size of the input to the function you are analyzing. 

–	 This looks like: O(n). 

–	 If we see a statement such as: f(x) is O(n) it can be read as “f of x is big Oh 
of n”; it is understood, then, that the number of steps to run f(x) is linear with 
respect to |x|, the size of the input x. 

•	 A description of a function in terms of big O notation only provides an upper bound 
on the growth rate of the function. 

–	 This means that a function that is O(n) is also, technically, O(n2), O(n3), etc 

–	 However, we generally seek to provide the tightest possible bound. If you say an 
algorithm is O(n3), but it is also O(n2), it is generally best to say O(n2). 

•	 Why do we use big-O notation? big-O notation allows us to compare different ap­
proaches for solving problems, and predict how long it might take to run an algorithm 
on a very large input. 

With big-O notation we are particularly concerned with the scalability of our functions. 
big-O bounds may not reveal the fastest algorithm for small inputs (for example, 
remember that for x < 0.5, x3 < x2) but will accurately predict the long-term behavior 
of the algorithm. 

–	 This is particularly important in the realm of scientific computing: for example, 
doing analysis on the human genome or data from Hubble involves input (arrays 
or lists) of size well into the tens of millions (of base pairs, pixels, etc). 
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–	 At this scale it becomes easy to see why big O notation is helpful. Say you’re run­
ning a program to analyze base pairs and have two different implementations: one 
is O(n lg n) and the other is O(n3). Even without knowing how fast of a computer 
you’re using, it’s easy to see that the first algorithm will be n3/(n lg n) = n2/ lg n 
faster than the second, which is a BIG difference at input that size. 

big-O notation is widespread wherever we talk about algorithms. If you take any 
Course 6 classes in the future, or do anything involving algorithms in the future, you 
will run into big-O notation again. 

•	 Some common bounds you may see, in order from smallest to largest: 

–	 O(1): Constant time. O(1) = O(10) = O(2100) - why? Even though the constants 
are huge, they are still constant. Thus if you have an algorithm that takes 2100 

discreet steps, regardless of the size of the input, the algorithm is still O(1) - it 
runs in constant time; it is not dependent upon the size of the input. 

–	 O(lg n): Logarithmic time. This is faster than linear time; O(log10 n) = O(ln n) = 
O(lg n) (traditionally in Computer Science we are most concerned with lg n, which 
is the base-2 logarithm – why is this the case?). The fastest time bound for search. 

–	 O(n): Linear time. Usually something when you need to examine every single 
bit of your input. 

–	 O(n lg n): This is the fastest time bound we can currently achieve for sorting a 
list of elements. 

–	 O(n2): Quadratic time. Often this is the bound when we have nested loops. 

–	 O(2n): Really, REALLY big! A number raised to the power of n is slower than 
n raised to any power. 

•	 Some questions for you: 

1. Does O(100n2) = O(n2)? 

2. Does O(1
4
n3) = O(n3)? 

3. Does O(n) + O(n) = O(n)? 

The answers to all of these are Yes! Why? big-O notation is concerned with the long-
term, or limiting, behavior of functions. If you’re familiar with limits, this will make 
sense - recall that 

lim x2 = lim 100x2 = ∞ 
x→∞ x→∞ 

basically, go out far enough and we can’t see a distinct ion between 100x2 and x2 . So, 
when we talk about big-O notation, we always drop coefficient multipliers - because 
they don’t make a difference. Thus, if you’re analysing your function and you get that 
it is O(n) + O(n), that doesn’t equal O(2n) - we simply say it is O(n). 

2 



6.00 Notes on Big-O Notation
 

One more question for you: Does O(100n2 + 
4
1n3) = O(n3)? 

Again, the answer to this is Yes! Because we are only concerned with how our algorithm 
behaves for very large values of n, when n is big enough, the n3 term will always 
dominate the n2 term, regardless of the coefficient on either of them. 

In general, you will always say a function is big-O of its largest factor - for example, 
if something is O(n2 + n lg n + 100) we say it is O(n2). Constant terms, no matter 
how huge, are always dropped if a variable term is present - so O(800 lg n + 73891) = 
O(lg n), while O(73891) by itself, with no variable terms present, is O(1). 

See the graphs generated by the file bigO plots.py for a more visual explanation of 
the limiting behavior we’re talking about here. Figures 1, 2, and 3 illustrate why we 
drop coefficients, while figure 4 illustrates how the biggest term will dominate smaller 
ones. 

Now you should understand the What and the Why of big-O notation, as well as How we 
describe something in big-O terms. But How do we get the bounds in the first place?? Let’s 
go through some examples. 

1. We consider all mathematical operations to be constant time (O(1)) operations. So 
the following functions are all considered to be O(1) in complexity: 

def inc(x):
 
return x+1
 

def mul(x, y):
 
return x*y
 

def foo(x):
 
y = x*77.3
 
return x/8.2
 

def bar(x, y):
 
z = x + y
 
w = x * y
 
q = (w**z) % 870
 
return 9*q
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2. Functions containing for loops that go through the whole input are generally	 O(n). 
For example, above we defined a function mul that was constant-time as it used the 
built-in Python operator *. If we define our own multiplication function that doesn’t 
use *, it will not be O(1) anymore: 

def mul2(x, y):
 
result = 0
 
for i in range(y):
 

result += x
 
return result
 

Here, this function is O(y) - the way we’ve defined it is dependent on the size of the 
input y, because we execute the for loop y times, and each time through the for loop 
we execute a constant-time operation. 

3. Consider the following code: 

def factorial(n):
 
result = 1
 
for num in range(1, n+1):
 

result *= num
 
return num
 

What is the big-O bound on factorial? 

4. Consider the following code: 

def factorial2(n):
 
result = 1
 
count = 0
 
for num in range(1, n+1):
 

result *= num
 
count += 1
 

return num
 

What is the big-O bound on factorial2? 

4
 



6.00 Notes on Big-O Notation
 

5. The complexity of conditionals depends on what the condition is.	 The complexity 
of the condition can be constant, linear, or even worse - it all depends on what the 
condition is. 

def count_ts(a_str):
 
count = 0
 
for char in a_str:
 

if char == ’t’:
 
count += 1
 

return count
 

In this example, we used an if statement. The analysis of the runtime of a conditional 
is highly dependent upon what the conditional’s condition actually is; checking if one 
character is equal to another is a constant-time operation, so this example is linear 
with respect to the size of a str. So, if we let n = |a str|, this function is O(n). 

Now consider this code: 

def count_same_ltrs(a_str, b_str):
 
count = 0
 
for char in a_str:
 

if char in b_str:
 
count += 1
 

return count
 

This code looks very similar to the function count ts, but it is actually very different! 
The conditional checks if char in b str - this check requires us, in the worst case, to 
check every single character in b str! Why do we care about the worst case? Because 
big-O notation is an upper bound on the worst-case running time. Sometimes analysis 
becomes easier if you ask yourself, what input could I give this to achieve the maximum 
number of steps? For the conditional, the worst-case occurs when char is not in b str 
- then we have to look at every letter in b str before we can return False. 

So, what is the complexity of this function? Let n = |a str| and m = |b str|. Then, 
the for loop is O(n). Each iteration of the for loop executes a conditional check that 
is, in the worst case, O(m). Since we execute an O(m) check O(n) time, we say this 
function is O(nm). 
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6. While loops: With while loops you have to combine the analysis of a conditional with 
one of a for loop. 

def factorial3(n):
 
result = 1
 
while n > 0:
 

result *= n
 
n -= 1
 

return result
 

What is the complexity of factorial3? 

def char_split(a_str):
 
result = []
 
index = 0
 
while len(a_str) != len(result):
 

result.append(a_str[index])
 
index += 1
 

return result
 

In Python, len is a constant-time operation. So is string indexing (this is because
 
strings are immutable) and list appending. So, what is the time complexity of char split?
 

If you are curious, there is a little more information on Python operator complexity
 
here:
 
http://wiki.python.org/moin/TimeComplexity - some notes: (1) CPython just
 
means “Python written in the C language”. You are actually using CPython. (2)
 
If you are asked to find the worst-case complexity, you want to use the Worst Case
 
bounds. (3) Note that operations such as slicing and copying aren’t O(1) operations.
 

7. Nested for loops - anytime you’re dealing with nested loops, work from the inside out. 
Figure out the complexity of the innermost loop, then go out a level and multiply (this 
is similar to the second piece of code in Example 5). So, what is the time complexity 
of this code fragment, if we let n = |z|? 

result = 0
 
for i in range(z):
 

for j in range(z):
 
result += (i*j)
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8. Recursion. Recursion can be tricky to figure out; think of recursion like a tree. If the 
tree has lots of branches, it will be more complex than one that has very few branches. 

Consider recursive factorial: 

def r_factorial(n):
 
if n <= 0:
 

return 1
 
else:
 

return n*r_factorial(n-1)
 

What is the time complexity of this? The time complexity of r factorial will be 
dependent upon the number of times it is called. If we look at the recursive call, we 
notice that it is: r factorial(n-1). This means that, every time we call r factorial, 
we make a recursive call to a subproblem of size n − 1. So given an input of size n, we 
make the recursive call to subproblem of size n − 1, which makes a call to subproblem 
of size n − 2, which makes a call to subproblem of size n − 3, . . . see a pattern? We’ll 
have to do this until we make a call to n − n = 0 before we hit the base case - or, n 
calls. So, r factorial is O(n). There is a direct correlation from this recursive call 
to the iterative loop for i in range(n, 0, -1). 

In general, we can say that any recursive function g(x) whose recursive call is on a 
subproblem of size x − 1 will have a linear time bound, assuming that the rest of the 
recursive call is O(1) in complexity (this was the case here, because the n* factor was 
O(1)). 

How about this function? 

def foo(n):
 
if n <= 1:
 

return 1
 
return foo(n/2) + 1
 

In this problem, the recursive call is to a subproblem of size n/2. How can we visualize 
this? First we make a call to a problem of size n, which calls a subproblem of size 
n/2, which calls a subproblem of size n/4, which calls a subproblem of size n/(23), . . . 
See the pattern yet? We can make the intuition that we’ll need to make recursive calls 
until n = 1, which will happen when n/2x = 1. 

So, to figure out how many steps this takes, simply solve for x in terms of n:
 

n
 
= 1 

2x 

n = 2x 

log2n = log2(2
x) 

∴ x = log2n 
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So, it’ll take log2 n steps to solve this recursive equation. In general, we can say that 
if a recursive function g(x) makes a recursive call to a subproblem of size x/b, the 
complexity of the function will be logb n. Again, this is assuming that the remainder 
of the recursive function has complexity of O(1). 

Finally, how do we deal with the complexity of something like Fibonacci? The recursive 
call to Fibonacci is fib(n) = fib(n − 1) + fib(n − 2). This may initially seem linear, 
but it’s not. If you draw this in a tree fashion, you get something like: 

The depth of this tree (the number of levels it has) is n, and at each level we see a 
branching factor of two (every call to fib generates two more calls to fib). Thus, a loose 
bound on fib is O(2n). In fact, there exists a tighter bound on Fibonacci involving the 
Golden Ratio; Google for “Fibonacci complexity” to find out more if you’re interested 
in maths : D 
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