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Lecture 7: Hashing III: Open Addressing 

Lecture Overview 

•	 Open Addressing, Probing Strategies 

•	 Uniform Hashing, Analysis 

•	 Advanced Hashing 

Readings 

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested) 

Open Addressing 

Another approach to collisions 

no linked lists • 

•	 all items stored in table (see Fig. 1) 

item2

item1

item3

Figure 1: Open Addressing Table 

•	 one item per slot = ⇒ m ≥ n 

•	 hash function specifies order of slots to probe (try) for a key, not just one slot: (see 
Fig. 2) 

Insert(k,v) 

for i in xrange(m): 
if T [h(k, i)] is None: � empty slot 

T [h(k, i)] = (k, v) � store item 
return 

raise ‘full’ 

1 



Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008


h(k,3)

h(k,1)

h(k,4)
h(k,2)

k

<h(k,φ), h(k,1), . . . , h(k, m-1)> 
h: U x {φ,1, . . . , m-1}  {φ,1, . . . , m-1}  

permutation

all 
possible 
keys

which 
probe

slot to probe

Figure 2: Order of Probes 

Example: Insert k = 496 

collision
φ
1
2
3
4
5
6
7

m-1

collision
insert

586 , . . .
133 , . . .

204 , . . .
496 , . . .
481 , . . .

probe h(496, φ) = 4

probe h(496, 1) = 1
probe h(496, 2) = 5

Figure 3: Insert Example 

Search(k) 

for i in xrange(m): 
if T [h(k, i)] is None: � empty slot? 

return None � end of “chain” 
elif T [h(k, i)][φ] == k: � matching key 

return T [h(k, i)] � return item 
return None ˙ � exhausted table 
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Delete(k) 

•	 can’t just set T [h(k, i)] = None


example: delete(586) = search(496) fails
•	 ⇒ 

•	 replace item with DeleteMe, which Insert treats as None but Search doesn’t 

Probing Strategies 

Linear Probing 

h(k, i) = (h�(k) +i) mod m where h�(k) is ordinary hash function 

•	 like street parking 

•	 problem: clustering as consecutive group of filled slots grows, gets more likely to grow 
(see Fig. 4) 

h(k,m-1)
h(k,0)

h(k,2)
h(k,1)

;
;

;
.
.

;

Figure 4: Primary Clustering 

•	 for 0.01 < α < 0.99 say, clusters of Θ(lg n). These clusters are known


for α = 1, clusters of Θ(
√

n) These clusters are known
• 

Double Hashing 

h(k, i) =(h1(k) +i. h2(k)) mod m where h1(k) and h2(k) are two ordinary hash functions. 

•	 actually hit all slots (permutation) if h2(k) is relatively prime to m 

•	 e.g. m = 2r, make h2(k) always odd 

Uniform Hashing Assumption 

Each key is equally likely to have any one of the m! permutations as its probe sequence 

•	 not really true 

•	 but double hashing can come close 

3 



Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008


Analysis 

1
Open addressing for n items in table of size m has expected cost of ≤ 

1 − α 
per operation, 

where α = n/m(< 1) assuming uniform hashing 
Example: α = 90% = 10 expected probes ⇒ 

Proof: 

Always make a first probe.

With probability n/m, first slot occupied.

In worst case (e.g. key not in table), go to next.


With probability 
n − 1 

, second slot occupied. 
m − 1

n − 2
Then, with probability , third slot full. 

m − 2
Etc. (n possibilities) 

n
So expected cost = 1 + (1 + 

n − 1 
(1 + 

n − 2
( ) 

m m − 1 m − 2
· · · 

n
Now 

n − 1
= α for i = φ, , n(≤ m) 

m − 1 
≤ 

m 
· · · 

So expected cost ≤ 1 + α(1 + α(1 + α(· · · ))) 
= 1 + α + α2 + α3 + · · · 

1 
= 

1 − α 

Open Addressing vs. Chaining 

Open Addressing: better cache performance and rarely allocates memory 

Chaining: less sensitive to hash functions and α 
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Advanced Hashing 

Universal Hashing 

Instead of defining one hash function, define a whole family and select one at random 

•	 e.g. multiplication method with random a 

can prove Pr (over random h) {h(x) = h(y)} = 1 for every (i.e. not random) x = ym 

= O(1) expected time per operation without assuming simple uniform hashing! • ⇒
CLRS 11.3.3 

Perfect Hashing 

Guarantee O(1) worst-case search 

idea: if m = n2 then E[� collisions] ≈ 1 •	 2


= get φ after O(1) tries . . . but O(n2) space
⇒ 

•	 use this structure for storing chains 

k items => m = k
 

2

NO COLLISIONS

2 levels
[CLRS 11.5]

Figure 5: Two-level Hash Table

•	 can prove O(n) expected total space! 

•	 if ever fails, rebuild from scratch 
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