MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 6 Hashing II: Table Doubling, Karp-Rabin

6.006 Spring 2008

Lecture 6:

Lecture Overview
e Table Resizing

e Amortization

Hashing II: Table Doubling,

Karp-Rabin

e String Matching and Karp-Rabin

e Rolling Hash

Readings
CLRS Chapter 17 and 32.2.

Recall:

Hashing with Chaining:

all possible
keys

(n)keys

in set DS

Cost: 0 (1+a)

Multiplication Method:

h(k)
where m
w

a

table coI:iZsions
. Ly . > . »
k, k, K,
. —> expected size
m) slots k, (@)=n/m

Figure 1: Chaining in a Hash Table

= [(a-k) mod 2] > (w —r)
= table size =2"
= number of bits in machine words

= odd integer between 21 and 2v

Lecture 6 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

w
k Al
X a =
ignore keep ignore +
W ~~ N —
r W-T product

lots of mixing
as sum

Figure 2: Multiplication Method

How Large should Table be?

e want m = 6(n) at all times
e don’t know how large n will get at creation

e m too small = slow; m too big =— wasteful

Idea:

Start small (constant) and grow (or shrink) as necessary.

Rehashing:

To grow or shrink table hash function must change (m,r)

—> must rebuild hash table from scratch
for item in old table:
insert into new table
= O(n+m) time = O(n) if m = O(n)

Lecture 6 Hashing II: Table Doubling, Karp-Rabin 6.006 Spring 2008

How fast to grow?

When n reaches m, say

e m+ =17
— rebuild every step
= n inserts cost O(1 +2+ - +n) = O(n?)

e mx =27 m=0(n)stil (r+=1)
= rebuild at insertion 2°
= n inserts cost ©(1 +2+ 4+ 8+ --- + n) where n is
= 0O(n)

e a few inserts cost linear time, but ©(1) “on average”.

Amortized Analysis

e operation has amortized cost T'(n) if k operations cost < k- T'(n)
e “T'(n) amortized” roughly means T'(n) “on average”, but averaged over all ops.

e c.g. inserting into a hash table takes O(1) amortized time.

Back to Hashing:
Maintain m = ©(n) so also support search in O(1) expected time assuming simple uniform
hashing
Delete:
Also O(1) expected time
e space can get big with respect to n e.g. nx insert, nx delete
e solution: when n decreases to m/4, shrink to half the size = O(1) amortized cost
for both insert and delete - analysis is harder; (see CLRS 17.4).
String Matching

Given two strings s and ¢, does s occur as a substring of ¢? (and if so, where and how many
times?)
E.g. s = 6.006’ and t = your entire INBOX

Lecture 6 Hashing II: Table Doubling, Karp-Rabin

6.006 Spring 2008

Figure 3: Illustration of Simple Algorithm for the String Matching Problem

Simple Algorithm:
Any (s ==t[i : i+ len(s)| for i in range(len(t)-len(s)))
- O(] s |) time for each substring comparison
= O(ls[-(It]=1[s]) time
=O(s[-[t])
Karp-Rabin Algorithm:
e Compare h(s) == h(t[i : i + len(s)])

e If hash values match, likely so do strings

— can check s == t[i : i + len(s)] to be sure ~ cost O(| s |)

— if yes, found match — done

— if no, happened with probability <

ls

= expected cost is O(1) per i.
e need suitable hash function.
e expected time = O(] s | + | t | -cost(h)).
— naively h(z) costs | x |
— we'll achieve O(1)!
— idea: t[i:i+len(s)| ~tli+1:i+ 1+ len(s)].
Rolling Hash ADT

Maintain string subject to
° Q : reasonable hash function on string

e h.append(c): add letter ¢ to end of string

e h.skip(c): remove front letter from string, assuming it is ¢

Lecture 6 Hashing II: Table Doubling, Karp-Rabin

6.006 Spring 2008

Karp-Rabin Application:

for ¢ in s: hs.append(c)
for ¢ in t[:len(s)]:ht.append(c)
if hs(O == htO:

This first block of code is O(| s |)

for i in range(len(s), len(t)):
ht.skip(t[i-len(s)])
ht.append(t[i])
if hs() == ht():

The second block of code is O(| ¢ |)

Data Structure:

Treat string as a multidigit number u in base a where a denotes the alphabet size. E.g. 256

e h() = u mod p for prime p ~| s | or | ¢ | (division method)

e h stores w mod p and | u |, not u

= smaller and faster to work with (v mod p fits in one machine word)

e h.append(c): (u-a+ ord (¢)) mod p = [(u mod p) -a+ ord (c¢)] mod p

e h.skip(c): [u— ord (¢) - (a*=! mod p)] mod p
= [(u mod p) — ord () - (a*~ mod p)] mod p

