MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 23: Numerics I

Lecture Overview

- Irrationals
- Newton's Method $(\sqrt{(a)}, 1/b)$
- High precision multiply ←
- Next time
 - High precision radix conversion (printing)
 - High precision division

Irrationals:

Pythagoras discovered that a square's diagonal and its side are incommensurable, i.e., could not be expressed as a ratio - he called the ratio "speechless"!

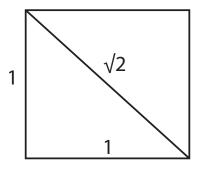


Figure 1: Ratio of a Square's Diagonal to its Sides

Pythagoras worshipped numbers "All is number" Irrationals were a threat!

Motivating Question: Are there hidden patterns in irrationals? Can you see a pattern?

 $\sqrt{2} = 1.414213562373095$ 048801688724209 698078569671875

Digression

Catalan numbers:

Set P of balanced parentheses strings are recursively defined as

- $\lambda \epsilon P$ (λ is empty string)
- If $\alpha, \beta \in P$, then $(\alpha)\beta \in P$

Every nonempty balanced paren string can be obtained via Rule 2 from a unique α, β pair. For example, (()) ()() obtained by (()) ()()

Enumeration

 C_n : number of balanced parentheses strings with exactly n pairs of parentheses $C_0 = 1$ empty string

 C_{n+1} ? Every string with n+1 pairs of parentheses can be obtained in a unique way via rule 2.

One paren pair comes explicitly from the rule. $\,$

k pairs from α , n-k pairs from β

$$C_{n+1} = \sum_{k=0}^{n} C_k \cdot C_{n-k} \quad n \ge 0$$

$$C_0 = 1 \quad C_1 = C_0^2 = 1 \quad C_2 = C_0 C_1 + C_1 C_0 = 2 \quad C_3 = \dots = 5$$

$$1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...$$

Geometry Problem

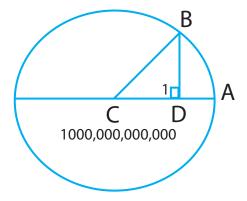


Figure 2: Geometry Problem

BD = 1 What is AD?

$$AD = AC - CD = 500,000,000,000 - \underbrace{\sqrt{500,000,000,000^2 - 1}}_{a}$$

Let's calculate AD to a million places!

Newton's Method

Find root of f(x) = 0 through successive approximation e.g., $f(x) = x^2 - a$

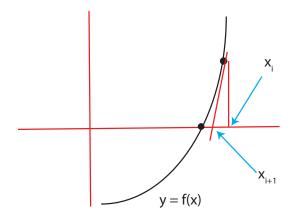


Figure 3: Newton's Method

Tangent at $(x_i, f(x_i))$ is line $y = f(x_i) + f'(x_i) \cdot (x - x_i)$ where $f'(x_i)$ is the derivative. $x_{i+1} = \text{intercept on x-axis}$

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Square Roots

$$f(x) = x^2 - a$$

$$\chi_{i+1} = \chi_i - \frac{(\chi_i^2 - a)}{2\chi_i} = \frac{\chi_i + \frac{a}{\chi_i}}{2}$$

Example

$$\chi_0 = 1.000000000$$
 $a = 2$
 $\chi_1 = 1.500000000$
 $\chi_1 = 1.416666666$
 $\chi_1 = 1.414215686$
 $\chi_1 = 1.414213562$

Quadratic convergence, # digits doubles

High Precision Computation

 $\sqrt{2}$ to *d*-digit precision: 1.414213562373 \cdots d digits

Want integer $|10^d\sqrt{2}| = |\sqrt{2\cdot 10^{2d}}|$ - integral part of square root Can still use Newton's Method.

Let's try it on $\sqrt{2}$, and our segment AD!

See anything interesting?

High Precision Multiplication

Multiplying two *n*-digit numbers (radix r = 2, 10) $0 \le x, y < r^n$

$$x = x_1 \cdot r^{n/2} + x_0$$
 $x_1 = \text{high half}$
 $y = y_1 \cdot r^{n/2} + y_0$ $x_0 = \text{low half}$
 $0 \le x_0, x_1 < r^{n/2}$
 $0 \le y_0, y_1 < r^{n/2}$

$$z = x \cdot y = x_1 y_1 \cdot r^n + (x_0 \cdot y_1 + x_1 \cdot y_0) r^{n/2} + x_0 \cdot y_0$$

4 multiplications of half-sized \sharp 's \implies quadratic algorithm $\theta(n^2)$ time

Karatsuba's Method

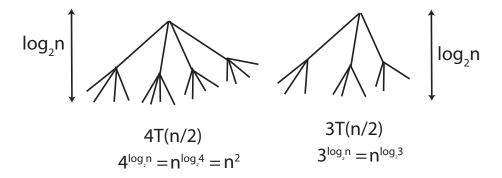


Figure 4: Branching Factors

Let

$$z_{0} = \underline{x_{0} \cdot y_{0}}$$

$$z_{2} = x_{2} \cdot y_{2}$$

$$z_{1} = (x_{0} + x_{1}) \cdot (y_{0} + y_{1}) - z_{0} - z_{2}$$

$$= x_{0}y_{1} + x_{1}y_{0}$$

$$z = z_{2} \cdot r^{n} + z \cdot r^{n/2} + z_{0}$$

There are three multiplies in the above calculations.

$$T(n)$$
 = time to multiply two n -digit $\sharp' s$
 = $3T(n/2) + \theta(n)$
 = $\theta\left(n^{\log_2 3}\right) = \theta\left(n^{1.5849625\cdots}\right)$

Better than $\theta(n^2)$. Python does this.

Error Analysis of Newton's Method

Suppose $X_n = \sqrt{a} \cdot (1 + \epsilon_n)$ ϵ_n may be + or - Then,

$$X_{n+1} = \frac{X_n + a/X_n}{2}$$

$$= \frac{\sqrt{a}(1+\epsilon_n) + \frac{a}{\sqrt{a}(1+\epsilon_n)}}{2}$$

$$= \sqrt{(a)} \frac{\left((1+\epsilon_n) + \frac{1}{(1+\epsilon_n)}\right)}{2}$$

$$= \sqrt{(a)} \left(\frac{2+2\epsilon_n + \epsilon_n^2}{2(1+\epsilon_n)}\right)$$

$$= \sqrt{(a)} \left(1 + \frac{\epsilon_n^2}{2(1+\epsilon_n)}\right)$$

Therefore,

$$\epsilon_{n+1} = \frac{{\epsilon_n}^2}{2(1+\epsilon_n)}$$

Quadratic convergence, as # digits doubles.