
MIT OpenCourseWare 
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms
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Lecture 4: Balanced Binary Search Trees 

Lecture Overview 

• The importance of being balanced 

AVL trees • 

– Definition 

– Balance 

– Insert 

Other balanced trees • 

• Data structures in general 

Readings 

CLRS Chapter 13. 1 and 13. 2 (but different approach: red-black trees) 

Recall: Binary Search Trees (BSTs) 

• rooted binary tree 

each node has • 

– key 

– left pointer 

– right pointer 

– parent pointer 

See Fig. 1 
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Figure 1: Heights of nodes in a BST 
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Figure 2: BST property 

•	 BST property (see Fig. 2). 

•	 height of node = length (� edges) of longest downward path to a leaf (see CLRS B.5 
for details). 

The Importance of Being Balanced: 

•	 BSTs support insert, min, delete, rank, etc. in O(h) time, where h = height of tree 
(= height of root). 

•	 h is between lg(n) and n: Fig. 3). 

vs.

Perfectly Balanced Path

Figure 3: Balancing BSTs 

balanced BST maintains h = O(lg n) all operations run in O(lg n) time. •	 ⇒ 

2 



Lecture 4	 Balanced Binary Search Trees 6.006 Spring 2008


AVL Trees: 

Definition 

AVL trees are self-balancing binary search trees. These trees are named after their two 
inventors G.M. Adel’son-Vel’skii and E.M. Landis 1 

An AVL tree is one that requires heights of left and right children of every node to differ 
by at most ±1. This is illustrated in Fig. 4) 

Figure 4: AVL Tree Concept 

In order to implement an AVL tree, follow two critical steps: 

•	 Treat nil tree as height −1. 

•	 Each node stores its height. This is inherently a DATA STRUCTURE AUGMENTATION 
procedure, similar to augmenting subtree size. Alternatively, one can just store dif­
ference in heights. 

A good animation applet for AVL trees is available at this link  . To compare Binary Search 
Trees and AVL balancing of trees use code provided here .

1Original Russian article: Adelson-Velskii, G.; E. M. Landis (1962). ”An algorithm for the organization 
of information”. Proceedings of the USSR Academy of Sciences 146: 263266. (English translation by Myron 
J. Ricci in Soviet Math. Doklady, 3:12591263, 1962.) 

kk-1
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http://www.cs.jhu.edu/~goodrich/dsa/trees/avltree.html
http://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/search.htm
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Balance: 

The balance is the worst when every node differs by 1. 
Let Nh = min (� nodes). 

⇒ Nh = Nh−1 + Nh−2 + 1 

> 2Nh−2 

⇒ Nh > 2h/2 

1 
= h < lg h⇒ 

2 

Alternatively: 

Nh > Fn (nth Fibonacci number) 

In fact,Nh = Fn+2 − 1 (simple induction) 
φh 

Fh = √
5 

(rounded to nearest integer) 

1 + 
√

5
where φ =

2 
≈ 1.618 (golden ratio) 

= ⇒ maxh ≈ logφ(n) ≈ 1.440 lg(n) 

AVL Insert: 

1. insert as in simple BST 

2. work your way up tree, restoring AVL property (and updating heights as you go). 

Each Step: 

• suppose x is lowest node violating AVL 

• assume x is right-heavy (left case symmetric) 

• if x’s right child is right-heavy or balanced: follow steps in Fig. 5 

• else follow steps in Fig. 6 

• then continue up to x’s grandparent, greatgrandparent . . . 
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Figure 5: AVL Insert Balancing 
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Example: An example implementation of the AVL Insert process is illustrated in Fig. 7
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Insert(23) x = 29: left-left case
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Figure 7: Illustration of AVL Tree Insert Process 

Comment 1. In general, process may need several rotations before an Insert is completed. 

Comment 2. Delete(-min) harder but possible. 
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Balanced Search Trees: 

There are many balanced search trees. 

AVL Trees Adel’son-Velsii and Landis 1962

B-Trees/2-3-4 Trees Bayer and McCreight 1972 (see CLRS 18)

BB[α] Trees Nievergelt and Reingold 1973

Red-black Trees CLRS Chapter 13

Splay-Trees Sleator and Tarjan 1985

Skip Lists Pugh 1989

Scapegoat Trees Galperin and Rivest 1993

Treaps Seidel and Aragon 1996


Note 1. Skip Lists and Treaps use random numbers to make decisions fast with high

probability.

Note 2. Splay Trees and Scapegoat Trees are “amortized”: adding up costs for several

operations = fast on average.
⇒ 
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Splay Trees 

Upon access (search or insert), move node to root by sequence of rotations and/or double-
rotations (just like AVL trees). Height can be linear but still O(lg n) per operation “on 
average” (amortized) 

Note: We will see more on amortization in a couple of lectures. 

Optimality 

•	 For BSTs, cannot do better than O(lg n) per search in worst case. 

•	 In some cases, can do better e.g. 

–	 in-order traversal takes Θ(n) time for n elements. 

– put more frequent items near root


A Conjecture: Splay trees are O(best BST) for every access pattern.


•	 With fancier tricks, can achieve O(lg lg u) performance for integers 1 · · · u [Van Ernde 
Boas; see 6.854 or 6.851 (Advanced Data Structures)] 

Big Picture: 

Abstract Data Type(ADT): interface spec. 
e.g. Priority Queue: 

•	 Q = new-empty-queue() 

•	 Q.insert(x) 

•	 x = Q.deletemin()


vs.


Data Structure (DS): algorithm for each op.


There are many possible DSs for one ADT. One example that we will discuss much later in 
the course is the “heap” priority queue. 
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