
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 8 Sorting I: Heaps 6.006 Spring 2008

Lecture 8: Sorting I: Heaps

Lecture Overview

• Review: Insertion Sort and Merge Sort

Selection Sort •

• Heaps

Readings

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4

Sorting Review

Insertion Sort

5 2 4 6 1 3 52 4 6 1 3

21 3 4 5 6 42 5 6 1 3

42 5 6 1 321 4 5 6 3

key
θ(n2) algorithm

Figure 1: Insertion Sort Example

Merge Sort

Divide n-element array into two subarrays of n/2 elements each. Recursively sort sub-arrays
using mergesort. Merge two sorted subarrays.

1

Lecture 8 Sorting I: Heaps 6.006 Spring 2008

2 4 5 7 2 3 61

1 2 2 3 4 5 6 7

L

A

R

θ(n) time

θ(n) auxiliary
 space

2 4 5 7 2 3 61

A[1: n/2] A[n/2+1: n]

 want sorted A[1: n]
w/o auxiliary space??

Figure 2: Merge Sort Example

In-Place Sorting

Numbers re-arranged in the array A with at most a constant number of them sorted outside
the array at any time.

Insertion Sort: stores key outside array Θ(n2) in-place

Merge Sort: Need O(n) auxiliary space Θ(n lg n) during merging

Question: Can we have Θ(n lg n) in-place sorting?

Selection Sort

0. i = 1

1. Find minimum value in list beginning with i

2. Swap it with the value in ith position

3. i = i + 1, stop if i = n

Iterate steps 0-3 n times. Step 1 takes O(n) time. Can we improve to O(lg n)?

2

Lecture 8 Sorting I: Heaps 6.006 Spring 2008

2 1 5 4

21 5 4

21 5 4

21 4 5

i = 1

θ(n2) time
 in-place

Figure 3: Selection Sort Example

Heaps (Not garbage collected storage)

A heap is an array object that is viewed as a nearly complete binary tree.

16 14 8 7 9 3 2 4 110

1 2 3 4 5 6 7 8 9 10
10

16

14

8 7

1

2

5

3

4 9 376

2 498
1

Figure 4: Binary Heap

Data Structure

root A[i]
Node with index i

PARENT(i) = �2
i �

LEFT(i) = 2i
RIGHT(i) = 2i + 1

Note: NO POINTERS!

3

�

Lecture 8 Sorting I: Heaps 6.006 Spring 2008

length[A]: number of elements in the array

heap-size[A]: number of elements in the heap stored within array A

heap-size[A]: ≤ length[A]

Max-Heaps and Min-Heaps

Max-Heap Property: For every node i other than the root A[PARENT(i)] ≥ A[i]
Height of a binary heap O(lg n)

MAX HEAPIFY: O(lg n) maintains max-heap property

BUILD MAX HEAP: O(n) produces max-heap from unordered input array

HEAP SORT: O(n lg n)

Heap operations insert, extract max etc O(lg n).

Max Heapify(A,i)

l left(i)←
r right(i)←
if l ≤ heap-size(A) and A[l] > A[i]

then largest l←
else largest i←

if r ≤ heap-size(A) and A[r] > largest
then largest r←

if largest = i
then exchange A[i] and A[largest]

MAX HEAPIFY(A, largest)

This assumes that the trees rooted at left(i) and Right(i) are max-heaps. A[i] may be
smaller than children violating max-heap property. Let the A[i] value “float down” so
subtree rooted at index i becomes a max-heap.

4

Lecture 8 Sorting I: Heaps 6.006 Spring 2008

Example

10

16

4

14 7

1

2

5

3

4 9 376

2 898
1

10

16

14

4 7

1

2

5

3

4 9 376

2 98
1

10

16

14

8 7

1

2

5

3

4 9 376

2 498
1

10

8
10

10

MAX_HEAPIFY (A,2)
heap_size[A] = 10

Exchange A[2] with A[4]
Call MAX_HEAPIFY(A,4)
because max_heap property
is violated

Exchange A[4] with A[9]
No more calls

Figure 5: MAX HEAPIFY Example

5

