MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008

Lecture 7: Hashing III: Open Addressing

Lecture Overview

e Open Addressing, Probing Strategies
e Uniform Hashing, Analysis

e Advanced Hashing

Readings

CLRS Chapter 11.4 (and 11.3.3 and 11.5 if interested)

Open Addressing

e 10 linked lists

e all items stored in table (see Fig.

item,

item,

item,

Figure 1: Open Addressing Table

e one item per slot = m >n

e hash function specifies order of slots to probe (try) for a key, not just one slot: (see

Fig.
Insert(k,v)
for i in xrange(m):
if T[h(k,17)] is None: # empty slot
T[h(k,i)] = (k,v) f store item
return
raise ‘full’

Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008

<h(k,), h(k,1), . .., h(k, m-1)> <— permutation
h: 0Ux {¢,1,...,m-1} —> {o,1,...,m-1}
all /

possible which slot to probe
keys probe
h(k,3)
€ h(k,1)
h(k,4)
h(k,2)
Figure 2: Order of Probes
Example: Insert k£ = 496
¢
1 586, ... collision
2 133,...
probe h(496, @) =4 3
probe h(496, 1) =1 4 204, ... collision
probe h(496, 2) = 5 —>»5 496, ... msert
6 481, ...
7
m-1
Figure 3: Insert Example
Search(k)
for i in xrange(m):
if T[h(k,7)] is None: £ empty slot?
return None # end of “chain”
elif T[h(k,d)][¢] == k: # matching key
return T'[h(k,1)] # return item
return None " 1 exhausted table

Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008

Delete(k)
e can’t just set T'[h(k,i)] = None
o czample: delete(586) = search(496) fails

e replace item with DeleteMe, which Insert treats as None but Search doesn’t

Probing Strategies
Linear Probing

h(k,i) = (W' (k) +i) mod m where h/(k) is ordinary hash function

e problem: clustering as consecutive group of filled slots grows, gets more likely to grow
(see Fig. 4))

h(ki,m-l))

h(k,0)
h(k,1)
h(k,2)

Figure 4: Primary Clustering

e for 0.01 < a < 0.99 say, clusters of ©(lgn). These clusters are known

o for o =1, clusters of ©(y/n) These clusters are known

Double Hashing

h(k,i) =(h1(k) +i. ho(k)) mod m where hy(k) and hy(k) are two ordinary hash functions.

e actually hit all slots (permutation) if ho(k) is relatively prime to m

e c.g. m = 2" make hy(k) always odd

Uniform Hashing Assumption

Each key is equally likely to have any one of the m! permutations as its probe sequence

e not really true

e but double hashing can come close

Lecture 7 Hashing III: Open Addressing 6.006 Spring 2008

Analysis

1
Open addressing for n items in table of size m has expected cost of < 1o Per operation,
o

where a = n/m(< 1) assuming uniform hashing
Example: a = 90% = 10 expected probes

Proof:

Always make a first probe.
With probability n/m, first slot occupied.
In worst case (e.g. key not in table), go to next.

With probability ——
m _

-
Then, with probability Lz third slot full.
m —

T second slot occupied.

Etc. (n possibilities)

n n—1 n—2
S ted t = 1+ —(1 1
o expected cos +m(—i—m_l(+ _2()
—1
Now < _ afori=q¢,-- ,n(<m)

m—1"m
So expected cost < 14+ a(l+a(l+a(--+)))

l+a+a?+a®+--.
1

l—«

Open Addressing vs. Chaining

Open Addressing: better cache performance and rarely allocates memory

Chaining: less sensitive to hash functions and «

Lecture 7 Hashing III: Open Addressing

6.006 Spring 2008
Advanced Hashing

Universal Hashing

Instead of defining one hash function, define a whole family and select one at random

e e.g. multiplication method with random a

e can prove Pr (over random h) {h(z) = h(y)} = = for every (i.e. not random) z #y

= O(1) expected time per operation without assuming simple uniform hashing!
CLRS 11.3.3

Perfect Hashing

Guarantee O(1) worst-case search

~2

e idea: if m = n? then E[f collisions] ~ 1
= get ¢ after O(1) tries ...but O(n?) space

e use this structure for storing chains

o,

Pt iyt gy

kitems =>m=k’
NO COLLISIONS
Ll i

ARG,
ARG

L0l iy 1yl

AR,

AR

|2 levelsl

T 00,0, 0,0, [CLRS 11.5]

Figure 5: Two-level Hash Table

e can prove O(n) expected total space!

e if ever fails, rebuild from scratch

