
MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lecture 4 Balanced Binary Search Trees 6.006 Spring 2008

Lecture 4: Balanced Binary Search Trees

Lecture Overview

• The importance of being balanced

AVL trees •

– Definition

– Balance

– Insert

Other balanced trees •

• Data structures in general

Readings

CLRS Chapter 13. 1 and 13. 2 (but different approach: red-black trees)

Recall: Binary Search Trees (BSTs)

• rooted binary tree

each node has •

– key

– left pointer

– right pointer

– parent pointer

See Fig. 1

65

41

20

11 5029

26

3

2

1

1

φ

φ

φ

Figure 1: Heights of nodes in a BST

1

Lecture 4	 Balanced Binary Search Trees 6.006 Spring 2008

x

≤x ≥x

Figure 2: BST property

•	 BST property (see Fig. 2).

•	 height of node = length (� edges) of longest downward path to a leaf (see CLRS B.5
for details).

The Importance of Being Balanced:

•	 BSTs support insert, min, delete, rank, etc. in O(h) time, where h = height of tree
(= height of root).

•	 h is between lg(n) and n: Fig. 3).

vs.

Perfectly Balanced Path

Figure 3: Balancing BSTs

balanced BST maintains h = O(lg n) all operations run in O(lg n) time. •	 ⇒

2

Lecture 4	 Balanced Binary Search Trees 6.006 Spring 2008

AVL Trees:

Definition

AVL trees are self-balancing binary search trees. These trees are named after their two
inventors G.M. Adel’son-Vel’skii and E.M. Landis 1

An AVL tree is one that requires heights of left and right children of every node to differ
by at most ±1. This is illustrated in Fig. 4)

Figure 4: AVL Tree Concept

In order to implement an AVL tree, follow two critical steps:

•	 Treat nil tree as height −1.

•	 Each node stores its height. This is inherently a DATA STRUCTURE AUGMENTATION
procedure, similar to augmenting subtree size. Alternatively, one can just store dif­
ference in heights.

A good animation applet for AVL trees is available at this link . To compare Binary Search
Trees and AVL balancing of trees use code provided here .

1Original Russian article: Adelson-Velskii, G.; E. M. Landis (1962). ”An algorithm for the organization
of information”. Proceedings of the USSR Academy of Sciences 146: 263266. (English translation by Myron
J. Ricci in Soviet Math. Doklady, 3:12591263, 1962.)

kk-1

3

http://www.cs.jhu.edu/~goodrich/dsa/trees/avltree.html
http://ocw.mit.edu/ans7870/6/6.006/s08/lecturenotes/search.htm

Lecture 4 Balanced Binary Search Trees 6.006 Spring 2008

Balance:

The balance is the worst when every node differs by 1.
Let Nh = min (� nodes).

⇒ Nh = Nh−1 + Nh−2 + 1

> 2Nh−2

⇒ Nh > 2h/2

1
= h < lg h⇒

2

Alternatively:

Nh > Fn (nth Fibonacci number)

In fact,Nh = Fn+2 − 1 (simple induction)
φh

Fh = √
5

(rounded to nearest integer)

1 +
√

5
where φ =

2
≈ 1.618 (golden ratio)

= ⇒ maxh ≈ logφ(n) ≈ 1.440 lg(n)

AVL Insert:

1. insert as in simple BST

2. work your way up tree, restoring AVL property (and updating heights as you go).

Each Step:

• suppose x is lowest node violating AVL

• assume x is right-heavy (left case symmetric)

• if x’s right child is right-heavy or balanced: follow steps in Fig. 5

• else follow steps in Fig. 6

• then continue up to x’s grandparent, greatgrandparent . . .

4

Lecture 4 Balanced Binary Search Trees 6.006 Spring 2008

x

y

A

B C

k+1

k

k-1

k-1

x

z
A

B C

k+1k-1 Left-Rotate(x)

kk

y

x

C

A B

k+1
k

kk-1

y

x

C

A B

k
k

k-1k-1

Left-Rotate(x)

Figure 5: AVL Insert Balancing

x

z
A

D

k+1k-1 Left-Rotate(x)

k-1

y

x

A B

k

k-1y

B C

k

k-1
 or

k-2

Right-Rotate(z)
z

C D

k

k-1

k+1

k-1
 or

k-2

Figure 6: AVL Insert Balancing

5

Lecture 4 Balanced Binary Search Trees 6.006 Spring 2008

Example: An example implementation of the AVL Insert process is illustrated in Fig. 7

65

41

20

11 5029

26

3

2

1

1

φ

φ

φ

65

41

20

11 5029

26

2

1

φ

φ

φ

1

23

Insert(23) x = 29: left-left case

65

41

20

11 5026

23

3

2

1

1

φ

φ

φ

65

41

20

11 50

1

φ
φ

Done Insert(55)

29 φ

3

2

26

23

1

29φ φ

65

41

20

11 50

2

φ
φ

2

26

23

1

29φ φ

x=65: left-right case

55

1

55

41

20

11 50

1

φ
φ

2

26

23

1

29φ φ

65

Done
3

φ

Figure 7: Illustration of AVL Tree Insert Process

Comment 1. In general, process may need several rotations before an Insert is completed.

Comment 2. Delete(-min) harder but possible.

6

Lecture 4 Balanced Binary Search Trees 6.006 Spring 2008

Balanced Search Trees:

There are many balanced search trees.

AVL Trees Adel’son-Velsii and Landis 1962

B-Trees/2-3-4 Trees Bayer and McCreight 1972 (see CLRS 18)

BB[α] Trees Nievergelt and Reingold 1973

Red-black Trees CLRS Chapter 13

Splay-Trees Sleator and Tarjan 1985

Skip Lists Pugh 1989

Scapegoat Trees Galperin and Rivest 1993

Treaps Seidel and Aragon 1996

Note 1. Skip Lists and Treaps use random numbers to make decisions fast with high

probability.

Note 2. Splay Trees and Scapegoat Trees are “amortized”: adding up costs for several

operations = fast on average.
⇒

7

Lecture 4	 Balanced Binary Search Trees 6.006 Spring 2008

Splay Trees

Upon access (search or insert), move node to root by sequence of rotations and/or double-
rotations (just like AVL trees). Height can be linear but still O(lg n) per operation “on
average” (amortized)

Note: We will see more on amortization in a couple of lectures.

Optimality

•	 For BSTs, cannot do better than O(lg n) per search in worst case.

•	 In some cases, can do better e.g.

–	 in-order traversal takes Θ(n) time for n elements.

– put more frequent items near root

A Conjecture: Splay trees are O(best BST) for every access pattern.

•	 With fancier tricks, can achieve O(lg lg u) performance for integers 1 · · · u [Van Ernde
Boas; see 6.854 or 6.851 (Advanced Data Structures)]

Big Picture:

Abstract Data Type(ADT): interface spec.
e.g. Priority Queue:

•	 Q = new-empty-queue()

•	 Q.insert(x)

•	 x = Q.deletemin()

vs.

Data Structure (DS): algorithm for each op.

There are many possible DSs for one ADT. One example that we will discuss much later in
the course is the “heap” priority queue.

8

