
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 7	 Hashing III: Open Addressing 6.006 Spring 2008

Lecture 7: Hashing III: Open Addressing

Lecture Overview

•	 Open Addressing, Probing Strategies

•	 Uniform Hashing, Analysis

•	 Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

Another approach to collisions

no linked lists •

•	 all items stored in table (see Fig. 1)

item2

item1

item3

Figure 1: Open Addressing Table

•	 one item per slot = ⇒ m ≥ n

•	 hash function specifies order of slots to probe (try) for a key, not just one slot: (see
Fig. 2)

Insert(k,v)

for i in xrange(m):
if T [h(k, i)] is None: � empty slot

T [h(k, i)] = (k, v) � store item
return

raise ‘full’

1

Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008

h(k,3)

h(k,1)

h(k,4)
h(k,2)

k

<h(k,φ), h(k,1), . . . , h(k, m-1)>
h: U x {φ,1, . . . , m-1} {φ,1, . . . , m-1}

permutation

all
possible
keys

which
probe

slot to probe

Figure 2: Order of Probes

Example: Insert k = 496

collision
φ
1
2
3
4
5
6
7

m-1

collision
insert

586 , . . .
133 , . . .

204 , . . .
496 , . . .
481 , . . .

probe h(496, φ) = 4

probe h(496, 1) = 1
probe h(496, 2) = 5

Figure 3: Insert Example

Search(k)

for i in xrange(m):
if T [h(k, i)] is None: � empty slot?

return None � end of “chain”
elif T [h(k, i)][φ] == k: � matching key

return T [h(k, i)] � return item
return None ˙ � exhausted table

2

Lecture 7	 Hashing III: Open Addressing 6.006 Spring 2008

Delete(k)

•	 can’t just set T [h(k, i)] = None

example: delete(586) = search(496) fails
•	 ⇒

•	 replace item with DeleteMe, which Insert treats as None but Search doesn’t

Probing Strategies

Linear Probing

h(k, i) = (h�(k) +i) mod m where h�(k) is ordinary hash function

•	 like street parking

•	 problem: clustering as consecutive group of filled slots grows, gets more likely to grow
(see Fig. 4)

h(k,m-1)
h(k,0)

h(k,2)
h(k,1)

;
;

;
.
.

;

Figure 4: Primary Clustering

•	 for 0.01 < α < 0.99 say, clusters of Θ(lg n). These clusters are known

for α = 1, clusters of Θ(
√

n) These clusters are known
•

Double Hashing

h(k, i) =(h1(k) +i. h2(k)) mod m where h1(k) and h2(k) are two ordinary hash functions.

•	 actually hit all slots (permutation) if h2(k) is relatively prime to m

•	 e.g. m = 2r, make h2(k) always odd

Uniform Hashing Assumption

Each key is equally likely to have any one of the m! permutations as its probe sequence

•	 not really true

•	 but double hashing can come close

3

Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008

Analysis

1
Open addressing for n items in table of size m has expected cost of ≤

1 − α
per operation,

where α = n/m(< 1) assuming uniform hashing
Example: α = 90% = 10 expected probes ⇒

Proof:

Always make a first probe.

With probability n/m, first slot occupied.

In worst case (e.g. key not in table), go to next.

With probability
n − 1

, second slot occupied.
m − 1

n − 2
Then, with probability , third slot full.

m − 2
Etc. (n possibilities)

n
So expected cost = 1 + (1 +

n − 1
(1 +

n − 2
()

m m − 1 m − 2
· · ·

n
Now

n − 1
= α for i = φ, , n(≤ m)

m − 1
≤

m
· · ·

So expected cost ≤ 1 + α(1 + α(1 + α(· · ·)))
= 1 + α + α2 + α3 + · · ·

1
=

1 − α

Open Addressing vs. Chaining

Open Addressing: better cache performance and rarely allocates memory

Chaining: less sensitive to hash functions and α

4

•	 �

Lecture 7	 Hashing III: Open Addressing 6.006 Spring 2008

Advanced Hashing

Universal Hashing

Instead of defining one hash function, define a whole family and select one at random

•	 e.g. multiplication method with random a

can prove Pr (over random h) {h(x) = h(y)} = 1 for every (i.e. not random) x = ym

= O(1) expected time per operation without assuming simple uniform hashing! • ⇒
CLRS 11.3.3

Perfect Hashing

Guarantee O(1) worst-case search

idea: if m = n2 then E[� collisions] ≈ 1 •	 2

= get φ after O(1) tries . . . but O(n2) space
⇒

•	 use this structure for storing chains

k items => m = k

2

NO COLLISIONS

2 levels
[CLRS 11.5]

Figure 5: Two-level Hash Table

•	 can prove O(n) expected total space!

•	 if ever fails, rebuild from scratch

5

