
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm
http://ocw.mit.edu/

6.006 Recitation

Build 2008.22

6.006 Proudly Presents

• Graph Traversal

• BFS

• DFS

• Topological Sorting

Breadth-First Search
a.k.a. BFS (not BFG)

• Fix your source

• Visit all the neighbors

• Then visit all the
neighbors’ neighbors

• Then all the neighbors’

neighbors’ neighbors’

• ...

1

2 3

54 7

8

6

9 10 11

BFS in Python: Design

• Use the graph module
shown before, and
Python’s deque

• Encapsulate traversal
data in a class, return at
the end of the traversal

• Implement traversal as
stand-alone function

 1 from graph import *
 2 from collections import deque
3
4 class BFSResults:
 5 def __init__(self):
 6 self.level = dict()
7 self.parent = dict()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

BFS in Python: Code

def bfs(g, s):

r = BFSResults()

actives = deque()

actives.append(s)

r.parent[s] = None

r.level[s] = 0

while len(actives):

v = actives.popleft()

for n in g.neighbors(v):

if n not in r.parent:

r.parent[n] = v

r.level[n] = r.level[v] + 1

actives.append(n)

return r

Depth-First Search
a.k.a. Backtracking

• Fix your source

• Move to its first
neighbor

• Then to that guy’s first
neighbor

• ...

• When stuck, backtrack
and visit next neighbor

1

2 9

63 11

4

10

5 7 8

DFS in Python: Design

• Use the graph module
shown before

• Encapsulate traversal
data in a class, return at
the end of the traversal

• Implement traversal as
stand-alone function

 1 from graph import *
 2
 3 class DFSResults:
 4 def __init__(self):
5 self.parent = dict()
 6 self.time = dict()
7 self.vertices = list()
 8 self.t = 0

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

DFS in Python: Code

def dfs(g):

results = DFSResults()

for vertex in g.itervertices():

if vertex not in results.parent:

dfs_visit(g, vertex, results)

return results

def dfs_visit(g, v, results, parent = None):

results.vertices.append(v)

results.parent[v] = parent

for n in g.neighbors(v):

if n not in results.parent:

dfs_visit(g, n, results, v)

results.t += 1

results.time[v] = results.t

DFS and CLRS Colors

Color Meaning

White
(not visited)

vertex not in parents

Gray
(visiting)

vertex in parents and
vertex not in time

Black
(visited)

vertex in time

Application:

Porting BFS and DFS to

a New Platform

Disclaimers

(Please Don’t Sue Me!)

• You may close your eyes and cover your

ears if you find this material offensive

• If you are under 13 and your mommy
doesn’t allow you on the Internet: please
close your eyes

• Under 18: please don’t use this knowledge
to do something inappropriate for your age

Stalking Hotties on

Facebook

• Our Platform: Firefox 3.0b4

• any browser with tabs would do

• Profiles + Friendship = Graph

• Our mission:

• apply DFS and BFS to the fine art of
stalking hot boys/babes on Facebook

Hueihan’s Heuristic

• “Hot boys have hot friends”

• Heuristics are useful in huge graphs, with
multiple solutions

• Goal: avoid visiting most of the graph

• So we’ll only follow paths of hot* people

Facebook as Graph

• Traversal: go to ‘Friends’ to display all your
friends (like g.neighbors)

• BFS: the tabs are a queue - open all friends
profiles in new tabs, then close current tab
and go to the next one

• DFS: the history is a stack - open the first
hot friend profile in the same window;
when hitting a dead end, use back button

Topological Sorting

even your Course 15 friends know it

Topological Sorting

• Do a DFS on the graph,
record exiting times for
the nodes

• Sort the nodes in the
inverse order of the exit
times (just draw it!)

• A node is never
exited before a node
it points to is exited

 1 def topological_sort(graph):

 2 dfs_result = dfs(graph)

3 top = [None for i in

dfs_result.vertices]

4 count = len(dfs_result.vertices)

 5 for vertex in dfs_result.time:

 6 top[count -

dfs_result.time[vertex]] = vertex

7 return top

Topological Sorting

F

E

‘W

P

D

N T

W

Topological Sorting

F

E

`W

P

D

N T

W

F D N E P W `W T

6 1 3 2 5 4 8 7

`W T F P W N E D

Two-Way BFS

Discussion on Implementation

