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Lecture 6: Hashing II: Table Doubling, 

Karp-Rabin 

Lecture Overview 

•	 Table Resizing


Amortization
• 

•	 String Matching and Karp-Rabin 

•	 Rolling Hash 

Readings 

CLRS Chapter 17 and 32.2. 

Recall: 

Hashing with Chaining: 
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Figure 1: Chaining in a Hash Table 

Multiplication Method: 

h(k) = [(a k) mod 2w] � (w − r)· 
where m = table size = 2r 

w = number of bits in machine words 

a = odd integer between 2w−1 and 2w 
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Figure 2: Multiplication Method 

How Large should Table be? 

• want m = θ(n) at all times 

• don’t know how large n will get at creation 

m too small = slow; m too big = wasteful • ⇒ ⇒ 

Idea: 

Start small (constant) and grow (or shrink) as necessary. 

Rehashing: 

To grow or shrink table hash function must change (m, r) 

= must rebuild hash table from scratch ⇒ 
for item in old table:


insert into new table

= Θ(n + m) time = Θ(n) if m = Θ(n)
⇒ 

2




Lecture 6	 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008


How fast to grow? 

When n reaches m, say 

m + = 1? • 
= rebuild every step ⇒ 
= n inserts cost Θ(1 + 2 + + n) = Θ(n2)⇒	 · · · 

•	 m ∗ = 2? m = Θ(n) still (r+ = 1)

= rebuild at insertion 2i
⇒ 
= n inserts cost Θ(1 + 2 + 4 + 8 + + n) where n is really the next power of 2 ⇒	 · · · 
= Θ(n) 

•	 a few inserts cost linear time, but Θ(1) “on average”. 

Amortized Analysis 

This is a common technique in data structures - like paying rent: $ 1500/month ≈ $ 50/day 

•	 operation has amortized cost T (n) if k operations cost ≤ k · T (n) 

•	 “T (n) amortized” roughly means T (n) “on average”, but averaged over all ops. 

•	 e.g. inserting into a hash table takes O(1) amortized time. 

Back to Hashing: 

Maintain m = Θ(n) so also support search in O(1) expected time assuming simple uniform 
hashing 

Delete: 

Also O(1) expected time 

•	 space can get big with respect to n e.g. n× insert, n× delete 

solution: when n decreases to m/4, shrink to half the size = O(1) amortized cost •	 ⇒
for both insert and delete - analysis is harder; (see CLRS 17.4). 

String Matching 

Given two strings s and t, does s occur as a substring of t? (and if so, where and how many 
times?) 
E.g. s = ‘6.006’ and t = your entire INBOX (‘grep’ on UNIX) 
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Figure 3: Illustration of Simple Algorithm for the String Matching Problem 

Simple Algorithm: 

Any (s == t[i : i + len(s)] for i in range(len(t)-len(s))) 
- O(| s |) time for each substring comparison 
= ⇒ O(| s | ·(| t | − | s |)) time 
= O(| s | · | t |) potentially quadratic 

Karp-Rabin Algorithm: 

•	 Compare h(s) == h(t[i : i + len(s)]) 

•	 If hash values match, likely so do strings 

– can check s == t[i : i + len(s)] to be sure ∼ cost O(| s |) 

–	 if yes, found match — done 

–	 if no, happened with probability < 1


= expected cost is O(1) per i. 
|s|


⇒ 

need suitable hash function. • 

•	 expected time = O(| s | + | t | ·cost(h)). 

–	 naively h(x) costs | x | 

–	 we’ll achieve O(1)! 

–	 idea: t[i : i + len(s)] ≈ t[i + 1 : i + 1 + len(s)]. 

Rolling Hash ADT 

Maintain string subject to 

•	 h(): reasonable hash function on string 

•	 h.append(c): add letter c to end of string 

•	 h.skip(c): remove front letter from string, assuming it is c 
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Karp-Rabin Application: 

for c in s: hs.append(c)

for c in t[:len(s)]:ht.append(c)

if hs() == ht(): ...


This first block of code is O(| s |) 

for i in range(len(s), len(t)):

ht.skip(t[i-len(s)])

ht.append(t[i])

if hs() == ht(): ...


The second block of code is O(| t |) 

Data Structure: 

Treat string as a multidigit number u in base a where a denotes the alphabet size. E.g. 256 

•	 h() = u mod p for prime p ≈| s | or | t | (division method) 

•	 h stores u mod p and | u |, not u


= smaller and faster to work with (u mod p fits in one machine word)
⇒ 

•	 h.append(c): (u · a + ord (c)) mod p = [(u mod p) · a + ord (c)] mod p 

•	 h.skip(c): [u − ord (c) · (a|u|−1 mod p)] mod p


= [(u mod p) − ord (c) (a|u−1| mod p)] mod p
· 
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